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Abstract— Overcoming the perceptual limitations of hu-
manoid robots requires representations exploitable by highly
integrable simulation, sensing, planning and acting components.
Therefore, a novel active visual localization component for
humanoid robots based on particle filtering in CAD envi-
ronments is introduced. Specifically, two new components are
presented: i) A vector-graphics prediction method employing
hierarchical CAD environmental representations is presented.
ii) A gaze attention method within the prediction-update cycle
of the particle filter increases the available amount of visual
features for localization while allowing adjustable task coupling.
Finally, large and unobstructive ground-truth validation with
the humanoid robot ARMAR-IIIb [1] in a made-for-humans
environment shows the robustness, accuracy and performance
of the proposed methods.

I. INTRODUCTION

In order to appropriately act in the world, a mobile
robot should attain its dynamic 6D pose in the environment.
This is essential for metric and semantic context acquisition
before planning, during execution and verification of actions.
It implies environmental representations including semantic
attributes, geometric models and functional descriptions. In
these object-centered representations, the surrounding ele-
ments are spatially and hierarchically registered. Thus, the
available environmental visual features contain all the infor-
mation required to unambiguously estimate the 6D pose of
the robot. For the realization of such a dynamic localization,
there exist two main feature based paradigms: bottom-up and
top-down. In the case of bottom-up methods, the extracted
visual features are matched to the environmental represen-
tation to determine the optimal 6D pose. These methods do
not assume a priori knowledge of the pose [2]. In contrast,
top-down methods assume a priori knowledge of the robot
pose. They are formulated as the generation, distribution and
validation of hypotheses representing time varying 6D poses
as state vectors. Top-down approaches track the state vector
in a recursive and probabilistic manner. This models the
underling dynamics of both sensor measurements and robot
motions. In this domain, Bayesian filtering established as
reliable state estimation framework. In particular, the non-
parametric and time discrete formulation of particle filters
has been widely studied in the context of robot localization.
However, less attention has been given to active visual
localization for humanoid robots within semantic endowed
CAD environments. There, the robot not only tracks its
ego-motion but also focuses its visual attention for physical
interaction. Up to now, proposed representations are usually
manually annotated attention zones [3] or assume bounded
sets of preconditions and outcomes.

Fig. 1: a) The humanoid robot ARMAR-IIIb localizes itself
while is exposed to environmental changes, b) robust visual
coupling to appearance and geometric modifications.

Additionally in the literature, the visual localization for
humanoid robots regards either static environments or all
changes in the surroundings are considered results of previ-
ous robot interactions. This restricts the integration of robots
in human-centered environment where other actors (humans,
robots, etc) interact with the world producing appearance and
geometric changes. The contributions in this paper alleviate
these limitations by new prediction and attention methods:
Environmental visual prediction: A novel CAD (computer
aided modeling [4]) prediction method in the observation
model is presented. This method reduces and exploits seman-
tically labeled and functionally described CAD representa-
tions in a general, scalable and efficient manner. Based on
this prediction, it is possible to efficiently manage complex
dynamic environments fully automatically.
Adjustable coupled attention: An active attention method
for in-the-loop gaze planning with adjustable task coupling
is presented. The gaze planning simultaneously exploits both
the visually estimated 6D pose and the proposed virtual
forces (predicted amount of visual features observable at each
particular robot configuration) maximizing the information
gain during localization and task execution. An adjustable
coupling enables continuous fading between optimal view
(for feature extraction during ego-tracking) and focus on the
target in the view. This coordinates the perception-planning-
action loop while improving localization.

Section II presents related work on visual localization
for robots. Subsequently, the environmental representation
is described in section III allowing a detailed presentation
of the observation model. Based on the prediction method,
the virtual forces and their dynamics are formulated into the
attention model for gaze planning in section IV. Extensive
experimental evaluation using reference ground-truth mea-
surements is presented in section V. Finally, conclusions are
provided in section VI.



II. RELATED WORK

In this paper, the focus is placed on dynamic visual
localization using CAD environmental representations. This
clearly differentiates itself from SLAM/MOT (simultaneous
localization and mapping / moving object tracking) where
the environmental representation is acquired while pose
estimation takes place. There are important contribution in
SLAM for humanoid robots [5], [6] or SLAMMOT for other
robots [7]. Despite their wide applicability, the asserted 6D
poses are only linked to the initially unknown pose of the
robot in the environment. Until now, SLAM/MOT represen-
tations are neither semantically nor functionally endowed.
This limits their use in robots with physical interaction.

In the top-down robot localization paradigm, the appli-
cation of conditional density propagation [8] for tracking
was introduced in [9]. In particular [9] proved long lasting
localization based on a vision and odometry in a museum by
a robot equipped with a camera oriented towards the ceiling.
The authors proposed an appearance-based map represen-
tation where the pose estimation is deducted solely form
an intensity similarity. Despite of the limited dimensionality
of the state space and rather simple observation model, the
contribution notably changed the dominating paradigm on
sensor-based state estimation for mobile robots.

Another pioneer work is the contribution [10]. The au-
thors exploited dense stereo reconstruction justifying lower
data association complexity during matching as well as the
necessity of information for footstep planning. Their visual
localization was formulated in 3D continuous state space
(two DoF for position and one DoF for orientation) assuming
neither odometry nor kinematic deviations. The humanoid
robot H7 was the experimental platform equipped with low
resolution (320x240 pixels) cameras allowing 1-3m depth
range. The environmental representations were volumetric
descriptions of artificially textured obstacles registered by
a marker-based ground-truth system. A critical issue was
ignoring the kinematic deviations and odometry drifting
during pose estimation (see analysis on this issue in [5]).
Despite having ground-truth measurements, authors provided
no quantitative assessment of their method. Nevertheless,
even with sensor limitations, strong restrictive textured envi-
ronments and a simplified state space, the authors showed
the plausibility of sequential Monte Carlo filtering [11]
for ego-motion tracking. More recently in the work of K.
Okada et al., perception, planning and action coordination
have been successfully realized [3], [12]. The approaches
are based on particle filters providing the robot with a
full-fledged environment representation. This representation
contains all necessary information for allowing the robot to
accomplish complicated assignments. The constructed repre-
sentation accelerates the developmental process compared to
other approaches such as those in artificial intelligence and
neuroscience. Since this (so-called) knowledge-based repre-
sentation provides pre-stored solutions to various complex
problems during task execution, for example, grasp planning,
best view pose, feature selection and focus of attention.

The sensor-based adaptation to partially modeled, unknown
or dynamic situations was the novel contribution. Despite
the enormous advances in visual localization, environmen-
tal state estimation and unified task representation, the
handcrafted critical information (manual annotations called
knowledge models as navigation spots, attention zones, etc.
[12]) is not suitable for general, scalable and autonomous
humanoid robots. These limitations of visual attention and
feature selection are managed in this paper by the proposed
prediction and attention methods. Moreover, active sensing
approaches are being broadly and intensively studied. Re-
markable contributions in visual localization using depth
cameras [13] show promising results. In our research, the
focus lies on passive cameras with active robot joints due
to the wider sensing possibilities, namely those unreachable
scenarios for active cameras such as large range sensing,
frontal robot collaboration and outdoors scenarios just to
mention a few.

III. ENVIRONMENTAL REPRESENTATION

Spatial model: Spatial hierarchy is established by the ar-
rangement of environmental objects according to the spatial
enclosing. The spatial enclosing of an object Oi is defined
by the subspace extraction function Θ(Oi) : Oi 7→ Si ⊂ R3,
which determines the subspace Si occupied by the object.
Consequently, an object Oj is denoted to be fully contained
Oj � Oi in the object Oi if and only if the subspace Sj =

Θ(Oj) is a proper subspace of Si = Θ(Oi). As consequence,
the object Oj is placed in a lower hierarchical level compared
to the hierarchy level of Oi producing a directed hierarchy
tree T(W,Θ). In this hierarchy, three different types of nodes
are distinguished: The root node OW is an abstract entity
embracing the complete spatial domain of the representation
Oi � OW : ∀Oi ∈ W. There is at least one leaf node Ol
enclosing no subordinate object @ Oi ∈W : Oi � Ol. There
are nodes Ob (neither leaves nor the root node) enclosing
at least one subordinate object Oi � Ob : ∃ Oi ∈ W,
see Fig. 2. Due to the acyclic structure of T(W,Θ), it is
possible to insert, remove or change objects without affecting
other spatially unrelated objects. This is the structural key for
multiresolution and scalability. Depending on the functional
description of an object, a directed link of the hierarchy
tree Lij := (Oi, Oj) ⇐⇒ (Oj � Oi) can contain parametric
rotations and/or translations expressed as

P (Lij) =


T (T, α, β, θ) ∈ SE3, if 6D Transformation
L ∈ R3, ω ∈ R, if 3D-Axis-Rotation
T ∈ R3, if 3D-Translation.

(1)

Object model: The boundary description [4] is used to
formulate objects as graphs composed by Oi := (V,E, F ) ∈
W, where V is the list of vertices, E represents the set of
edges, F denotes the set of triangular surfaces. The vertices
vk ∈ R3 describe the metric of an object. The list of m

vertices is denoted as V (Oi) := {vk}mk=1. An edge connecting
vertices vα and vβ is expressed as eαβ := (vα, vβ) | vα, vβ ∈
V (Oi)⇒ α, β ∈ N+, where (1 ≤ α < β ≤ m).



Fig. 2: The hierarchy tree of the CAD environmental rep-
resentation T(W,Θ) is topologically organized by spatial
enclosing. A parametric transformation (P (LW1) Eq. 1) dy-
namically affects a subtree. The collection of dynamic trans-
formations P (Lij) describes the kinematic tree TP (W,Θ).

Due to the vertex ordering (α < β), there is no ambiguity
(neither loops nor multigraphs) in this composition. The
object Oi contains an edge set E(Oi) expressed as E(Oi) :=

{eαβ}pα,β∈V (Oi)
⊂ {vα ⊗ vβ | α < β}, where ⊗ is the

Cartesian product. General surfaces are approximated by
subdivision into planar polygonal oriented surfaces forming
closed sequences. Due to the advantages (convexity, copla-
narity, verbosity, etc.), the polygonal surfaces are triangles.
A triangular surface denoted as fαβχ is uniquely defined by
three non-collinear vertices vα, vβ and vχ. Surface orientation
is denoted by the normal N̂(fαβχ). Finally, the union of
triangular surfaces F (Oi) := {fαβχ}qα,β,χ∈V (Oi)

, defines the
boundary of the object.

IV. PARTICLE FILTER

The fully registered body pose of a humanoid robot is
determined by the robot base frame P ∈ SE3 and the time
varying joint configuration Θ(t) ∈ Rn of the multi-limb kine-
matic tree with n DoFs. Using the modeled direct kinematics
of the robot KΘ(t) : (SE3,Rn) 7→ SE3 and providing either
the robot platform frame P or the camera frame C, it is
possible to bidirectionally determine complementary frames.

Unfortunately, there is accumulated uncertainty collected
along the path (encoding resolution, irregularities, construc-
tion or wastage deviations and calibration errors) between
frames of the robot kinematic chain. In practice, the esti-
mated visual localization transformation

T EC (t) = T EP(t) ·KΘ(t)(C,P) (2)

deviates from its real value. Considering these and other
external effects during localization can be collectively and
stochastically approximated as

T EC (t) ≈

estimation︷ ︸︸ ︷
T EP(t) KΘ(t)(H,P)︸ ︷︷ ︸

kinematic model

compensation︷ ︸︸ ︷
THC (t), (3)

where the compensation transformation from the camera
frame C to the neck frame H integrates both neck encoding
{αHt , βHt , γHt } ∈ R3 (roll, pitch and yaw angles) and the
independent and identically distributed stochastic deviations
{ert , ept , e

y
t } ∈ R3. In omni-wheel humanoid robots, it is

possible to represent the transformation TPE (t) using the pose
(xEt , y

E
t ) ∈ R2 and orientation αEt ∈ R of the platform.

State space: Dynamic visual localization is a 6D problem
in continuous state space. Hence, the state vector x should
reflect the dimensionality of the problem. By considering
the uncertainty (in Eq. 3), it is plausible to simultaneously
integrate joint configuration while compensating uncertainty
deviations and reducing the range (in each of dimension
eit) of the state space without reducing the intrinsic 6D
dimensionality of the process. This has the advantage of a
stochastic adaptive compensation while reducing the state
hypervolume (compact spreading) of the particles. Thus, the
6D state vector is

xt = ( xEt , y
E
t , α

E
t︸ ︷︷ ︸

platform pose

, er
t , e

p
t , e

y
t︸ ︷︷ ︸

neck deviation

)T. (4)

Motion model: Dynamics of the robot include both platform
and neck motion. The state transition function is expressed
as two independent models, one for the platform pose
fP and one for the neck frame compensation fH, namely
xt+1 = f(xt,ut,vt) = (fP(xt,ut,vt), fH(xt,ut,vt))

T,
where the state vector xt is affected by the speed vec-
tor ut = {vPx , vPy , vPα } of the platform odometry and the
uncertainty spread model vt. The motion model of the
platform fP requires the speed measurement in the envi-
ronment frame E . Thus, the platform orientation αP be-
tween two discrete time steps is approximated as αP(t) =
1
2
(vPα (t+1)∆t+αP(t)). The platform motion model includes

two stochastic contributions: i) proportional speed spread-
ing {N (1, σẋ),N (1, σẏ),N (1, σα̇)} ∈ vt and ii) refinement
spreading {N (0, σx),N (0, σy),N (0, σα)} ∈ vt as

xEt+1

yEt+1

αEt+1

 =

xEt +N (0, σx)
yEt +N (0, σy)
αEt +N (0, σα)

+ ∆t

[
R(αPt ) 02

0T2 1

]vPx · N (1, σẋ)
vPy · N (1, σẏ)

vPα · N (1, σα̇)

 ,

where N represents the normal distribution and R(αPt ) ∈ SO2

is the rotation submatrix. The neck compensation expressed
as a state transition function is formulated as

ert+1

ept+1

eyt+1

 =

ertept
eyt

+

N (0, σt(r))
N (0, σt(p))
N (0, σt(y))

 ,with spreading (5)

σt(i) =

{
σu if neck moves

max(σl , σt−1(i)− ε · (σu − σl)) else,
(6)

where the temporal convergence 0 < ε < 1 ∈ R implies
annealing bounded to [σl, σu] ∈ vt.
Observation model: It determines the degree of similarity
P(yt|xit) between a particle xit (Eq. 4) and the real state of
the humanoid robot by visual measurements yt, namely the
prediction and similarity assessment methods.



Fig. 3: CAD and vector graphics prediction method. a) During the projection process, the depth of a projected vertex is kept in the
homogeneous representation for the hidden line process. b) The intersection of all clipped image edges is efficiently computed by the
Sweep-Line algorithm [14]. c) The occlusion test is numerically stable and efficiently computed using barycentric coordinates.

Fig. 4: a) CAD representation. b) Clipping of projected edges with
visible end-points including those at image boundary.

Fig. 5: CAD model reduction. a) Source representation. b) Auto-
matic reduction by auxiliar tessellation removal (red edge), aperture
(green edge) and length filtering (in blue), see summary in Tab. I.

Prediction method: The integration of three elements: i)
the 6D pose of the humanoid robot (Eq. 3), ii) the CAD
environmental representation and iii) the intrinsic camera
calibration enables accurate virtual camera simulation within
the environmental representation. Straightforward generation
of images using this virtual camera to determine P(yt|xt)
has widely been done in visual tracking, object detection
and pose estimation, see [15], [16], [17]. These visual
prediction methods (based on raster graphics) expose many
drawbacks: i) Visual feature extraction should be applied for
each hypothesis generating huge computational overhead and
strongly limiting the amount of tracking particles for real
time processing. ii) Even if this process is parallelized in var-
ious GPUs or large multi-core systems (usually not available
in mobile systems) the rasterizing (pixel discretization and
quantization) of visual features limits the reliable estimation
even within short depths [18]. iii) The extraction of edge-
end-points and/or junctions at arbitrary depths is unreliable
even using optimal filters [19]. The proposed prediction
model (based on vector graphics) overcomes these limitations
by changing the raster-rendering-extraction paradigm to the
continuous projection-occlusion-extraction paradigm.

This highly parallelizable method (see performance in
Tab. I) simultaneously determines visibility and extracts
continuous visual features from the environment represented
in compact lists of visible edge segments and junctions.
Based on the camera calibration matrix K ∈ R3×3, image
(width and height w, h ∈ R) and frustum (near and far
clipping depths n, f ∈ R), the projection matrix [20] is

Φ =

2k11 −2k12/w 1− 2k13/w 0
0 2k22/h 2k23/h− 1 0
0 0 (f + n)/(n− f) (2fn)/(n− f)
0 0 1 0

 .

An environmental vertex vEk ∈ R3 is mapped (in homogeneous
coordinates Pn) v̂Ck ∈ P3 ⊂ R4 relative to the camera frame
as v̂Ck = TCE (t)[vEk 1]T. Its projection v̂Ik ∈ P2 ⊂ R3 on
the image plane (with coordinate system I) is expressed as
v̂Ik = Φv̂Ck . Notice that the homogeneous depth component
is preserved for the next stages, see Fig. 3-a). For objects
whose bounding box Θ(Oi) is (at least partially) within
the camera frustum, all edges eαβ are vertex-wise projected
into the image plane êIαβ = (v̂Iα, v̂

I
β ). Projected image edges

are clipped inside the image boundary using the Cohen-
Sutherland algorithm [21]. Fig. 4 shows this as red and
green markers. Next, the intersection of all clipped image
edges êIαβ is computed using [14], see Fig. 3-b). Each of
the resulting edge segments has no possible intersections
with other edge. Thus, the image midpoint ψIi (êIυω) of each
segment uniquely determines whether it is occluded by a
projected triangular surface f̂Iαβχ = (v̂Iα, v̂

I
β , v̂
I
χ). The triangle-

to-edge occlusion test is done efficiently and numerically
stable using barycentric coordinates (λ1, λ2) ∈ R2 of the
image midpoint ψIi (f̂Iαβχ) = v̂Iα + λ1(v̂Iβ − v̂Iα) + λ2(v̂Iχ − v̂Iα).
Hence, êIυω is occluded only if both conditions occur: i)
the image midpoint is inside the projected triangle, namely
(λ1 ∈ [0, 1])∧ (λ2 ∈ [0, 1])∧ ((λ1 +λ2) ≤ 1) and ii) the spatial
midpoint on the triangle ψCi (f̂Cαβχ) = v̂Cα+λ1(v̂Cβ−v̂Cα)+λ2(v̂Cχ−
v̂Cα) is closer to the camera than the midpoint on the edge
ψCi (êCυω), namely (ψCi (f̂Cαβχ)·[0, 0, 1]) < (ψCi (êCυω)·[0, 0, 1]), see
Fig. 3-c). The efficient computation of this visibility test is
done by extending the Sweep-Line algorithm with the depth
information for triangular faces and edges. This object-space
visibility analysis [22], has an input-dependent complexity.
Thus, complexity reduction is done offline, see Fig. 5.



Fig. 6: Observation model P(xt|yt). For the offline computation
of Eq. 7, the physical pose of the robot is kept static while the
particles are varied in the 6D state space. For each position (xE , yE)
the maximal value (varying all other 4-DoF) was stored. Notice the
multimodality produced by symmetries in the environment.

Similarity assessment methods: The observation model as-
serts the degree of similarity P(yt|xit) between the prediction
list of visible edges L(xit) = {êIυω} for each hypothetical
state xit and the current visual measurement yt in terms
of the edge map E : (u, v) ∈ N2 7→ {1, 0} extracted
from the real robot camera. This aspect has been previously
modeled in diverse manners. For example in [23], the authors
established a metric based on fixed length line segments.
Generalization of these and other metrics were introduced in
[24]. In order to determine the optimal metric (by offline
analysis with ground-truth data), the Gaussian similarity
(GS) and the inlier/outliers ratio similarity (IORS) were
implemented. Additionally, the inclusion of junction points
was considered with both metrics producing a total of four
different similarity assessment methods. For each predicted
edge segment êIυω, a set of sampling points is distributed
using a regular image length. From each of these sampling
points, a Bresenham scan [25] is conducted perpendicularly
to the line direction within a δmax range, see Fig. 7-a).
The first occurrence of an active pixel in the edge map E

has a distance to the edge denoted as δυω,l. Base on these
distances, the Gaussian similarity assessment PGS integrates
all predicted edge segments [24] as

PGS(xit|yt) = exp
[
−
∑L(xit)
υω

∑Ω(êIυω)
l δ2

υω,l

2σ2
∑L(xit)
υω Ω(êIυω)

]
, (7)

where the function Ω : êIυω 7→ N+ determines the amount of
sampling points for each image segment êIυω, see Fig. 7-b).
The inlier/outliers ratio similarity PIOR determines if an active
edge is present. When an active edge is found the inlier
counter ci is incremented. Otherwise, the outliers counter co
is incremented. Its formulation (see Fig. 7-c) is expressed as

PIOR(xit|yt) = exp[−co/(2σ2(co + ci))]. (8)

The similarity using junction points is computed as in Eq. 7
and Eq. 8 where the prediction list Ľ(xt) contains only short
visible edges connected to junction points, see Fig. 6.

Fig. 8: The proposed attention method for gaze planning is
based on information gain by efficiently sampling the amount of
visual features (virtual force) available at each particular neck
configuration using vector graphics prediction method from Fig. 3.
Transparency shows amount of information per configuration.

c)

a) b)

Fig. 7: a) Sampling points (red) on the predicted edge (blue) by
Bresenham scan [25] along the normal direction for detection of
sensed edges (black). b) The Gaussian similarity is estimated based
on a continuous model (Eq. 7) of the distance to the first active
(magenta) pixel. c) Inlier (green) / outliers (red) ratio of similarity.

Attention model: Frequently, it is necessary to track the
ego-pose of the humanoid robot while concurrently analyzing
the scene. For instance, during object exploration or shape
based object categorization (see [26] particularly figures 4-6).
Ideally, fixating an attention target T ∈ R3 while exploring
or visually reconstructing the scene from diverse view points
is realizable. However, in common situations (for instance,
in front of a door), due to the lack of environmental visual
features for the ego-tracking, the assessed 6D poses are not
adequate for online multiview registration. This is achieved
by our attention method which smoothly controls the robot
gaze orientation while switching between subtasks.

The gaze planning is formulated as a spring-mass system:
The current neck configuration C = (cr, cp, cy)T has a
virtual mass m. The virtual forces wis correspond to the
amount of visual features predicted at each sampled neck
configuration Si, see Fig. 8. The effect of these virtual
forces is expressed as fs(S

i) = ksw
i
s(S

i −C) where ks ∈ R
denotes the Hooke’s constant. By discretization of the neck
configuration space (see Fig. 9), it is possible to approximate
the effects of all n virtual forces to estimate the next
configuration with higher amount of visual features.

Hence, the collective effect of all sampled virtual forces
is expressed as fs =

∑n
i=1 fs(S

i). Additionally, the target
location (in terms of neck configuration by the inverse
kinematics K−1

Θ(t)(P,T ) = HT ) also applies a virtual force
on the current configuration as fT = kT (T −C).



The target constant kT ∈ R serves fading purposes when
adjusted relative to ks. In addition to these external virtual
forces, there are two internal virtual forces. First, because
the neck configuration should transit smoothly from one
configuration to another, the mass effects are considered by
the virtual force fm = mC̈ which forbids abrupt motions
producing a more human-like behavior, less joints stress
and sharp images for the ego-tracking. Second, in order
to avoid undesired oscillations, a damping effect is also
considered by the force fd = −dĊ, where d ∈ R denotes the
viscous damping coefficient serving convergence purposes.
Considering discrete time, the dynamic system is

C̈t+1 =
1

m

(
kT (T −Ct)− dĊt + ks

n∑
i=1

wis(S
i
t −Ct)

)
.

VirtualForces.pdfRoll

Pitch

Yaw

0.0

1.0

 

Neck configuration space

Configuration
Samples

Fig. 9: Spring-mass system with virtual forces for gaze planning
in the configuration space of the humanoid neck, see Tab. VI.

The first integral approximation is Ċt+1 = Ċt + ∆tC̈t+1

and thereafter the resulting configuration is Ct+1 = Ct +

∆tĊt+1. The fading between the target force and the pre-
dicted forces wis is modeled by the variable 0 ≤ τ ≤ 1.
Thus, the target gain is kT = τ and the prediction gain
ks = (1 − τ) · (max(wis)/

∑n
i w

i
s). This normalization holds

ks in cases where the prediction provides no salient cue.

V. EXPERIMENTAL EVALUATION

The performance of the implementation is shown in
Tab. IV. These results were obtained on a CPU Intel Core
i7, 2.93GHz using 200 particles at 15 FPS. The model
reduction and prediction methods were evaluated with two
environmental models demonstrating the high performance
of the approach, see Tab. I. During the evaluation of the
localization precision, the registration of the robot platform
and environmental objects were done using a precise and
high-speed marker-based system, see details on the whole
registration process in our previous work [18]. The storage
of all tracking data (see Fig. 10) including ground-truth
poses, raw camera images and platform speed measurements
allow the systematic offline evaluation under the exact same
conditions.

Furthermore, since the methods are stochastic, all evalu-
ations were computed five times for all frames to estimate
the mean, RMS and maximal errors. This enables the eval-
uation of various estimation methods from the collection
of particles, see Tab. V. Further, four similarity assessment
methods were evaluated (including annealing) to determine
their accuracy, see Tab. II and Tab. III.
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Fig. 10: Visualization of evaluation track.

VI. CONCLUSIONS

The contributions of this paper are two methods for
improving the flexibility and robustness of the visual dy-
namic localization of humanoid robots in CAD modeled
environments. First, our visual prediction method avoids
the rasterization drawbacks while extracting visual features
from object models. In contrast to raster graphic predictors,
our prediction method is based on vector graphics and it
is realized by efficient algorithms and data structures for
exploiting the proposed general and extensible CAD environ-
mental representation. Since the method is efficient and fully
automatic, a robot moving from one place to another could
access the environmental representations to dynamically lo-
calize itself for interaction with the environment. Second, the
contributed visual attention method enables the humanoid
robot to smoothly plan its gaze by proper integration of
the environmental representation, the estimated pose and the
task target. The transition between these visual processes is
adjusted by a robust fading coupling. Finally, an extensive
experimental evaluation with ground-truth registration shows
that when using the prediction with Gaussian similarity, it is
possible to ensure the dynamic pose of the robot within an
average deviation of less than five centimeters, see Tab. V.
Notice that this motion accuracy is measured while manually
and arbitrarily changing the speed and orientation of the
robot within the full (4x4m) capture area of the motion
caption lab. When the robot remains static, the refinement
process reduces the localization deviation up to one order
of magnitude. The slightly less accurate localization (see
Tab. VI) attained with the attention model is neglectable
considering the fact that during the experimentation with
active attention the robot 6D pose was never lost.



Fig. 11: Plots of the evaluation track.
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Environment Representations Edges Junctions
Full Mobile Kitchen (3234 edges, 677 faces) 8 8
Reduced Mobile Model (130 edges, 112 faces) 2325 1720
Full Kitchen Room (3775 edges, 2069 faces) 6 5.7
Reduced Kitchen Room (415 edges, 306 faces) 370 250

TABLE I: Reduction and prediction performance in FPS.

Similarity Assessment Method None A2 A3 A4
GS - Mean 53.8 45.8 46.6 50.4
GS - RMSE 60.7 51.2 51.8 57.7
GS - Max 201.2 121.1 136.4 176.9
IORS - Mean 55.3 48.9 47.9 46.3
IORS - RMSE 59.9 54.6 53.8 52.4
IORS - Max 161.1 149.9 141.5 197.5

TABLE II: Accuracy (in mm) with Gaussian Similarity and
Inlier / Outliers Rate Similarity. Notice annealing A2,3,4.

Error Metric GS IORS
Annealing None A2 A3 None A2 A3
Mean 69.8 61.3 61.5 68.4 63.3 60.2
RMSE 87.02 76.6 76.5 87.6 79.6 74.0
Max 291.4 255.6 250.6 283.9 270.3 256.3

TABLE III: Accuracy in mm using junctions.

Threads 1 2 3 4 5 6 7 8
GD 4.96 9.8 14.6 19.4 24.1 27.0 32.2 37.6
DR 4.92 6.0 6.6 7.2 7.3 7.2 7.3 8.07

TABLE IV: Particle filter performance with 200 particles in
FPS. Global Distributed. Distributed Resampling.

Error Metric Weighted Mean MAP Threshold Mean
Mean 45.8 51.0 50.0
RMSE 51.2 56.9 55.9
Max Error 121.1 294.9 138.0

TABLE V: Pose accuracy in mm. Maximum a Posteriori.

Error Metric GS IORS
Annealing None A2 A3 None A2 A3
Mean 64.1 54.6 59.2 70.7 61.3 64.2
RMSE 73.5 64.9 69.3 80.2 72.4 74.3
Max 204.2 179.4 204.6 244.3 213.7 201.7

TABLE VI: Accuracy in mm using the attention model.
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