
Ground-Truth Uncertainty Model of Visual Depth Perception for Humanoid Robots
D. Gonzalez-Aguirre, M. Vollert, T. Asfour and R. Dillmann

Karlsruhe Institute of Technology, Adenauerring 2, Karlsruhe-Germany.
{david.gonzalez, michael.vollert, asfour, dillmann}@kit.edu

Abstract—The visual perception of a humanoid robot bridges
the physical world with the internal world representation
through visual skills such as self-localization, object recognition,
detection, classification and tracking. Unfortunately, these skills
are affected by internal and external sources of uncertainty.
These uncertainties are present at various levels ranging from
noisy signals and calibration deviations of the embodiment up
to mathematical approximations and limited granularity of the
perception-planning-action cycle. This aggregated uncertainty
deteriorates and limits the precision and efficiency of the
humanoid robot visual perception.

In order to overcome these limitations, the depth perception
uncertainty should be modeled in the skills of the humanoid
robots. Due to the complexity of the aggregated uncertainty in
humanoid systems, the visual depth uncertainty can be hardly
modeled analytically. However, the uncertainty distribution can
be conveniently attained by supervised learning. The role of
the supervisor is to provide ground-truth spatial measurements
corresponding to the humanoid uncertain visual depth percep-
tion. In this article1, a supervised learning method for inferring
a novel model of the visual depth uncertainty is presented.
The acquisition of the model is autonomously attained by the
humanoid robot ARMAR-IIIB, see Fig.1.

I. INTRODUCTION

Intelligent humanoid robots should perceive the world in
order to recognize objects, plan actions and interact with
the environment. On the one hand, this perception should
quantitatively determine the essential measurable properties
of the world such as size, location and orientation. On the
other hand, perception should qualitatively solve complex
tasks such as recognition, classification and interpretation.

Specifically, in the visual perception for model-coupling2,
the quantitative perception provides the essential cues (length
and depth) for the complex perception task of object recog-
nition with 6D-pose estimation. This visual quantitative
perception relies on different cues depending on the sensing
(monocular or stereo) approach. For humanoid robots the
most coherent and natural approach is the stereo vision to
acquire quantitative information. This capability to obtain
euclidean metric from images allows humanoid robots to
recognize [1], grasp [2], manipulate [3], act upon environ-
mental elements [4], self-localize [5] and categorize objects
[6], [7]. Taking into account the perceptual uncertainty is
of crucial importance to robustly realize complex actions.
The integration of a visual depth uncertainty model in the
task planning and execution in humanoid robots enables

1Acknowledgment: The research leading to these results has received funding
from the European Union Seventh Framework Programme under grant agreement
no. 270273 (Xperience) and from the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft) under the SFB 588

2To properly and efficiently answer the fundamental perceptual questions: what?
and where?, the humanoid robot should establish a bidirectional link between external
stimuli and internal symbols. This sensor-model-coupling comes into existence by
means of sensor-transformation, recognition and state estimation algorithms.

Fig. 1. The humanoid robot Armar-IIIB [8] and one camera of the ground-truth
system [9] which provides the reference measurements for inferring the visual depth
uncertainty model without reductionist assumptions.

better perceptual scalability, ambiguities or error handling
and consist sensor fusion.

The uncertainty analysis and modeling in stereo vision
has been an active research field in the last three decades.
Consequently, considerable results have been achieved and
several models with different methodologies were proposed,
see approaches from the pioneers [10], [11], [12] up to recent
contributions in [13], [14], [15]. Despite their contributions,
these approaches rely on at least one critical and fundamental
assumption: i) They take for granted an underlying para-
metric distribution of the perceptual deviations and usually
model it by arbitrary fitting parametric distributions. This ten-
dency occurs either explicitly or quite subtle and implicitly.
On the one hand, it occurs explicitly by modeling the uncer-
tainty as the (weighted sum of) normal distribution(s) without
rigorous validation of the uncertainty distribution profile,
namely a methodical analysis of the normal-distribution
plausibility, see [10]. This rigorous modeling should include
the analysis of the systematic-errors (the mean behavior
curve) and the stochastic-spreading (the standard deviation
behavior curve) as functions of the depth. They also lack
of the validation through rms-deviation analysis between
their estimated normal distribution and one accurate ground-
truth-based non-parametric model which tightly reflects the
uncertainty nature of the visual depth perception. On the
other hand, these assumptions are implicitly stated by a
priori covariance propagation. This takes place assuming
simplifications through analytical models satisfying strong
mathematical constraints, usually linearization by truncated
Taylor series, for instance [15]. ii) Previous approaches
also ignore the actuator effects (see detailed discussion on
this issue [16]) within the active visual perception and
considering only one single combination of image content
and feature extractor, see [14]. iii) Finally, these methods
lack of independent and accurate source of measurements to
widely (in dept range and amount of samples), strictly and
trustworthy validate their models.



II. OVERVIEW

In this paper, a novel uncertainty model of the visual
depth perception is proposed. In contrast to the discretized
approaches [12], the proposed method is based on supervised
uncertainty learning in continuous space. In these terms, the
uncertainty model of stereoscopic depth perception is the
inferring function Ψ which maps the visual depth (distance
between the camera and the target object) δ to its ground-
truth depth γ in terms of the probability density function ζ

Ψ︸︷︷︸
Ground-Truth Model

: {δ, γ ∈ R}︸ ︷︷ ︸
Perceptual and Truth Depths

7→ {ζ(δ, γ) : R2 7→ R}.︸ ︷︷ ︸
Ground-Truth PDF

The realization of this innovative and non-reductionist ap-
proach takes four compounded and interconnected elements,
see Fig.2. i) The ground-truth 6D-pose of the humanoid robot
cameras and target objects to be visually recognized. This
external reference is partially3 attained with a marker-based
system [9]. ii) The visual perception consisting of stereo
camera calibration, feature extraction and depth estimation
methods to be analyzed. iii) An autonomous process for
collecting learning samples. This process generates a scan-
ning plan, controls its execution on the humanoid robot 3
DoFs platform, 3 DoFs neck and cameras while simultane-
ously coordinates the network interfaces with the ground-
truth system in order to gather sufficient learning samples
necessary for soundly inferring the uncertainty model. iv)
The inferring method analyzes the acquired learning samples
to obtain the uncertainty model function Ψ. Afterwards, the
detailed analysis of the attained model unveils the systematic-
errors and stochastic-spreading of the visual perception. This
produces an outstanding uncertainty model representation in
terms of usability and minimal computational complexity.

In the next sections, a detailed description of the approach
is provided. In Sec.III, particular aspects of the humanoid
robot’s depth perception are discussed. The Sec.IV describes
the modeling setup. Afterwards in Sec.V, the visual recog-
nition and 6D-pose estimation of two types of reference-
rigs are introduced. Afterwards, the Sec.VI describes the
ground-truth acquisition. Next, in Sec.VII, the integration of
the visual recognition and ground-truth into the uncertainty
model Ψ is presented. The Sec.VIII discusses the proposed
model. Finally, the conclusions are stated in Sec.IX.

III. VISUAL DEPTH PERCEPTION UNCERTAINTY

There are various uncertainty sources in the depth percep-
tion by stereo vision in humanoid robots. The embodiment
imposes severe physical and computational restrictions. This
restrains the characteristics of the cameras and objectives.
In addition to the inherent sensor noise, the simultaneous
operation of sensors and actuators generate mechanical,
electrical and magnetic perturbations deteriorating the image
quality, see [16]. The embodiment restrains the camera size

3The camera’s kinematic frame C cannot be obtained by placing markers on the
humanoid robot head nor by attaching markers close to the humanoid robot eyeballs.
To obtain this frame, an automatic registration should be conducted by linking the
visual recognition to the marker system using a reference-rig, see Sec.VI.

Fig. 2. The supervised learning of the visual depth uncertainty model includes four
compounded elements: i) Three markers on the humanoid robot’s head are labeled as
base, primary and secondary. ii) The 2D blob-pattern calibration-rig with three frame-
aligned spherical markers. iii) The chess calibration-rig with frame-aligned spherical
markers. iv) The marker system with active-cameras. The exploitation of these elements
partially provides the 6D-pose ground-truth for the humanoid robot’s camera frame and
the 6D-pose of the reference-rig. The aim of use two patterns is to analyze the image
content and extraction methods in terms of differences of their uncertainty models.

making it unfeasible to integrate separation prism cameras
[17] or vertically stacked photodiode sensors [18]. Thus,
the commonly used bayer pattern cameras [19] generate
notable aliasing in the color planes [20]. Additionally, the
ubiquitous high-contrast image-content produces local over-
and under-exposure resulting in severe rate-distortion quanti-
zation effects which substantially diminish the image quality,
see [21]. Furthermore, most of the vision algorithms use
undistorted images produced by interpolated unwrapping.
This undistortion process usually employs fast but deficient
interpolation methods with error-prone radial and tangential
coefficients. More uncertainty is introduced by the estimated
principal point, pixel-aspect ratio and focal length. These
effects are noticeable at locations far from the principal
point [11]. Moreover, the estimation of the 3D position by
triangulation is subject to inaccuracies due to the lack of
accurate subpixel-calculations [22] or because of the flaws
in the extrinsic calibration, see [11].

The depth perception uncertainty is an intricate heteroge-
neous composition. Many attempts to partially model these
effects have been done [10]-[15]. However, non of them has
simultaneously regarded all the facts that a complete analyti-
cal integration of the uncertainty sources has to consider such
as the particular image-content, the specific feature extraction
method and the effects of the actuators during the sensing.

In real application humanoid robots are exposed to a wide
variety of materials, lighting and operation conditions. Ad-
ditionally, there are divers feature extraction methods which
were successfully and complementary applied in complex
humanoid robots application, see [23], [24]. Thus, a complete
analytical formulation is unfeasible. Still, the humanoid robot
depth perception most incorporate an effective uncertainty
model which directly and consistently reflects the nature of
the visual perception. A plausible model of such a complex
composition is to represent the depth uncertainty Ψ in
terms of the depth density distribution ζ, namely the PDF
associating perceptual depth δ and ground-truth depth γ.

This holistic approach integrates all the uncertainty sources
into a learnable compounded process providing a convenient
description of the uncertainty distribution. In contrast to



Fig. 3. The autonomous uncertainty sampling. The red rectangle on the floor is the
boundary of the marker system. The sampling plan is a distributed set of linked 3D
poses (2D for location and 1D for orientation of the robot platform) called sampling
nodes. A sampling node includes a set of neck configurations. To determine these
configurations, it is necessary to ensure the calibration-rig is within in the robot 3D field
of view. On the left, the regular polar grid plan is shown. This direct and intuitive but
naive and faulty plan produces irregularities and sampling artifacts. This occurs because
the sampling nodes of each arc are located at the same distance from the calibration-rig.
This produces isolated sample clusters preventing the proper generalization at other
depths, see video. On the right, the progressive polar zigzag plan enables the proper
acquisition of the uncertainty observations because the sampling nodes are located in
regular depth progression while the angular distribution is adjusted, see Fig.5.

analytical approaches, the key concept is to learn the non-
parametric uncertainty model Ψ as a probability density
function by kernel density estimation. The resulting non-
parametric PDF Ψ is further analyzed by means of nonlinear
regression in order to compare and verify its shape and
behavior against the existing parametric models.

IV. MODELING SETUP

A learning observation St ∈ R2 of the depth uncertainty
probability function consists of the visually estimated depth
δ ∈ R by means of stereo vision and the ground-truth depth
γ ∈ R attained by the marker system. In order to collect
these observations, the setup in Fig.2 is proposed:
Head markers: On the humanoid robot head, three spherical
markers were placed in a non-collinear arrangement. They
are used to estimate the head kinematic frame.
Reference-rigs: First, the blob-rig is made of two over-
lapped patterns: i) The 2D pattern consisting of three black
asymmetrically distributed circles with rather large diameter
�60mm. ii) The 3D pattern consisting of three spherical
markers respectively placed at the centers of the circles. The
alignment between both patterns is done by a translation
along the 2D pattern’s normal NBlobs ∈ R3. Hence, the
reference-rig has two kinematic frames, the χ-printed pattern
frame and the ς-spheres marker frame. Second, the chess-
rig is a 800x600 mm standard calibration pattern with three
reference markers located at the corners. This reference-rig
also involves the two similarly defined kinematic frames χ
and ς with an alignment vector NChess ∈ R3, the translation
vector from the chess-pattern center point to the base sphere
marker. The dimensions of the patterns are determined for
the recognition at wide-depths further than ~3,500mm using
6mm lenses when using images of VGA resolution.
Labeled marker positions: The active-cameras and their
multiple view fusion (see Fig.1) is done by the marker
system [9]. All marker positions are calculated relatively to
the world coordinate system W ∈ SE3 established at the
initial calibration of the marker system, see Fig.3.

Autonomous uncertainty sampling: In order to obtain
highly representative depth observation samples, the regu-
larly distributed locations and orientations of the humanoid
head were planned and controlled using a scanning plan, see
two labeled screenshots in Fig.3. This was done by sequen-
tially transversing a previously computed path of sampling
nodes. Within each sampling node, various configurations
of the humanoid robot neck (pitch, roll and yaw) were
planned and executed, in this manner the actuator uncertainty
effects were introduced in the active sampling distribution.
Furthermore, at each neck configuration several recognition
trials were performed in order to obtain highly representative
uncertainty sampling of the configuration-region.

This coordinated acquisition ensures the sound data asso-
ciation between the robot’s visual perception and the marker
reference system in terms of temporal consistency, spatial
uniformity and active sensing representativeness, namely the
wide inclusion of the uncertainty effects of the head actors.
The systematic generation and execution of scanning plan
has other advantages. For instance, it enables the comparison
of different extraction methods. Since the process is totally
autonomous, it was possible to extensively collect large
amount of learning samples (more than 25,000) allowing the
generation of a high quality uncertainty model, see video.

V. HUMANOID VISUAL PERCEPTION

The humanoid robot visually estimates the 6D-pose of
the blob’s reference-rig as follows: To segment the pattern
circles, the input color image Irgb(x ∈ N2) ∈ N3 is
transformed to a normalized saliency image IS(x, τ) =
1− 1

224τ [Ir(x) · Ig(x) · Ib(x)]
τ ∈ R, where τ ∈ N+ improves

the contrast between circles and background, see Fig.4. After,
the binary active pixel image IA(x) ∈ {0, 1} was obtained
[25], see Fig.4-b. Next, a region growing algorithm extracts
active blobs Bi. The blob’s centroid x̄i is estimated by
integrating its radial weighted saliency. The blobs in the
left BLi and right image BRk were matched using epipolar
geometry. Matches with low confidence or outside the depth
interval (δ0=500 ≤ |Xi| ≤ δ1=3,500mm) were removed.
Based on these 3D blob’s positions Xv

i (the superindex v
denotes vision estimated), the marker’s correspondence was
performed using the blob’s center distances. The matched
blob centers Xv

B , Xv
E and Xv

S ∈ R3 described the kinematic
transformation T χ

v

C from the camera frame C to the χ-
printed pattern as an homogeneous matrix, namely

Mv = Xv
E −Xv

B , Nv = Mv × (Xv
S −Xv

B) (1)

P v = Mv ×Nv, T χ
v

C =

[
M̂v N̂v P̂ v Xv

B

0 0 0 1

]
,

where ·̂ denotes an unitary vector. Finally, the kinematic
transformation T ς

v

C from the camera frame C to the spheres
marker frame ς was done by the alignment offset NBlobs as

T ς
v

C =

[
M̂v N̂v P̂ v (Xv

B +NBlobs)

0 0 0 1

]
. (2)



Fig. 4. The humanoid robot visual system recognizes and estimates the 6D-pose of
the reference-rigs. The results of the blob’s reference-rig processing pipeline at a close
distance (~356.8mm). a) The left input color image IRGB(x). b) The active image
IA(x). c) The saliency image IS(x, τ) with the recognition labeling and the estimated
depth. d) The zoom circle shows the recognized blob with its centroid and bounding
box, the lower text shows the matching identifier and the visual depth measurements.
e) The chess reference-rig frame is robustly attained by analysis of the corner points.

This frame is the transformation from the camera’s frame C
to the reference-rig and is the key to bidirectionally relate
the ground-truth system to the visual depth perception.

The extraction of corner points from the chess calibration
pattern is a well studied problem and it has been properly
solved, see [26]. The extracted noisy 3D corner points P vi
were used to determine their centroid P v corresponding
to the base of the χ frame of the chess calibration-rig.
Finally, from the matrix Gv = 1

n

∑n
i=1(P vi −P v)(P vi −P v)t

using SVD decomposition, the Eigenvector with smallest
associated Eigenvalue is the normal of the plane. The other
axes are determine using the geometry of the pattern. The
representation of this frame is analogous to Eq.2, see Fig.4-e.

VI. GROUND-TRUTH MEASUREMENTS

In order to sample the uncertainty distribution of the visual
depth, all kinematic frames should be linked in a kinematic
tree, see Fig.2. This enables a globally unified temporal
association of the measurements obtained from both systems.
World to head: The labels and position of the markers are
obtained by a network interface. These measurements have a
submillimeter accuracy [9]. The kinematic frame on the top
of the humanoid robot head T HmW is calculated as in Eq.1,
here the superindex m denotes from marker measurements.
World to reference-rig: The transformation T ς

m

W is com-
puted as in Eq.1 using the marker labels and positions.
Reference-rig to cameras: The transformation from the
kinematic frame on the reference-rig to the camera kinematic
frame is the inverse of Eq.2, namely T Cςv = [T ς

v

C ]−1.
World to camera: This transformation results from the
forward kinematic chain of previous two transformations as
T CW = T Cςv T ς

m

W . It is the coupling of the visual perception
ςv to the marker ground-truth ςm, the connection from the
χ-printed kinematic frame to the sphere’s kinematic frame ς .
Head to camera: Results from the kinematic chain coupling
the inverse world to head transformation and the transform
from world to camera, expressed as T CHm = T CW [T HmW ]−1.
This is the camera registration relative to the head’s frame.
To accurately achieve this registration, the humanoid robot
should be close to the reference-rig while performing this
procedure, see Fig.4a-d. This transformation is fixed and
stored for sampling process. Thus, if the humanoid robot
moves the transformation from the world’s kinematic frame
W to the camera’s kinematic frame C is determined as
T CW (t) = T CHmT H

m

W (t), where the t is the time stamp. This
dynamic transformation unifies the visual perception and the
ground-truth measurements.
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Fig. 5. The upper plots shows the learning observations St from Eq.3 represented
by 2D points relating the visual depth perception δ to the ground-truth depth γ. The
upper left and plots contains the blob-pattern and chess-pattern samples respectively.
The lower plots shows the learned model by means of kernel density estimation using
adaptive band-width Eq.5. The lower left and right plot show the resulting uncertainty
models using blob-pattern ζBlobs(δ, γ) and chess-pattern ζChess(δ, γ) respectively.

VII. UNCERTAINTY DISTRIBUTION LEARNING

A learning observation of the visual depth uncertainty is

St :=

[
δ := Φ

(
T ς

v

C (t)

)
︸ ︷︷ ︸
δ-Visual Depth, Eq.2

, γ := Φ

(
T ς

m

C (t)

)
︸ ︷︷ ︸

γ-Ground-Truth Depth, Eq.4

]T
∈ R2,

(3)
where the depth function Φ : SE3 7→ R extracts the
displacement length. The observation St (see Fig.5) integrate
the vision T ς

v

C (t) from Eq.2 and marker information

T ς
m

C (t) = T ς
m

W (t)[T CW (t)]−1. (4)

A. Model Learning

The uncertainty PDF of the depth perception Ψ is a
random variable function sampled by a collection of learning
observations using Eq.3. The inference based on the sampling
set L := {St}mt=1 is done by kernel density estimation [27].
The continuous model implies that for a perception depth δ
there is a corresponding uncertainty distribution ζ such as
∀ (δ0 ≤ δ ≤ δ1) ∃Ψ(δ) ⇒ ζ(δ, 0 ≤ γ < ∞), consequently∫∞

0
ζ(δ, γ) dγ = 1. The distribution is inferred as (see Fig.5)

ζ(δ, γ) =

m∑
t=1

Kλ(δ,γ)

(
[δ, γ]T − St

)
, (5)

where the locally adaptive Gaussian kernel Kλ(δ,γ) and its
bandwidth were determined using the generalization of the
Scott’s rule [28] as λ(δ, γ) = m−

1
6 Σ̂

1
2 (δ, γ), where Σ̂(δ, γ)

is the sampling covariance matrix centered at [δ, γ]T .
The learned ζ(δ, γ) is a non-parametric continuous dis-

tribution function sampled with fine discretization (κ=1mm)
into a lookup table ζ̃(δ, γ) with

⌈(
δ1−δ0
κ

)⌉2
= (3460)2 =

11971600 support points, see Fig.5.
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Fig. 6. Queries of the ground-truth uncertainty model of depth perception Ψ using
blobs-pattern. a) In order to illustrate the results and usage of the model, five different
queries plotted the inferred functions ζ(δ, γ) from Eq.5. These plots are obtained by
fixing the ground-truth depth (γ horizontal axis location in the lower left plot of Fig.5)
and then conducting a vertically sampling of the density values δ. These curves are the
learned uncertainty profiles at these exemplary depths. b) These are the resulting curves
by applying NLS (nonlinear regression) with normal distribution to the previous profile
curves from the upper plot. c) The rms-deviation analysis of the difference between
the non-parametric model and the normal regression model. The maximal absolute and
relative error are also displayed.
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Fig. 7. Queries of the ground-truth uncertainty model of depth perception Ψ using
chess-pattern, see the analogous caption in Fig.6.

When a point in space Xi has been visually estimated
by the humanoid robot, it is possible to query its depth un-
certainty distribution function Ψ(|Xi|) 7→ ζ(|Xi|, γ), which
efficiently, compactly and non-parametrically describes the
visual depth PDF along the ground-truth depth γ. This in-
ference ζ(|Xi|, γ) is the ground-truth learned model without
any assumption or reduction of the visual perception process.

B. Model Analysis

A study of the uncertainty queries were conducted by
applying nonlinear least squares regression at every depth

500 1000 1500 2000 2500 3000 3500
−80

−60

−40

−20

0

20

40

δ−Perceptual Depth (mm)

Pe
rc

ep
tio

n 
Er

ro
r (

m
m

)

 

 
Estimation without Model
Estimation with Model

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

Uncertainty Model Validation

δ−Perceptual Depth (mm)

A
bs

ol
ut

e 
Pe

rc
ep

tio
n 

Er
ro

r (
m

m
)

 

 

Mean Error=9.9661
Mean Error=10.0619

Estimation without Model
Estimation with Model

Fig. 10. The validation of the model was realized by comparing the predicted depths
from the uncertainty model and the real depth attained by the marker system.

interval κ=1mm as in Fig.6 and Fig.7 for each calibration-
rig respectively. During the NLS-regression, the normal-
distribution profile was used as the underlying regres-
sion shape in order to compare the parametric with the
non-parametric approach. This was done by obtaining the
systematic-error curve (mean vs depth), the stochastic-
spreading curve (standard deviation vs depth) and their rms-
deviation curve (normal-plausibility vs depth) to compare
them against non-parametric queries, see the results in Fig.8
and Fig.9 for each calibration-rig respectively. Furthermore,
these mean and standard deviation curves as functions of the
depth can be coherently modeled (again by regression) as
functions of the depth in a high order polynomial expression
see figures 8-e and g, 9-e and g.

VIII. DISCUSSION

The realization of the proposed uncertainty model is an
experimental process. The successfully validation of the
models was performed by collecting new samples St and
compare the prediction of provided by both representation
of the model the lookup table ζ̃(δ, γ) and the polynomial
functions of the depth in Fig.8 and Fig.9, see this validation
in Fig.10. The proposed model Ψ can be used to better reflect
the perceptual uncertainty of the landmarks by: i) estimating
a correction of the systematic-error of the perception and
determining an accurate stochastic-spreading by a high oder
polynomial function. In this article, the focus is placed on the
depth deviation directly formulated by the depth function Φ
in Eq.3. This function maps the full learning space from a
6D-pose to a 1D visual depth subspace. Since the uncertainty
of the 6D-pose was extensively and properly sampled, then
it can be wider exploited in a similar manner using the St
observations and a more general 6D-mapping Φ′. Further
research in this direction is ongoing work.

IX. CONCLUSIONS

The contribution of this article is a novel ground-truth
based uncertainty model of the depth perception for hu-
manoid robots. The proposed method conveniently over-
comes the analytical limitations of previous models while
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Fig. 8. NLS-regression of the ground-truth uncertainty model of depth perception Ψ using blobs-pattern. The plots in left columns were attained at every 1mm in the depth.
The plots in the right side were attained by polynomial regression of those on the left respectively in each row. Notice the various polynomial orders and their deviations.

integrating all the uncertainty sources. The proposed setup
and the developed recognition method exploit the accurate
ground-truth attained by the marker system. The system-
atically collection of perceptual samples allows to obtain
a high quality model in a fully automatic fashion. The
attained uncertainty models presented in Fig.6 and Fig.7
corroborate the approach’s motivation because the dispersion
of the uncertainty behavior is tightly dependent on the
feature extraction mechanism. These results support the need
to learn the uncertainty model of the applied recognition
mechanism. Furthermore, the representation and exploitation
of the model into both lookup table and polynomial functions
is a promising technique for a wide range of real-time visual
perception applications. A unique and remarkable property
of the proposed uncertainty model is its capability to correct
the systematic depth errors in the visual depth perception.
This novel property and a coherent standard deviation at
each depth for the parametrization of the density were the
successfully achieved objectives of this work. Additionally,
the time varying kinematic tree formulation of the humanoid
robot and the elements in the environment can also be

used in many other context and applications (robot-machine
interaction, motion graphs, imitation and kinematic learning)
for robots were the marker positions and robot configurations
are unified in a spatio-temporal world reference frame.
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