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Abstract

The visual perception system of a humanoid robot
should attain and manage the vision-model coupling.
This essential link between the physical world and its
modeled abstraction is established by diverse visual
tasks including self-localization, object recognition and
detection. The efficiency, robustness and precision of
these tasks directly depend on their extracted features.
Inevitably, the amount, representativeness and repeata-
bility of these features rely upon the quality and stability
of the acquired images. Therefore, a novel method for
consistent and stable image acquisition based on im-
age fusion is introduced. This method reliably captures
the scene’s visual manifold by optimal estimation of
the sensor irradiance signals. Experimental evaluation
with the humanoid robot ARMAR-IIIa corroborates the
quality, stability and applicability of the method.

1 Introduction

The structural composition of the humanoid robots
allows them to use the existing made-for-humans in-
frastructure. This crucial fact distinguishes them from
other robots permitting their full integration and ap-
plicability in the society. However, this composition
also imposes severe restrictions on their effectors and
sensors. Particularly, the natural approach of visual
perception through stereoscopic vision is restricted by:

� Physical constraints: These conditions restrain
the length of the stereoscopic base-line, the size
and weight of the cameras and lenses, see Fig.1-a.

� Complex perturbations: Inside a humanoid robot
head coexist several devices, see Fig.1-b. Their si-
multaneous operation produces electric, magnetic
and thermal perturbations which deteriorate the
quality of the sensor signals, see Fig.1-c and d.

� Circumscribed resources: Autonomous humanoid
robots should dependably realize complex tasks
with their limited memory and computational
power onboard.

� Extensive requirements: The requirements of the
visual sensing skills change dynamically e.g., res-
olution, frame rate and vergence, see [3].

Even under these conditions, the visual perception
of a humanoid robot requires consistent and stable sen-
sor measurements in order to attain the vision-model
coupling, see diverse approaches [4]-[7].

In order to overcome these conditions, a multi-image
fusion method based on density estimation is intro-
duced in Sec.3. The advantages of the method are
its stability and robustness to arbitrary multimodal
distributions of the irradiance sensor signals. The re-
sulting fusion images improve the global stability and
precision of the visual perception processes, see Sec.4.
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Figure 1. a) The humanoid robot Armar-IIIa [1]. b) The Karlsruhe
humanoid head is equipped with a gyroscope, 4 cameras, 6 micro-
phones and 6 motors, see [2]. During task execution, these devices
simultaneously work in a perception-action-cycle. c) An everyday
scene in a made-for-humans environment where the humanoid robot
should recognize objects and estimate their poses. d) The pseudo-
color deviation image (Rk in Eq.2) shows the sensors instability and
detrimental artifacts produced from different noise sources.

The performance of the method allows to acquire semi-
dynamic1 scenes in real applications.

2 Related Work

Methods which improve the image acquisition can
be categorically split into rectification through image
enhancement and synthesis by means of image fusion.

2.1 Image Enhancement

These methods deal with the inverse problem of esti-
mating the ideal “noiseless” image from a single noise-
contaminated image. For more than four decades, im-
age denoising and image enhancement algorithms have
achieved considerable progress for image restoration,
see extensive survey in [8].

The neighborhood filters such as the k-nearest neigh-
bors and the non-local means filters [9] and [10] (see
comparison in [11]) provide considerable results with-
out artifacts when using small window radius. Their
outstanding computational performance (up to 500 fps
using a gpu as reported in [12]) decreases quadratically
depending on the applied window radius. Neverthe-
less, when the noise affects a region beyond one or two
pixel(s) the resulting images present severe artifacts.
Thus, the robustness of these methods is not adequate
for everyday humanoid robot applications.

A more recent method [13] shows outstanding results
with highly contaminated images. However, it is ex-
tremely expensive, namely, more than 3 minutes even

1The scene’s content remains static during the sampling.



with a low resolution (256×256 pixels) image. Its per-
formance makes it prohibitive for online applications.

Furthermore, all image enhancement methods can
only improve the image up to a certain limit. This
occurs due to those diminishing factors which cannot
be filtered from a single image. It happens in common
situations, e.g., the flickering produced by the artifi-
cial lighting in an indoor environment, or particularly
in humanoid robots, the electromagnetic perturbations
(produced by the head motors) generate noise waves on
the image, see Fig.2. In such situations, a single im-
age loses the local information and the noiseless-inverse
extraction cannot be properly solved.
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Figure 2. Complex sensing perturbations. a) Everyday scene in
a household environment. b) The deviation of a single image (see
Sec.3.2) shows three important aspects: i) Noise waves with ampli-
tudes that corrupt (partially vanish or even completely occlude) the
underlying saliences such as edges and corners. ii) Overexposed re-
gions (lamp area) show no deviation. iii) The microwave lcd display
shows high dynamic deviations. See attached video.

2.2 Image Fusion

These methods exploit the available information in
two or more images in order to synthesize an improved
image. Image fusion has been widely investigated and
successfully applied in various domains [14]. Depend-
ing on the data and the desired results, these methods
are categorically divided into:

� Image registration: Transforms image sets cap-
tured from different viewpoints and sensors into
a consistent coordinate system, see [15].

� Super resolution: Enhances the resolution of the
images assuming either structural regularity [16]
or statistical similarity of the image [17].

� High-dynamic-range imaging : Increases the dy-
namic range of luminance beyond the sensor capa-
bilities by fusing multi-exposed images, see [18].

� Multi-focus imaging : Expands the depth of field
by fusing multi-focused images, see [19].

� Poisson blending : Composes gradient domain im-
ages for the seamless image content insertion [20].

� Image based rendering : Uses multi-images to gen-
erate novel scene viewpoints, see [21].

� Stitching : Combines images with overlapping field
of view in order produce panoramas, see [22].

In contrast to these methods, the aim of the method
proposed in this article is to improve the quality and
stability of the images acquired in each viewpoint us-
ing the available sensor resolution. Additionally, the
following proposed method holds these considerations:

� No assumptions regarding the image content.

� No requirement of long static scene or robot pose.

� Geometric consistency is well-kept for the Eu-
clidean metric extraction from stereo images.

� Fixed focal length is preserved according to the
intrinsic camera calibrations.

� The stability and quality of the acquired images
are improved in terms of image processing results,
not in human perceptual metrics.

3 Methodology

The first step for robust image acquisition by multi-
image fusion is to analyze the sensor deviation behav-
ior. Subsequently, based on this behavior, an efficient
and robust fusion strategy is introduced to overcome
both the sensor deficiencies and the unsuitable envi-
ronmental circumstances. Afterwards, the convergence
analysis provides a deeper insight into the selection
and effects of the sampling horizon. Finally, two funda-
mental feature extraction operations are used to eval-
uate the stability and precision improvements.

3.1 Sensor Deviation Behavior

The sensor deviation is the amount of intensity vari-
ation assuming a semi-dynamic scene. In order to an-
ticipate possible sampling artifacts during the multi-
image capture, the maximal available frame rate is
used and the images are directly stored for offline pro-
cessing. Notice that this indirect mode is adequate only
to establish the sensor deviation behavior, whereas the
fusion strategy for online applications (see Sec.3.2) is
partially done within the inter-frame interval, see Sec.4

3.1.1 Irradiance Signals

The pixel location x ∈ N2 within the image area Ω is
limited by the width w and height h. The Ω set is the
domain of the time varying image function It : N2 7→
N. The value associated with a location x is a random
variable independent and identically distributed over
the intensity set Θ, namely

x ∈ Ω := { x | (1, 1) ≤ x ≤ (w, h) } ⊂ N2,

It(x) ∈ Θ := { i | 0 ≤ i ≤ (2m − 1) } ⊂ N,

where the temporal subindex t stands for the time
stamp and m denotes the bits per pixel.

3.1.2 k-Temporal-Scope

The observation time scope including k > 1 images
involves the descriptive statistics: maximum Uk, mini-
mum Lk, range Rk and mean Mk (see Fig.3), formally
expressed as

Uk(x) := max

[
It(x)

]k
t=1

(1)

Lk(x) := min

[
It(x)

]k
t=1

(2)

Rk(x) := Uk(x)− Lk(x) (3)

Mk(x) :=
1

k

k∑
t=1

It(x). (4)
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Figure 3. A single pixel’s sequential intensity values within the k-
temporal-scope show the descriptive statistics. Notice the magenta
circles marking the upper and lower intensity outliers. The pixel
source location is marked in the center of the zoom in Fig.1-d.

3.2 Fusion Strategy

In order to soundly fuse the observed images, the
probability density function (pdf) of each pixel is used
to determine the representativeness of the samples.
The pdf is attained by kernel density estimation (kde)
[23]. This technique provides many advantages com-
pared to the straightforward mean or median fusion,
see Fig.4.
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Figure 4. The probabilistic distribution function of the irradiance
values illustrates why the straightforward fusion methods such as
mean or median produce lower density values. This occurs if the
data is not symmetrically spread, slightly skewed or multimodal dis-
tributed.

The kde is expressed as

fk(x, i) :=

k∑
t=1

Kλ

(
i− It(x)

)
, (5)

where the Kλ denotes the smoothing kernel with band-
width λ. The Epanechnikov kernel [23] was selected for
kde due to its performance, theoretical advantages and
the experimental quality of its results. Since the band-
width assessment is an issue itself [24], the method
in [25] was used for its selection. In contrast to ε-
truncation or kernel dependency as in [24], the kde is
efficiently approximated by the next adaptive method.

The most likely fusion value is the maximal density

intensity Îk : N2 7→ R (the top most red value in Fig.4)

Îk(x) := argmax
i∈R

[
fk(x, i)

]Uk(x)

i=Lk(x)

. (6)

It is semicontinuously computed by a two stage interval
analysis: In the first stage, the kde is coarsely sampled
with evenly distributed α < 1 ∈ R+ increments

Îαk (x) := argmax
i∈R

[
fk(x, i)

]Uk(x)

i=α·j+Lk(x), j∈N0

(7)

subsequently, a refinement β < α is performed as

Îβk (x) := argmax
i∈R

[
fk(x, i)

]Îαk (x)+α−β

i=β·j+Îαk (x)−α, j∈N+

. (8)

In this manner, the number of iterations is implicitly
adjusted according to the observed range. This auto
adjustment sagaciously adapts the required computa-
tional power while obtaining high accuracy.

3.3 Convergence Behavior

Based on these descriptive statistics, it is clearly
noticeable that the stability of the sensor values is
reached when the range increment is neglectable. This
behavior is globally and smoothly depicted by the
mean range expansion

Ek :=
1

wh

∑
x∈Ω

Rk(x), and its rate ψk :=
δEk
δk

. (9)

Usually, the range expansion requires a large k-
temporal-scope in order to converge, see Fig.5. This
occurs due to the outliers in the noisy lower and upper
quantiles of the cumulative distribution function (cdf),
e.g., the samples at time stamps 20 and 104 in Fig.3.
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Figure 5. The range expansion Ek (upper plot) and its rate Ψk
(lower plot) provide an intuitive illustration of the sensor deviation
convergence. The range expansion stability is reached at the time
position where the curve shows a quasilinear tendency, it occurs
approximately after k > 60 (blue circles) whereas the rate Ψk con-
verges in a shorter (roughly) k < 30 temporal-scope (magenta circle).

The range expansion index rate ψk from Eq.9 pro-
vides an upper limit to estimate the number of images
needed for optimal fusion. However, after fusing a cer-
tain number of images the resulting synthesized image
does not improve substantially. In order to determine
the minimal number of images required for the con-
vergence, the following technique is performed: First,
a large image set is captured, its cardinality is called
n-horizon. Using this set, the fusion strategy is per-
formed through the Eq.7-8. Now, the n-horizon fusion
image Ĭn(x) ∈ R is regarded as the ground truth refer-
ence in order to analyze both the convergence trade-off
over the k-temporal-scope and the abnormality.

3.3.1 Convergence Trade-off

It expresses the global convergence versus the k-
temporal-scope (see Fig.6) as

χk :=

 1

wh

[∑
x∈Ω

(
Ît(x)− Ĭn(x)

)2
]k
t=1

 1
2

. (10)

3.3.2 Abnormality Distribution

The abnormality distribution describes the compre-
hensive spatiotemporal deviation of the intensity val-
ues. It provides an insight into the sensor anomalous
distribution. For instance, the intensity value l ∈ Θ
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Figure 6. The convergence behavior χk from Eq.10. Notice the
four regions delimited by circles; a) The χ2 initial deviation. b) Af-
ter k > 4 samples the maximal deviation is reached. c) Within less
than one sampling second (15 ≤ k ≤ 25, @ 30fps) the convergence
slows down into a linear behavior. d) Not until a very long k > 350
temporal scope (depending on the hardware and scene factors) the
deviation convergence behaves nonlinearly. e) Plenary convergence
at the sampling n = 400-horizon. Notice that the convergence be-
havior within c) and d) is quasilinear with a small negative slope.

has the upper abnormality Au(l) depicting the max-
imal value found in the whole k-temporal scope and
spatial Ω domain which actually corresponds to l in the
n-horizon fusion image Ĭn(x). Likewise, the lower ab-
normality Al, the abnormality range Ar and the rms-
abnormality Aς(l) provide the complementary descrip-
tion of the abnormality distribution expressed as

Au(l) := max

[
It(x)− l

]n
t=1

(11)

Al(l) := min

[
It(x)− l

]n
t=1

(12)

Ar(l) := AU (l)−AL(l) (13)

Aς(l) :=

[
1

n

n∑
t=1

(
It(x)− l

)2
] 1

2

(14)

all subject to l = round(Ĭn(x)) : ∀x ∈ Ω, see Fig.7.
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Figure 7. Plots showing the relation between noise distribution
and the intensity values. In the upper plot, the fusion abnormality
extrema of Fig.1. In the gray region, prominent outliers of the upper
Au(l) and lower Al(l) abnormality produce detrimental effects for
feature extraction and image segmentation. The lower plot shows the
rms-abnormality Aς(l) distribution. The global effects of outliers are
not globally relevant but locally pernicious for feature extraction.

4 Experimental Evaluation

In order to simultaneously support our claim and
evaluate the improvement effects, two important fea-
ture extraction tasks were performed.

4.1 Edge Stability

Due to the importance of the edge-cue, an evaluation
of the stability improvement produced by the multi-
image fusion is presented, see Fig.8.
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Figure 8. a) Semi-dynamic scene. b) A trial result of the edge
detector based on [27]. c) Results show 23.81% reduction in the
variation range of the amount of edge pixels and 7.7% less variance
when using fused images attained by the proposed method.

4.2 Segmentation Stability

The noise artifacts from the directly captured image
(such as those in the gray region in Fig.7) have negative
side effects, e.g., discontinuous segments are connected
and vice versa. Hence, when using directly captured
images, the segmentation is not consistent in terms of
the amount and sizes of the resulting segments. These
issues can be remarkably overcome by means of the
proposed method for image fusion see results in Fig.9.
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Figure 9. a) Semi-dynamic scene. b) A trial result of the seg-
mentation based on adaptive region growing similar to [26]. c) The
absolute variation of the total segments relative to the mean from
all trials. d) Results show 36.36% reduction in the variation range
of the amount of segments and 40.05% less variance using fused
images attained by the proposed method.

4.3 Performance

During the capturing, the value of each pixel sample
is stored and compared to its upper and lower bounds.
Later, the fusion from Eq.7-8 is performed. Finally, the
data structures are cleaned for the next acquisition, see
Tab.1.

5 Conclusions

The contribution of this article is the multi-image
fusion method for robust visual manifold acquisition
for complex robot systems including humanoid robots



Phase (ms) Max Min Mean Deviation

Capturing 2.25 2.06 2.11 0.04

Fusing (30 Frames) 891.89 712.05 762.94 55.92

Resetting 16.60 12.72 13.31 0.44

Table 1. Running performance of the proposed fusion method.
These results were obtained with a CPU Intel(R) Core(TM)2 Quad
@ 2.33GHz in a non optimized single thread implementation.

and mobile service robots. The proposed method con-
veniently overcomes the hardware limitations and si-
multaneously aids against the unsuitable environmen-
tal conditions. Categorically, the method is a temporal
image registration and optimization which clearly im-
proves all visual sensing tasks by providing stable and
superior quality images.

The experimental evaluation clearly supports our
claim by providing up to 40.05% segmentation im-
provement in terms of stability compared to the re-
sult by using directly captured images. Moreover, the
edge extraction improves up to 23.81% in the same
manner. This method enhances the image for more
representativeness and repeatability of the extracted
features allowing a wider applicability of the existing
vision methods.
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