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Abstract— Robots manipulating objects in cluttered scenes
require a semantic scene understanding, which describes ob-
jects and their relations. Knowledge about physically plausible
support relations among objects in such scenes is key for
action execution. Due to occlusions, however, support relations
often cannot be reliably inferred from a single view only. In
this work, we present an active vision system that mitigates
occlusion, and explores the scene for object support relations.
We extend our previous work in which physically plausible
support relations are extracted based on geometric primitives.
The active vision system generates view candidates based on
existing support relations among the objects, and selects the
next best view. We evaluate our approach in simulation, as well
as on the humanoid robot ARMAR-6, and show that the active
vision system improves the semantic scene model by extracting
physically plausible support relations from multiple views.

I. INTRODUCTION

For autonomous robots, a semantic scene understanding is

a key ability for a successful action execution, especially in

unstructured scenes or cluttered table-top scenarios. Here,

an increased awareness of the environment can facilitate

task execution and further increase the success of a robot’s

manipulation. Fig. 1 gives an example of a cluttered table-

top scenario with only a few objects, placed in a way that

enforces a strict order of picking objects up. The manip-

ulation order can be derived based on the support relation

information between the objects. If the manipulation order

is ignored the object stack would collapse.

In our previous work, we demonstrated and evaluated a

system for the extraction of physically plausible support

relations based on geometric primitives [1]. Model param-

eters for basic geometric shapes are iteratively fitted against

a 3D input point cloud of the scene. A final step infers

physically plausible support relations from the geometric

shapes. Given the support relations between the objects, a

robot is able to safely execute object manipulation tasks.

Until now, camera view poses were chosen manually for the

extraction of the scene model and the execution of manip-

ulation actions. However, multiple views are necessary to

address the limitations of a single view, such as occlusion of

supported objects or missing support relations [2]. To extend

our previous work, we present in this paper an active vision

system to automatically determine a next best view (NBV)

of a humanoid robot in order to explore a cluttered scene

and extract a complete and consistent support relation graph
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Fig. 1: The humanoid robot ARMAR-6 in front of a cluttered

table-top scenario. Knowledge about the support relations

between the objects is required to safely manipulate the

objects. Simply shifting the gaze is not sufficient due to

occlusions. ARMAR-6 has to change the platform position

as well in order to obtain a reasonably complete model of

the scene.

describing support relations between the objects encountered

in the scene.

Overall, the major contributions in this work can be

summarized as follows: (a) Multi-view based scene modeling

and semantic scene understanding, which is supported by

(b) an active vision system to improve scene understand-

ing by extracting support relations from multiple views by

autonomous exploration, and (c) a real robot experiment

validating our approach. The remainder of this work is

structured as follows: After discussing relevant active vision

approaches in section II, the proposed active vision system

is detailed in section III and section IV as extension of the

previous work. In section V, we evaluate proposed methods

for various experimental setups, in simulation as well as

on the real humanoid robot platform ARMAR-6. Finally,

section VI concludes the paper and discusses future work.

II. RELATED WORK

The term active vision was coined by Aloimonos et al. [3]

in the late 1980s. Active vision is defined as modifying the

camera view pose actively and purposefully with the goal

to enhance the current perception. A similar definition for

active perception was given by Bajcsy et al. [4]. Recently,

active perception was revisited by Aloimonos, Bajcsy and



Tsotos in their survey paper [5]. The work of Chen et al. [6]

surveys relevant active vision methods. An overview of more

recent active vision methods is given in [7], extending the

work of Chen et al. as well as including other aspects.

Active vision has a strong link to the current task [8] and

is required to support many robotic vision applications, for

example SLAM, where an active vision system can improve

registration by selecting regions of interest and changing the

camera pose [9].

One particular active vision problem is the selection of the

next best view (NBV), which determines the next camera

pose to obtain a reasonably complete scene or object model.

The NBV problem was pioneered by Connolly [10] for object

modeling tasks and later improved by Pito [11] and Banta

et al. [12]. It has also been widely addressed for eye-in-

hand systems in industrial applications. In humanoid robots,

however, selecting a suitable view pose is especially difficult

due to the robot’s position uncertainty, the unreachability of

the view pose or the complexity of the current task. There-

fore, the application of the NBV problem in humanoid robots

is related, but differs in some respects when compared to

industrial robot arms. The particular problem of unreachable

view poses due to kinematic constraints was addressed by

Foissotte et al. [13] for the humanoid robot HRP-2. Here, the

goal was to compute whole robot postures to autonomously

generate visual models of unknown objects. For humanoid

robots, the processes of finding the NBV can be accelerated

by filtering possible view candidates with inverse reachability

maps as described in [14]. A general next best view system

for the humanoid robot PR2 to explore a scene was presented

by Potthast and Sukhatme [15]. The system is designed

for occluded environments and estimates the visibility of

occluded space. In [16] a trajectory optimization method to

explore new and occluded regions for robotics grasping is

presented. The view candidate evaluation of NBV is often

costly and therefore methods utilize GPU to speed up the

NBV calculation for humanoid robots [17] or for industrial

robotic arms [18]. Xu et al. [19] presented a NBV system

for shape classification. Their work is evaluated on the PR2

humanoid robot as well and uses a recurrent 3D attention

model. The 3D attention model selects the NBV to improve

object identification and scene exploration.

III. SCENE MODEL

Our system starts by building a scene model from sensor

data. Fig. 2 illustrates our system architecture to extract the

scene model and to compute the next best view (NBV).

To build a scene model, RGB-D images are first registered

with respect to each other. Then, the registered point cloud is

segmented into plausible parts as a hint for possible objects.

In the subsequent step, we approximate the shape of the

objects in the scene, denoted as O, with geometric primi-

tives. These geometric primitives include boxes, spheres, or

cylinders and are fit against each segment using a RANSAC

based approach. For details, the reader is referred to our

previous work [1].
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Fig. 2: The system architecture. A scene model is extracted

from multiple views and support relations between the ob-

jects are inferred automatically. Our core contribution is

an active vision system that determines automatically the

robot’s next best view to improve the extraction of physically

plausible object support relations.

A. Support Relations

Next, we infer support relations based on the spatial extent

of the geometric primitives. We follow the notation and def-

inition of the support relations given in [1], [20]. For clarity

we recap the most relevant definitions for this work. For two

objects A, B ∈ O we denote SUPP(A, B) ⇐⇒ A supports

B. The support graph, spanning the geometric primitives,

is a directed graph Gs = (V,E), where the vertices V

map the set of objects O and the edges E model possible

support relations between the objects. First, separating planes

between objects are constructed at contact points. For each

pair of objects in contact, a support relation is added from

the object below the separating plane to the object above the

plane, resulting in bottom-up support relations. In addition,

uncertain support relations are detected purely on geometric

information by computing a support area ratio. To this end,

the object model’s shape is projected to the ground floor and

the overlap between the convex hull of each projected object

is computed. The intersecting area is then combined into the

set of polygons PA = {PA ∩ PC | A, C ∈ O, SUPP(C, A)}
representing the directly supported area of A. The support

polygon Ps is the convex hull of the polygons in PA. Next,

we compute the support area ratio rs ∈ [0, 1] defined as

rs =
area(Ps)

area(PA)
, (1)

where rs = 1 means that A is fully supported, and rs = 0
means that A is not supported at all, i. e. A is floating.

If rs < rs,min then we consider object A as unstable. In this

work, we set rs,min = 0.1. For each unstable object A we add

a new edge e = (B, A) labeled as uncertain to E. Otherwise,

if rs > rs,min we consider A as well supported by the objects

below it and therefore no edges are added. A major reason
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why an object is considered unstable is an incomplete scene

model, e. g. a supporting object is missing or the scene is not

fully explored yet. Therefore, we are in particular interested

in the support relations as a clue for incomplete data of the

scene model.

B. Support Graph Combination

For the scene model and semantic scene understanding,

the information from multiple views needs to be combined.

A simple strategy to combine the support graph information

is to extract the scene model and support relations after each

single view from a global point cloud P1,t, containing all

the registered previous views. We will refer to this case

in the following as Point Cloud only (PC only). To speed-

up the process, the global point cloud is downsampled first

since the geometric primitive fitting step is computationally

expensive and the computation time scales with the input size

of the point cloud. Overall, there are two major arguments

against computing the support graph from a global point

cloud: (a) the total runtime is significantly increased, and

(b) the registration of the views might not be optimal and

thus the RANSAC primitive fitting approach might fail to

find all inliers for a geometric shape. Hence, we extract the

geometric primitives and the support graph iteratively from

each view and fuse the result with a global consistent support

graph G1,ts . To fuse an existing support graph Gts = (V t, Et)
with the support graph from the current view Gt+1

s =
(V t+1, Et+1) we first match the vertices, i. e. the objects, as

presented in [21]. To this end, we check the extracted object’s

shape, position, and orientation as well as the extent of the

object. Similarly, we check if an edge e = (A, B) ∈ Et+1

already exists in Et. If e 6∈ Et then it will be added as a

new edge. We further keep track of how many times an edge

e has been extracted and matched. The number of matches

will be denoted as #occ(e). This allows the algorithm to

later validate the existence of the support relations that have

been visible only a few times. We will refer to this case

as Support Graph only (SG only). Finally, we present a

combination of the two methods (PC + SG), where we first

register the point cloud as proposed in the first approach,

and then merge the extracted support graph as described in

the second approach. Table I outlines the different support

graph combination methods.

IV. ACTIVE VISION SYSTEM

This section describes the active vision system as shown

in our system architecture depicted in Fig. 2. Once the

Algorithm 1: Points of Interest (PoI) Generation

Data: Support Graph Gs = (V,E), View sphere S,

Previous view poses v̂0, . . . , v̂t
PoI ← ∅;
foreach A ∈ V do

U ← {B ∈ V |(B, A) ∈ E};
if U = ∅ then

θ ← GetLargestArc(S, v̂0, . . . , v̂t);

x ← ComputeContactPoints(A, θ
2

);

s ← ComputeSaliency(x);

PoI ← PoI
⋃

{(x, s)};

foreach B ∈ U do

x ← A+
(B− A)

1

2
||B− A||2

;

s ← ComputeSaliency(x);

PoI ← PoI
⋃

{(x, s)};

return PoI;

support graph is extracted from the first view the active

vision system determines the next best view, i. e. the location

of the platform and gaze direction. To this end, view poses

are represented on a sphere with a fixed radius and later

translated into a platform position and gaze direction. The

center of the view sphere S is defined as the centroid of the

extracted table-top segment from the initial view. In contrast

to standard NBV methods, we do not sample equally on the

view sphere. Instead we compute Points of Interest (PoI)

based on the support graph as detailed in Algorithm 1.

For each PoI x we compute a saliency value s to model

the importance of a view pose. The idea is similar to the

work of [22], where a saliency value is used to filter view

candidates, which are then subjected to further evaluation.

In this work, we consider semantic information, that is the

support relations, instead of spatial information, i. e. the

frontiers of the segmentation. Therefore, the point of interest

Algorithm 2: Next Best View Selection

Data: Support Graph Gs, Sphere Center cx, Voxel

Map V

S ← CreateViewSphere(cx);

PoI ← GeneratePoI(Gs, S, . . .);

foreach (x, s) ∈ PoI do

v ← ProjectToSphere(x);

r ← RayCast(x, v, V );

p ← PathPlanning(v);

h ← ComputePathCosts(v);

if IsIntersectionFree(r, V ) and IsReachable(v)

then

AddToViewSphere(v, S);

v̂ ← argmaxv∈V c(v);
return v̂;



already gives an indication of a good view pose and we

can reduce the number of view candidates in a subsequent

evaluation step. We note that this approach might not find

an optimal next best view, but requires less candidates to

evaluate. The implementation of the view sphere is similar to

[23], but we use an egocentric sphere instead of an exocentric

one. Overall, the sphere is discretized to 40.000 equally

distributed points.

A. View Candidate Generation

Possible view candidates are generated based on points of

interest in the scene. We propose two strategies to generate

points of interest. In a first step, for each unsupported object

PoIs are generated based on an object’s extent and previous

views. We first select the largest arc on the view sphere

between previous positions of the robot. The point of interest

is then defined as the intersection of the object and the line

from the middle of the largest arc to the object’s center. The

underlying concept is that each object must have at least one

support edge due to gravity and so far either the object is

not fully visible or supporting objects are missing. We use a

maximum saliency value to account for further exploration of

the object and its area. In a second step, points of interest are

computed based on the edges between objects. Here, the idea

is to consider a relation in the support graph as more stable

depending on the number of times it has been observed. In

this case the saliency value s(v) is computed with

s(v) = λs + (1− λs) cos

(

2π ·
#occ(ex)

#views

)

, (2)

where ex is the edge associated with the point of interest x,

#occ(ex) is the number of times the edge ex was observed,

#views the number of total views and λs is a parameter to

define the importance of the support edge validation.

The points of interest are then projected on to the view

sphere to represent possible views of the robot. Similar to

[23], the saliency value is propagated to neighboring view

poses on the view sphere with a decreasing value. Occlusions

are mitigated by checking if the line of sight between the PoI

x and the projected PoI v is free. We therefore keep a voxel

grid of the environment. In case of occlusion the saliency

value is inverted.

B. Next Best View Selection

We first discard unreachable view candidates on the sphere

while taking into account the distance of a view candidate

since moving the robot is time consuming. Therefore, a cost

function

c(v) = s(v)− h(v) (3)

pivots the saliency s(v) and the costs h(v) of moving the

robot for a given view v. The costs h(v) correspond to the

costs of reaching the position of view v with the robot’s

platform. Here, we set h(v) = sin(α
2
), where α is the

angle between the current view position and the view pose v

with respect to the centroid of the view sphere. Algorithm 2

outlines the approach. The active vision system terminates if

the current view pose does not contribute significantly to the

Fig. 3: ARMAR-6 simulated experiment. Top: A cluttered

table-top scenario. Middle: The registered point cloud of the

cluttered table-top. Bottom: The ground truth segmentation

of the scene.

support graph, i. e. the graph is not modified, or after n views

are reached (we limit the total number of views to 10). To

prevent the system from getting stuck we added an Inhibition

of Return mechanism which forces the robot to attend new

view poses. To this end, we keep track of previously visited

view poses and add a negative saliency value to the sphere.

The view pose on the sphere which maximizes the costs is

chosen as the next best view.

V. EVALUATION

For all experiments the humanoid robot ARMAR-6 [24]

is used. ARMAR-6 features a holonomic platform and has

two degrees of freedom in total for the head: yaw and

pitch. Further, the robot is equipped with several sensors

for perception. For the experiments we utilize ARMAR-6’s

Carmine 1.09 RGB-D sensor. The working range of the depth

measurement was limited to 3m in the experiments to reduce

sensor noise. The segmentation, as a hint for the geometric

primitive fitting, was manually refined to avoid bias of the

RANSAC based geometric primitive fitting and to make the

experiment reproducible. We set λs = 0.75 for the saliency



Fig. 4: The view sphere including the projected point of

interests of the simulated experiment. The rays project the

point of interest to the sphere and a saliency value models the

interest of the view pose. Parts of the sphere have been made

transparent for visualization purposes. The selected next best

view is visualized in gray.

computation, as it shows a good balance between exploration

and validation of support relations. The radius of the view

sphere can be parameterized and was set to 1.5m. The leaf

size of the voxel grid for occlusion checking was set to 1 cm.

A. Evaluation in Simulation

We qualitatively evaluate our approach in simulation.

Fig. 3 visualizes the scenario setup. The view sphere af-

ter the initial view is visualized in Fig. 4. We compare

the ground truth of a manually created support graph

GGT
s = (V GT , EGT ) with the result Gis = (V i, Ei) of the

i-th view from our proposed method. The F1-score models

the accuracy of the extracted support graph. We set

precision =

∣

∣V GT ∩ V i
∣

∣+
∣

∣EGT ∩ Ei
∣

∣

|V i|+ |Ei|
(4)

and

recall =

∣

∣V GT ∩ V i
∣

∣+
∣

∣EGT ∩ Ei
∣

∣

|V GT |+ |EGT |
. (5)

The true positives are vertices and edges that exists in

GGT
s as well as in Gis. The false positives are the number

of vertices and edges in Gis but not in GGT
s . False positives

can occur due to an erroneous RANSAC model fitting. False

negatives are the vertices and edges missing in Gis. The

result of the F1-score for different matching approaches, as

described in section III-B, is reported in Fig. 5. Different

methods include the combination of each view based on

the spatial information (PC only), the support graph (SG

only) or both (PC + SG). The active vision system was

compared to random placement of the robot while fusing the

information on the support graph (Random SG) and spatial

information (Random PC). Notably, all approaches yield an

increase with respect to the F1-score after the second view.

However, extracting the support graph only from a single

registered point cloud results in a decline of the F1-score
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Fig. 5: The F1 score for the first 10 next best views of the

simulated experiment. The extracted support graph from the

scene is compared to a ground truth support graph. Different

methods include the combination of each view based on the

spatial information (PC only), the support graph (SG only) or

both (PC + SG). The active vision system was compared to

random placement by fusing the information on the support

graph (Random SG) and spatial information (Random PC).

after the fourth view. One reason for this is the fitting of

the geometric primitives, which works with a fixed error

threshold of the fitted geometric model. Furthermore, the F1-

score increases with the random placement of the robot as

well. However, the random placement of the robot does not

consider the distance to reach the next position. Therefore,

the total distance traveled by the robot during exploration

might be significantly larger than with the proposed methods.

This is not taken into account by the F1- score.

B. Real World Evaluation

The real world evaluation is similar to our evaluation in

simulation. This time, however, the noise of the sensor and

the registration error injects noise into the system. We chose

to fuse the support graph with the second approach (SG only)

as it performs well in simulation while reducing computation

time. Fig. 6 depicts three selected next best views at different

timestamps of the experiment. The scene is relatively simple

but due to occlusion requires multiple views to extract a

complete support graph of the scene.

As one can observe from the first view (first column of

Fig. 6), no support relations are extracted due to an occluding

object. The active vision system therefore generates PoIs

between each object pair and the robot attends more next

best views. In the second column, the support graph is still

incomplete, but the most important support relations are

discovered. Finally, in the third column the next best view

discovers a missing support relation.

VI. CONCLUSION

We presented an integrated active vision system to sup-

port the creation of a semantic scene model including the



(a) First view (b) Second view (c) Third view

(d) First view (point cloud) (e) Second view (point cloud) (f) Third view (point cloud)

(g) First view (geometric primitives) (h) Second view (geometric primitives) (i) Third view (geometric primitives)

(j) First view (support graph) (k) Second view (support graph) (l) Third view (support graph)

Fig. 6: A real world experiment with the humanoid robot ARMAR-6 showing three next best views at different timestamps

of the experiment. First row: Scene and position of the robot (a-c). Second row: Current point clouds (d-f). Third row:

Extracted geometric primitives (g-i). Fourth row: Extracted support graph (j-l).



extraction of physically plausible support relations based on

multiple views of the scene. View candidates are generated

based on their support relations and thereby explore the

scene for missing supported objects. Our experiments show

that multiple views are necessary to mitigate the effect of

occluded objects. Both the evaluation in simulation as well

as the real world experiment show a completion of the

support graph after a few attended next best views. Based

on annotated ground truth data, the F1 score reaches 94%
after the fourth next best view and converges to a complete

model iteratively. The real world experiment demonstrates

the necessity of the active vision method for cluttered table-

top scenarios. Future work will focus on incorporating other

semantic data to further improve the next best view. In

addition, we will evaluate the method on more challeng-

ing scenarios and extend the evaluation with manipulation

experiments.
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