
Vision-Based Robotic Pushing and Grasping for Stone Sample
Collection under Computing Resource Constraints

Raphael Grimm, Markus Grotz, Simon Ottenhaus and Tamim Asfour

Abstract— Increasing the robustness of grasping actions and
the recovery from failure is key to improving a robot’s au-
tonomy. Endowing robots with the ability to robustly grasp
and manipulate unknown difficult objects such as stones is
required for sample collection in unknown environments. In
this paper, we present a complete system for robust grasping
of stones, which integrates stone segmentation based on depth
information, the generation of grasp hypotheses and pushing
actions as well as their execution. In particular, our system
has been designed to solve these tasks on robots with limited
computing resources. We evaluate the performance in real robot
experiments in the context of stone sample collection. The
results show that such a challenging task is achievable under
computing resource constraints.

I. INTRODUCTION

To successfully interact with real-world scenarios, mobile
robots must be able to cope with unstructured scenes containing
unknown objects. One of the most fundamental tasks in such
environments is to grasp and pick up an object in order to
explore it or place it at a different location. Depending on
the scene, even grasping an object can be a challenge. The
complexity of the task results from the fact that the robot
has no prior knowledge about the environment, its objects
or their placement. Furthermore, grasping of objects may be
unfeasible due to the way the objects are placed. In these cases
rearranging the objects (e.g. by pushing actions) is a promising
way to successfully facilitate grasping an object. This problem
increases in difficulty if common assumptions such as regular
object shapes, textures with well-defined features or high
color differences within the scene do not apply. Approaches
that use convolutional neural networks (CNN) have been
successfully applied to perform grasping actions in similar
scenarios. However, they require a large amount of computation
resources. While this is acceptable for a stationary robot (e. g.
in an industrial workcell), it is not appropriate for a mobile
robot with limited computing resources that usually have to be
shared with other tasks

In this paper, we consider such a scenario where the robot
has to collect stone samples from a bed of gravel as shown in
Fig. 1. These stones have irregular shapes and a color similar
to the gravel. From robot perception perspective, the visual
homogeneity of the unstructured scene increases the difficulty
of the visual tasks (e. g. segmentation) required for detecting
grasp hypotheses. It is difficult to track object hypotheses after

This work has been supported by the Helmholtz Association under the
Helmholtz Future Project ARCHES (ZT0033).

The authors are with the High Performance Humanoid Technologies Lab,
Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology
(KIT), Germany. {raphael.grimm, asfour}@kit.edu

Fig. 1: ARMAR-6 autonomously collecting stone samples. An
interactive perception strategy is employed to increase the robustness.
To further improve the grasping success rate the motion of the hand
is controlled to perform a sweeping motion.

interacting with the scene (e. g. by pushing actions) on the
basis of image features, since no stable image features are
available due to the small color differences in the scene. In
such scenarios, pixel color provides only a low amount of
information. Thus, it is not used by our approach, which relies
only on depth data and interaction forces for grasping. Such a
scenario can arise during autonomous exploration with robots
in remote areas or during space missions.

Besides the successful collection of stone samples, further
goals of our approach are a short runtime and low computational
cost to make it suitable for small mobile robots with limited
resources such as rovers for space exploration.

We present an interactive perception system for grasping
loose stones in such environments, combining (1) the generation
of grasp hypotheses and the selection of feasible actions for
sample collection as well as (2) an interactive perception
strategy that integrates manipulative capabilities with perception
to verify the generated grasp hypotheses. The system requires
only a low amount of computing resources while providing
grasp hypotheses at 100Hz. It is robust against noise in the
input data by using interactive perception and spatio-temporal
filtering of grasp hypotheses. We evaluate our approach in
different robot experiments while comparing the runtime of
different hardware setups.

II. RELATED WORK

The survey papers [1] and [2] provide comprehensive
overviews of approaches for grasp planning and synthesis.
Following those, we group approaches for grasp planning
into planning for (1) known objects, or (2) unknown objects.
Methods for grasping known objects ([3], [4]) use a database,
which stores object models with corresponding grasps. In

addition to this prior knowledge about the object, such
approaches require object detection and pose estimation at
runtime. Our presented approach requires neither a priori
object knowledge nor object detection or pose estimation.
In contrast, methods for grasping unknown objects extract
geometric information based on perceptual data and use it to
generate grasp hypothesis. Recently, machine learning has been
successfully used in a variety of approaches to determine grasp
hypotheses for unknown objects. The approaches [5] and [6]
directly determine an optimal grasp hypothesis for a segmented
target object. Similarly, our approach requires segmentation, but
it can cope with imprecise or under segmentation by refining
it through pushing actions. In addition, our approach generates
multiple grasp hypotheses per object. Other approaches ([7],
[8]) use unsegmented RGB-D images to estimate gripper poses
suitable for grasping an object. Although color information can
be valuable for grasping objects, e.g. in household scenarios, we
cannot use this information, due to the mostly monochromatic
scene. Since we have to be able to deal with homogeneously
colored environments, we do not rely on any color information.
Further approaches ([9], [10]) use only depth data and show
that color information is not necessary for successful object
grasping. The main difference to our approach is that they, like
many other discussed approaches ([5]–[8]), use convolutional
neural networks (CNN) to accomplish this task. CNNs have
shown that they are able to generate grasp hypotheses, but the
employed CNN architecture requires high computing resources.
In contrast, our approach employs methods using only a low
amount of computation resources. Furthermore these approaches
focus on generating grasp hypotheses for the current scene
and do not integrate information from previous time steps or
information about the change in the scene as result of executed
actions. Our approach integrates both to improve performance.

Approaches that consider manipulating the scene to facilitate
a task are subsumed under the term Interactive Perception
(IP). The survey in [11] defines IP approaches, as approaches
using sensor data from multiple time frames and utilizing
forceful interactions with the environment (e.g. rearrangement
of objects) to gain new information about the scene. The
authors further categorize IP approaches depending on their
application areas. Following this terminology, our approach
classifies as IP for grasp planning, since we (1) rearrange the
scene by pushing and (2) derive information from the results
of executed grasping actions. Both are forceful interactions
with the scene and are used to facilitate grasping. Other IP
approaches ([12]–[14]) use pushing actions to facilitate grasping
and learn a policy for selecting the next action to perform.
The approaches in [12] and [14] also rely on color data that
provides little information in the scenario considered in this
paper. In [15], the authors propose a learning approach that uses
unstacking actions to grasp a potentially completely occluded
target object, but the approach requires object detection and that
the class of the target object is known. All these approaches
([12]–[15]) successfully rely on CNNs and therefore require
more computation resources than the proposed solution. The
approaches in [16] and [17] successfully use pushing actions
to improve object segmentation and do not rely on CNNs.

However, both require color or image features that allow
tracking between pushing actions, which is not necessary for
our approach.

Overall, previous approaches either use color information or
image features, require large computational resources, or do not
make use of interactive perception, while in our scenario we
have only access to depth information and limited computing
resources for processing.

III. APPROACH

Our approach to address grasping and collecting stone
samples from a gravel bed consists of three main parts:
(1) Scene segmentation and generation of grasp hypotheses
based on 3D point clouds, (2) collection of stone samples
on the basis of the generated grasp hypotheses and (3) scene
manipulation through pushing actions in cases where grasping
is not possible. Since we focus on collecting stone samples that
are mostly convex, we take advantage of this prior knowledge
and design our approach to work well with convex objects.
We generate grasp hypotheses on the basis of boxes that
approximate the detected segments. Due to limited computing
resources we have to use methods for scene segmentation and
shape approximation that require a low amount of resources.
These are more susceptible to noise than more sophisticated
or machine learning based approaches. To cope with noise,
we filter outliers at several stages: (1) We remove outliers
from the input point cloud, (2) when generating the shape
approximations and (3) from the resulting grasp hypotheses.
Even then, the resulting grasp hypotheses do not always lead
to a successful grasp execution. Our approach recognizes when
execution fails and avoids executing similar grasps in the
future. If stones are detected within the scene, but grasping
is not possible, the robot uses pushing actions to improve
segmentation and enable grasping. If the scene is larger than
the camera’s field of view, the approach can generate platform
movements to cover the whole scene. This requires to have
some method of self localization or odometry. These parts are
implemented in the five-stage pipeline, which is executed in a
loop until a termination criterion is reached (e. g. the scene is
empty). The pipeline is shown in Fig. 2 and is described in
more detail below.

A. Visual Perception based on Depth Data

Since color data contains little information for the given
task, we rely only on depth information for segmentation and
all further steps. Since scene segmentation is not the focus
of this paper, we use methods available in the Point Cloud
Library. In each iteration we start our algorithm with the current
depth image, which is filtered with statistical outlier removal
to reduce noise. The resulting point cloud is segmented into
plausible disjoint parts by removing ground points and applying
Euclidean clustering. The clusters are passed to the next stage
of the pipeline as segmentation result. If no segments are found
and the current view does not cover the entire workspace,
the robot moves its platform to scan other parts in the scene
according to a given scanning strategy. If no segments are
found in the scene, the sample collection process is terminated.

Fig. 2: The five stages of the pipeline are executed in a loop. (S1) segments the input point cloud, (S2) generates grasp hypotheses (blue
hands), (S3) filters executable (green) and non-executable (red) hypotheses and decides whether a pushing or grasping action should be
performed, (S4) collects the sample. (S5) changes the scene through pushing to improve the segmentation.

B. Generation of Grasp Hypotheses

We represent grasp hypothesis as the 6D pose of the tool
center point of the hand in the world frame. In addition, we
use the fully opened hand as preshape configuration of the
hand, since it provides the largest sweep area during execution.
This also increases the robustness of grasping actions and
helps to deal with inaccuracies in perception and execution.

Grasp hypotheses are generated for each segment of the
point cloud. While different approaches can be used to generate
these hypotheses, an approach with low computational cost is
required to deal with resource constraints mentioned above.
To this end, the points of each segment are projected onto
the supporting plane and oriented 2D bounding boxes of the
projected points are calculated. Each 2D box is extruded by
the height of its segment to form a 3D box, one side of
which is constrained to the supporting surface. This 3D box
is calculated twice: Once for all points in the segment and
once after α percent of the point set has been trimmed from
the end of each of the axes of the first box. This eliminates
outliers and significantly increases the robustness of generated
grasp hypotheses. The resulting box is only used to generate
grasp hypotheses if its expansion is small enough to allow
its grasping by the hand. The 6D pose representing the grasp
hypothesis is aligned to the axes parallel to the supporting
plane and placed at the center of the box. Due to sensor noise,
incorrect segmentation can occur resulting in merging several
segments into a single one, splitting a segment or detecting
noise as a segment. Such artifacts occur regularly and lead to
incorrect or missing grasping hypotheses. In order to remove
these artifacts, we apply spatio-temporal filtering over the grasp
hypotheses, which are generated from the last κ time frames.
To this end, the grasp hypotheses from the last κ time frames
are accumulated into the set θ. For each hypothesis g ∈ θ, the
set θg of adjacent hypotheses is determined. This set is formed
by all hypotheses ĝ ∈ θ with a Euclidean distance dT (g, ĝ)
less than εT and an angular distance dA(g, ĝ)1 less than εA.
Thus, the set of neighboring grasp hypotheses is defined by

θg = {ĝ | ĝ ∈ θ, dT (g, ĝ) < εT , dA(g, ĝ) < εA} .

1The minimal absolute rotation around any axis required to transform g
into ĝ in radian.

Next, the filtered set θ′ of grasp hypotheses is created by
selecting only elements that maximize |θg| within their own
cluster, and discarding these local maxima if |θg| < lmin to
reduce noise and outliers2. This step is akin to non-maximum
suppression and results in median filtering over the cluster, as
shown in Fig. 3. In addition to the noise and outlier reduction,
the number of grasp hypotheses and thus the number of actions
to be considered for execution is reduced, which leads to
a reduction of the computing resources required for action
selection.

Fig. 3: A cluster of grasp hypotheses (represented by the coordinate
frames in circle a) and an outlier hypotheses (b) are generated from
the segment (c). The outlier (b) is discarded and (d) is selected to
represent cluster (a). The green hand visualizes the pose resulting
from (d).

C. Action selection

At this stage of the pipeline a decision must be made to
determine the next action to be taken. This means to select
whether (1) to execute a grasping action or (2) to execute a
pushing action to change the current scene.

To make this decision, we build the set of failed grasps
θfailed over several iterations of the pipeline, i. e. grasp
hypotheses that did not lead to successfully picking up a
stone in previous iterations. Using this set, we construct the set
of executable grasp hypotheses θexec considered for execution
by discarding grasping hypotheses from the filtered set θ′ in two

2|·| denotes the set cardinality

successive steps: First, all hypotheses with a Euclidean distance
below εdiscard to any element of θfailed are removed. This
prevents the repeated execution of grasping actions that have
led to failure in previous iterations. Second, grasp hypotheses
that are kinematically unreachable for the robot are discarded.
The resulting set θexec only contains grasp hypotheses that are
executable by the robot and have not led to failure in previous
time steps.

Since the primary goal is to collect the stones, our approach
prefers to execute grasping actions rather than changing the
scene through pushing actions. Therefore, grasping actions are
executed as long as θexec is not empty.

D. Executing Grasping Actions

Selecting the grasp hypothesis to be executed is done in
two steps: First, θexec is divided into two subsets: θreloc,
which contains all grasp hypotheses that require a change of
the position of the robot’s mobile base, and θnoreloc, which
contains the remaining hypotheses. Since moving the robot’s
mobile base can lead to inaccuracies, we avoid moving the
platform as much as possible. Therefore, hypotheses from
θreloc are only considered in the following step, if θnoreloc is
empty. Among the hypotheses considered, the robot executes
the one that maximizes the distance to the joint limits along
the entire trajectory, since this ensures a smooth execution.

During execution, the hand is moved above the grasp
hypothesis and then downwards until contact is detected with
the 6D force/torque sensor mounted at the wrist. After a
contact is detected, the robot executes a grasping trajectory
that coordinates wrist rotation, hand distance to the contact
point, and finger closure. This trajectory performs a sweeping
motion of fingers and thumb across the contact surface and
compensates for pose uncertainties of the target object.

During grasping and transport to the storage container, the
robot continuously checks the force/torque sensor and hand
joint angles to determine if an object is in the hand. If the
object was not picked up or is dropped during transport, the
execution is considered a failure and the corresponding grasp
hypothesis is added to θfail. If no failure is detected, the robot
continues with another iteration of the five-step pipeline or
stops if enough stones have been collected. In case of failure,
θ′ is filtered as described in section III-C. If the grasps remain
in θexec this stage is restarted, otherwise a scene manipulation
is triggered.

E. Executing Pushing Actions

This stage of the pipeline is triggered if either (1) grasp
hypotheses are available (|θ′| > 0), but none is considered
for execution (|θexec| = 0) or (2) there are segments in the
scene but they are too large to be grasped. In both cases,
pushing actions toward the center region of the workspace are
generated. Pushing towards the center prevents stones from
being pushed outside of the working area. In the first case, an
element of θ′ is randomly selected and a pushing action on
the corresponding segment is executed in order to make the
object graspable by moving and rotating it. In the second case,
a segment could represent an under-segmented pile of stones

or one large boulder. In order to verify this, pushing actions
are used to try to split the segment into smaller parts and thus
improving the segmentation and possibly enable grasping. A
pushing action is generated by selecting a random segment
and trying to push through a random part of the segment.

The execution of the generated pushing action fails, if a high
force is detected by the wrist-mounted force/torque sensor. In
case of such a failure, the segment is too heavy to be moved
by the robot and a new pushing action is generated on the
same segment, which only intersects the segment’s border.
This second pushing action allows to separate loose stones
from too heavy or immobile piles of stones or large boulders.
If the second pushing action also fails, the segment is marked
as too heavy and is avoided in further iterations. If any of the
pushing actions is successful, the next iteration of the pipeline
is executed.

IV. EVALUATION

We present two different evaluations of the proposed
approach: (1) A qualitative evaluation of the stone collection
process and (2) an evaluation of the computation time required
for the approach. A video showing the experiments is attached
to this contribution.

In all experiments we choose the point cloud trimming
parameter α = 5%, collected hypotheses over the last κ =
10 time frames, treated clusters with less than lmin = 5
candidates as outliers, considered hypotheses with a translation
difference below εT = 25mm and a rotation difference below
εA = 0.1 rad as belonging to the same cluster and discarded
hypotheses within εdiscard = 50mm of any element of θfail.
These parameters depend on the execution accuracy, the size of
the hand, noise of the camera and the accuracy of the extrinsic
camera calibration. The values were empirically determined
based on real experiments and have only have to be determined
once for a given hardware setup. The trajectory for grasping
depends on the hand and is recorded during a teach-in phase
before experiments are performed.

A. System Setup

In our experiments, we use the humanoid robot ARMAR-6,
which is equipped with two 8 DOF arms with wrist-mounted
6D force/torque sensors and a holonomic platform (see Fig. 4
and [18]).

The robot is equipped with an underactuated humanoid
five-finger hand. Although such a five-finger hand is more
complex than a parallel yaw gripper in terms of mechanics
and the required control strategy, it allows more contact points
with the grasped object, which makes grasping more stable.
The underactuated hand facilitates stable grasps by equally
distributing the contact forces between all fingers. In pre-
experiment tests we measured the force required to push a pile
of stones in our test scenario. During these tests we measured
forces up to 150N, which are due to the high friction caused
by the rough surface of the stones and gravel. To prevent
potential damage to the hand, we mounted a rod which is used
for pushing actions to the left arm. A container to collect the

Fig. 4: ARMAR-6 in front box with stones. The robot has to collect
several loose stones as samples and put them into the sample collection
container.

grasped stones is placed on the back of the robot. The robot
uses a stereo camera system for visual perception.

We conducted two experiments with different computing
hardware. In the first experiment, we use a pico-ITX board
with an Intel(R) Atom(TM) CPU E3845 @ 1.91GHz and 8GB
RAM. In the second experiment we compare the execution
time to a computer with an Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz and 31GB RAM. We denote these two computing
hardware setups as PITX and PC.

We use a Roboception rc visard 65 stereo vision system
(S). This camera offers three resolutions at different frame
rates: (1) SH : 640× 480@3Hz, (2) SM : 320× 240@15Hz
and (3) SL: 214× 160@25Hz. As trade-off between frame-
rate and quality of the depth image, we use the medium
camera resolution SM for the first experiment. in the second
experiment we compare all three resolutions with the active
camera of ARMAR-6 (PrimeSense Carmine 1.09 camera,
640× 480@30Hz (A)).

The approach is implemented in C++ using the robot
framework ArmarX ([19]). The implementation is mostly
sequential. Stage S3 through S5 run sequentially and S1 and
S2 run in parallel them.

B. Sample Collection

This evaluation shows the ability of our approach to collect
all stones in an area of interest. For all experiments we use the
PITX board and the stereo camera SM . The setup is shown
in Fig. 4.

In the first scenario (see Fig. 5), the robot has the task to
pick up all five stones in the region of interest. We place the
robot in front of a box containing gravel and stones and allow
it to move its mobile base in front of the box. To set up the
scene randomly and remove bias, all stones are placed in a
small box which is turned upside down to put the stones in a
pile. Since some of the stones slip from the stack when the
box used for placing is removed, some stones are separated
from the stack. We performed the task five times and the robot
was always able to pick up all five samples with an average
of 11 grasping and 1.6 pushing actions. The coefficient of

variance for number grasping actions (42%, min 6, max 18)
and pushing actions (122%, min 1, max 4) is very high.
This shows that the number of required actions depends very
much on the specific stone arrangement. For example, a stone
rolling from the stack after the box has been removed can
drastically decrease the number of required actions. If pushing
was prohibited, the robot could pick up an average of 1.4 stones.
This result shows that the interactive perception significantly
supports the successful grasping of stones. Fig. 5 shows an
example for the separation of a pile of stones by pushing.

In the second scenario (see Fig. 6) we evaluated if the robot
is able to separate a stone next to a large heavy boulder and
collect it. For this purpose, a smaller stone is placed next to a
large boulder that is too heavy for the robot to push. Although
our IP strategy is primarily aimed at separating piles of stones
well, we observed that it generalizes to separating stones from
large boulders in a limited way: If the stone is on the side
of the boulder closest to the robot, our approach succeeds in
reliably separating it. If the boulder occludes the stone or is
on the connecting line between the stone and the center of the
working area, the separation fails since the generated pushing
action always intersects the boulder and thus fails.

C. Computation Cost

We evaluate the time needed to generate grasping hypotheses
and plan the next action. We compare the effect of using the
active camera A and the three different resolutions offered
by the passive stereo camera S on the computing time when
using the computer PC and the time required when generating
hypotheses using SM and the PITX board. Table I reports the
time needed to generate grasp hypotheses as well as the time
for the two sub-steps, the removal of outliers and the generating
and filtering grasp hypotheses. In all five cases, the same scene
consisting of ten graspable objects is used and the processing
time is averaged over 30 s. The comparison of PC-A with PC-
SH , i.e. the PrimeSense camera of the ARMAR-6 with the
Roboception stereo system, shows that the time for removing
outliers increases when switching from an active to a passive
camera system. This is due to the fact that the stereo camera
system has a higher level of noise. A comparison of PC-SH ,
PC-SM and PC-SL shows that a reduction in resolution
also reduces the time required to remove outliers, while the
time required to filter the hypotheses increases slightly. A
lower resolution leads to more noise and results in more grasp
hypotheses, which have to be processed in the following filter
step. This increases the computation time when switching from
PC-SM to PC-SL. When switching from PC to PITX for
the camera setup SM the lower computation resources increase
the average time to generate a grasp hypothesis. The resulting
time of 8.8ms to generate one grasp hypothesis is sufficient
for real time execution, since the system does not have to wait
until new grasp hypotheses are available.

During execution on PITX , our approach requires on
average 1.6 s for action selection, 3.5 s for selecting the grasp
hypothesis to execute and 1.6 s for generating a pushing action,
resulting in an average of 4.2 s for planning and selecting
the next action. This action selection includes filtering out

(a) (b) (c)

(d) (e) (f)

Fig. 5: The robot collects already segmented stones, and uses IP to separate and collect the remaining stones. The approach (a) first segments
the scene, (b) generates grasp hypotheses (green: executable, red non-executable) for already separated stones (purple, orange) and (c) collects
them. For the remaining segment (d) a pushing actions (yellow arrow) is generated and (e) executed to separate the pile of stones and enable
the robot to (f) collect those stones as well.

(a) (b) (c)

Fig. 6: The robot separates a small stone from a large heavy boulder and picks it up. (a) The first generated pushing action (yellow arrow)
fails because the boulder is too heavy. (b) The second pushing action only intersects the border of the large segment and manages to separate
the small stone (purple segment). (c) Now the robot is able to pick up the small stone.

Hardware Setup Average time per grasp (ms)
Computer Camera Total Outlier removal Generate and Filter

PC A 3.00 1.72 1.28
PC SH 3.49 2.05 1.45
PC SM 2.25 0.66 1.59
PC SL 2.50 0.60 1.90
PITX SM 8.81 3.03 5.78

TABLE I: Computation time per grasp hypothesis for different
hardware setups averaged over 30 s. All setups use the same scene as
input. Using a stereo instead of an active depth camera increases the
calculation time because the point cloud is more noisy. Decreasing
the resolution also decreases the calculation time.

grasp hypotheses similar to any from the set θfailed, solving
the robot’s inverse kinematics to decide if a hypothesis is
reachable, determining where to place the robots platform and
generating pushing actions.

Considering that action execution in average takes 44.1 s,
we consider this well within acceptable margins.

V. CONCLUSION

We have presented a robust approach that integrates visual
segmentation, generating grasp hypotheses, interactive percep-
tion, and the execution of grasping and pushing actions. Our
approach requires only a low amount of computing resources

and can therefore be used in setups where computation
resources are is limited (e.g. to an Intel(R) Atom(TM) CPU
E3845 @ 1.91GHz) such as mobile robot systems for space
exploration. The evaluation shows the effectiveness of the
interactive perception strategy, since the robot was always able
to collect all five stones within the working area, compared
to an average of 1.4 stones if pushing was prohibited. This
shows that solving of such challenging problems under severe
resource constraints is possible by integrating information
gained from physical interaction with the environment and
validates the IP approach, showing that scene interaction can
improve task success rates.

Future work will focus on optimizing the action selection
process, developing a more sophisticated segmentation strategy
capable of tracking target objects and transfer and apply
the presented methods to the Light Weight Rover Unit [20]
in an outdoor sample collection scenario in the context of
planetary exploration. In addition, it is interesting to investigate
a machine learning-based method that uses energy-efficient
hardware tailored to neural networks.

REFERENCES

[1] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on Robotics, vol. 30, no. 2, pp.
289–309, 2014.

[2] S. Caldera, A. Rassau, and D. Chai, “Review of deep learning methods
in robotic grasp detection,” Multimodal Technologies and Interaction,
vol. 2, no. 3, p. 57, 2018.

[3] P. Song, Z. Fu, and L. Liu, “Grasp planning via hand-object geometric
fitting,” The Visual Computer, vol. 34, no. 2, pp. 257–270, 2018.

[4] N. Vahrenkamp, E. Koch, M. Wachter, and T. Asfour, “Planning high-
quality grasps using mean curvature object skeletons,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 911–918, 2018.

[5] Y. Yu, Z. Cao, S. Liang, Z. Liu, J. Yu, and X. Chen, “A grasping
CNN with image segmentation for mobile manipulating robot,” in IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2019,
pp. 1688–1692.

[6] P. Schmidt, N. Vahrenkamp, M. Wächter, and T. Asfour, “Grasping
of unknown objects using deep convolutional neural networks based
on depth images,” in IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 6831–6838.

[7] S. Kumra and C. Kanan, “Robotic grasp detection using deep convo-
lutional neural networks,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017, pp. 769–776.

[8] X. Zhou, X. Lan, H. Zhang, Z. Tian, Y. Zhang, and N. Zheng, “Fully
convolutional grasp detection network with oriented anchor box,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 7223–7230.

[9] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Proceedings
of Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.

[10] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection
in point clouds,” The International Journal of Robotics Research, vol. 36,
no. 13-14, pp. 1455–1473, 2017.

[11] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and
G. S. Sukhatme, “Interactive perception: Leveraging action in perception
and perception in action,” IEEE Transactions on Robotics, pp. 1–19,
2017.

[12] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 4238–4245.

[13] L. Berscheid, P. Meiner, and T. Krger, “Robot learning of shifting objects
for grasping in cluttered environments,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 612–618.

[14] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martı́n-Martı́n, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,” in
IEEE International Conference on Robotics and Automation (ICRA),
2019, pp. 1614–1621.

[15] H. Zhang, X. Lan, S. Bai, L. Wan, C. Yang, and N. Zheng, “A multi-
task convolutional neural network for autonomous robotic grasping in
object stacking scenes,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 6435–6442.

[16] C. Bersch, D. Pangercic, S. Osentoski, K. Hausman, Z.-C. Marton,
R. Ueda, K. Okada, and M. Beetz, “Segmentation of textured and
textureless objects through interactive perception,” in RSS Workshop on
Robots in Clutter: Manipulation, Perception and Navigation in Human
Environments, 2012.

[17] D. Schiebener, A. Ude, and T. Asfour, “Physical interaction for
segmentation of unknown textured and non-textured rigid objects,” in
IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 4959–4966.

[18] T. Asfour, R. Dillmann, N. Vahrenkamp, M. Do, M. Wächter, C. Mandery,
P. Kaiser, M. Kröhnert, and M. Grotz, “The karlsruhe armar humanoid
robot family,” in Humanoid Robotics: A Reference, A. Goswami and
P. Vadakkepat, Eds. Springer Netherlands, 2019, pp. 337–368.

[19] N. Vahrenkamp, M. W”achter, M. Kr”ohnert, K. Welke, and T. Asfour,
“The Robot Software Framework ArmarX,” Information Technology,
vol. 57, no. 2, pp. 99–111, 2015.

[20] P. Lehner, S. Brunner, A. Dömel, H. Gmeiner, S. Riedel, B. Vodermayer,
and A. Wedler, “Mobile manipulation for planetary exploration,” in
IEEE Aerospace Conference, 2018, pp. 1–11.

	I Introduction
	II Related Work
	III Approach
	III-A Visual Perception based on Depth Data
	III-B Generation of Grasp Hypotheses
	III-C Action selection
	III-D Executing Grasping Actions
	III-E Executing Pushing Actions

	IV Evaluation
	IV-A System Setup
	IV-B Sample Collection
	IV-C Computation Cost

	V Conclusion
	References

