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Abstract— Gaze stabilization is fundamental for humanoid
robots. By stabilizing vision, it enhances perception of the
environment and keeps regions of interest inside the field
of view. In this contribution, a multimodal gaze stabilization
combining proprioceptive, inertial and visual cues is introduced.
It integrates a classical inverse kinematic control with vestibulo-
ocular and optokinetic reflexes. Inspired by neuroscience, our
contribution implements a forward internal model that mod-
ulates the reflexes based on the reafference principle. This
principle filters self-generated movements out of the reflexive
feedback loop. The versatility and effectiveness of this method
are experimentally validated on the ARMAR-III humanoid
robot. We first demonstrate that all the stabilization mech-
anisms (inverse kinematics and reflexes) are complementary.
Then, we show that our multimodal method, combining these
three modalities with the reafference principle, provides a versa-
tile gaze stabilizer able to handle a large panel of perturbations.

I. INTRODUCTION

Vision plays a central role in our perception of the world. It
allows to interpret our surrounding environment at a glance.
Not surprisingly, humanoid robots heavily rely on visual
perception.

However, the quality of visual information is severely
degraded by uncontrolled movements of the cameras in space
and by motions of the visual target. Points of interest can
move out of the field of view and motion blur can appear.

In this context, gaze stabilization has emerged as a pow-
erful solution to enhance robots visual perception. Notably,
recent contributions showed that gaze stabilization for robots
improves object localization with active stereo-vision [1] and
3D mapping of the environment [2].

Implementation of gaze stabilization for robots can be
classified into two approaches, (i) bio-inspired approaches
based on reflexes and (ii) classical robotic approaches ex-
ploiting inverse kinematics.

In humans and most animals with vision, gaze stabi-
lization is governed by two reflexes: the vestibulo-ocular
reflex (VOR) and the optokinetic reflex (OKR) [3]. These
complementary reflexes trigger eye movements based on the
head velocity and on the perceived image motion, respec-
tively. Bio-inspired approaches implement gaze stabilization
controllers emulating these reflexes.

Shibata and Schaal combined VOR and OKR using feed-
back error learning [4]. Their controller learns and adapts to
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Fig. 1. The ARMAR-III humanoid robot. (A) The robot in its home
environment used to validate the gaze stabilization. The robot’s point of
view is shown in the top left corner. (B) Kinematic chain of the head, with
4 degrees of freedom for the neck and 3 for the eyes.

the non-linear dynamics of the oculomotor system. Similarly,
Lenz et al. introduced an adaptive VOR controller learning
the oculomotor dynamics, but based on decorrelation control
this time [5], [6]. In [7], both these methods (i.e. feedback
error learning and decorrelation control) were compared.
More recently, Vannucci et al. extended the adaptive gaze
stabilization of [4] with a vestibulocollic reflex, stabilizing
the head by means of the neck joints [8]. Interestingly, these
bio-inspired approaches do not require an accurate model
of the robot. Provided a sufficiently long and rich learning
phase, they can adapt and be transferred to different robotic
heads.

The classical robotic approaches rely on inverse kinemat-
ics (IK) models, linking a task space to the joint space, i.e.
the neck and eye joints. Different representations of the task
space were proposed for gaze control.

Milighetti et al. used the line of sight orientation (pan
and tilt) [9]. Roncone et al. built a kinematic model of the
fixation point described as the intersection of the lines of
sight of both eyes [10]. In [11], Omerčen and Ude defined the
fixation point as a virtual end-effector of a kinematic chain
formed with the head extended with a virtual mechanism.
We recently extended this virtual model method in order to
solve the redundancy through a combined minimization of
the optical flow and the head joint velocities [12]. Marturi
et al. developed a gaze stabilizer based on visual servoing
where the task is described as the pose of a visual target in
the image space [13].

The main advantage of these kinematic-based approaches
is the possibility to leverage the well established inverse
kinematics control theory. Notably, the control theory of



kinematically redundant manipulators was successfully ap-
plied in [9], [11], [12] and [14]. Moreover, the IK method
offers to control the gaze direction, on top of stabilizing it,
as presented in [14]. This gaze control is necessary either to
catch up a target not centered in the image or to shift to a
new visual target.

All the stabilization methods reviewed above are based on
three sources of information, namely visual from the cam-
era video stream, vestibular from the head inertial sensing
and proprioceptive from the joint kinematic measurements.
Although one can expect that combining these three types
of cues could provide a better gaze stabilization than with a
limited subset of these modalities, very few studies addressed
this topic. More precisely, bio-inspired methods are usually
limited to visual and inertial cues, whereas the classical
robotic approaches typically rely on a single source of
information, usually proprioception (i.e. joint encoders) as
in [9], [11], [12]. Recently, an inverse kinematics method
based on vision was reported in [13]1. Roncone et al. also
introduced two other approaches, one triggered by inertial
measurements and one by copies of motor commands [10].
Later, Roncone et al. combined the methods based on inertial
and proprioceptive information, but no visual feedback was
involved [14].

Interestingly, in [15], it is shown that adding an inverse
kinematics head stabilization to VOR and OKR effectively
improves the gaze stabilization. This approach nicely decou-
pled a kinematic and a reflex-based approach, the former
controlling the neck joints and the latter the eye joints. How-
ever, the proprioceptive information was not fully exploited
for the gaze stabilization, since it was only used for head
stabilization, thus indirectly supporting gaze stabilization.

In this contribution, a novel gaze stabilization method
combining proprioception measurements (i.e. joint kine-
matic) with inertial and visual cues is introduced. It asso-
ciates an inverse kinematic model with bio-inspired reflexes
(VOR and OKR). Drawing inspiration from neuroscience,
it implements the reafference principle [16] by means of
a forward model [17]. This gaze stabilization is validated
with the ARMAR-III humanoid robot [18] in a home en-
vironment (Fig. 1). It is important to stress that the main
contribution of this study lies in the proposed reafference
method. Rather than demonstrating the high performance of
a new gaze stabilizer, we demonstrate that the versatility of
gaze stabilization can be improved by combining different
stabilization mechanisms using proprioceptive, inertial and
visual cues.

It is first shown that each isolated method, namely IK,
VOR and OKR, is well suited for a specific type of perturba-
tion. Indeed, each individual cue captures a tradeoff between
reactivity and versatility. Inverse kinematics methods based
on proprioception are the most reactive, but also the least
versatile (being only able to compensate for self-induced
perturbations). On the other hand, the optokinetic reflex

1Note that each of the inverse kinematics approach uses proprioception
for computing the task Jacobians, but we only consider here the modality
at the origin of the stabilization commands.
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Fig. 2. Block diagrams of the gaze stabilization reflexes, (A) the vestibulo-
ocular reflex (VOR) and (B) the optokinetic reflex (OKR).

can theoretically compensate for any disturbance but suffers
from long latency due to the inherent image processing. In
between, inertial measurements are rather fast but can only
detect (and thus stabilize) motions of the robot, e.g. external
pushes or joint movements, but not those of the visual target.

Most importantly, we show that, by combining IK, VOR
and OKR, the proposed reafference method is both reactive
and versatile. It can handle any kind of perturbation as the
OKR and can be as fast as the IK. The control automatically
adapts to the situation leveraging the best of each method.
It is worth noting that no parameter tuning is necessary for
achieving this multimodal combination.

This contribution begins by introducing the individual gaze
stabilization controls of the proposed approach. In section
III, the method to combine these three principles based on
reafferences is detailed. Then, the experiments and their
results are discussed in sections IV and V. Finally, future
work and conclusion are reported in section VI.

II. ISOLATED GAZE STABILIZATION METHODS

This section introduces the isolated gaze stabilization
mechanisms used in this contribution, namely the vestibulo-
ocular reflex (VOR), the optokinetic reflex (OKR) and the
inverse kinematics (IK). Importantly, this contribution is not
aiming at implementing the most advanced stabilization for
each of these three mechanisms, but rather at introducing
a new method to combine them. Therefore, the principles
reported in this section should be viewed as conceptual build-
ing blocks used to illustrate the combination by reafference.

A. Vestibulo-ocular reflex

The VOR stabilizes the gaze by producing eye movements
counteracting head movements [3]. As displayed in Fig.
2A, this reflex is triggered by a measurement of the head
rotational velocity ωhead, e.g. provided by the gyroscopes of
an Inertial Measurement Unit (IMU) located in the head.

In this context, compensatory eye movements can be
computed as:

q̇eye = −kvor ·
[
ωyaw ωpitch

]T
, (1)

with ωyaw and ωpitch being the yaw and pitch rotational
velocity expressed in the head frame. The control output
q̇eye = [q̇yaw q̇pitch]

T is the desired velocity for the eye
motors (around yaw and pitch angles respectively)2. The gain

2These velocities are used as references for a low level joint controller,
not represented in this article for the sake of brevity.



kvor should be close to 1 in order to fully compensate for
the head rotations.

This reflex benefits from a reliable information provided at
a high sampling rate and requires little computation. It is thus
very robust, although, it can only compensate perturbations
due to robot motions (externally or self-induced). In contrast,
motions of the visual target would not be detected and thus
not compensated. Note that the present implementation does
not compensate for head translations which would require
additional sensory input like head translational velocity and
distance to target.

B. Optokinetic reflex

The OKR stabilizes the gaze by producing eye movements
cancelling the retinal slip, i.e. the perceived target motion
within the image. Retinal slip in the horizontal axis of the
image elicits yaw rotations while vertical retinal slip elicits
pitch rotations. The retinal slip (u̇, v̇), is typically obtained
from image processing, i.e. by computation of the optical
flow [19]. An implementation of the OKR can be achieved
by computing the eye velocities as:

q̇eye = kokr ·
[
u̇ v̇

]T
(2)

Knowing the opening angles and the frame rate of the
camera, it is possible to express the retinal slip (u̇, v̇) in
rad/s. In this case, the gain kokr should also be close to 1.

A more efficient implementation can be obtained by taking
into account the eye velocity in the control loop as proposed
in [20]:

q̇eye = kokr ·
[
u̇+ q̇yaw v̇ + q̇pitch

]T
(3)

This cancels the static error in the case of a perturbation
of constant velocity. A block diagram of this implementation
of the OKR is shown in Fig. 2B.

In contrast to the VOR, the input of the OKR is usually
noisy and available at a lower frequency (e.g. 30Hz for stan-
dard cameras). This inherent drawback of image processing
makes this reflex less accurate and less reactive. On the other
hand, vision provides the only direct feedback about the task,
i.e. cancelling a potential retinal slip. Therefore, this is the
sole source of feedback that can stabilize the image in a
dynamic environment (with unpredictably moving objects).

C. Inverse kinematics control

The IK method relies on a task space representation of the
control problem. It applies to the gaze stabilization task, the
classical inverse kinematics control scheme of the canonical
form:

ẋdes = Kp(xdes − x) + ẋpred (4)

q̇des = J†(q)ẋdes (5)

Where xdes is the desired state, x is the current state, Kp is
a proportional gain and J† is a pseudo inverse of the task
Jacobian. ẋpred is a predictive command.

This classic control scheme is executed in two steps. First,
a corrective velocity ẋdes is computed in the task space,

e.g. Cartesian (4). Then, the desired joint velocities q̇des are
obtained by projecting these desired task velocities in the
joint space, using differential inverse kinematics (5).

Various task space representations were proposed in the
literature for gaze control (e.g. [9]–[13]). In this contribution,
a method based on a virtual linkage model (as first proposed
by Omerčen and Ude [11]) similar to the one developed in
[12] is used. In this method, the kinematic model of the robot
is extended with a virtual spherical arm connected to the
robot camera. The state x is the Cartesian pose of the virtual
end effector of this new kinematic chain. Controlling x to
match the pose of the visual target is equivalent to impose
that the target remains centered and aligned in the image
frame [12]. This virtual linkage model thus rephrases the
gaze stabilization problem as the classic control of a serial
manipulator. This stabilizer controls all the head joints (neck
and eye joints), i.e. q̇des = q̇head = [q̇neck, q̇eye].

The desired state xdes is thus the pose of the visual target.
This target is typically provided by a higher level active
vision module selecting the area of interest to be further
inspected by the robot. An example of the integration of such
an active vision module with this gaze stabilizer is presented
in [1]. For gaze stabilization, xdes is thus kept constant.

The predictive term ẋpred is chosen to compensate for the
motion induced by the body’s own movements as proposed
by Roncone et al. [10]. It is computed as the opposite of the
velocity of the virtual end-effector that would be induced
by the body motion, computed as ẋpred = −Jbody q̇body ,
where q̇body is the velocity of the body joints and Jbody is
the Jacobian relating this joints velocity to the end effector
velocity. In contrast to [10] and [12], here, we use the mea-
sured velocity of the body joints rather than the joint velocity
commands. This releases the constraint of controlling the
body joints (e.g. legs, torso) in velocity and barely affects
the control since the encoder measurements are almost delay
free. The redundancy of the inverse kinematics is solved
through a combined minimization of the optical flow and
head velocity. For more details, refer to [12]. The block
diagram of this controller is represented in Fig. 3.
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Fig. 3. Inverse kinematics method (IK) for gaze stabilization. A corrective
velocity ẋdes is computed with a feedback on the fixation point pose x and
a predictive term ẋpred. FK is a forward kinematics model.

As opposed to both reflex-based methods controlling only
the eye degrees of freedom, IK method controls all the
head joints. This allows a higher reactivity by exploiting
the redundant motors. Another advantage of IK stabilization
methods is that all the theoretical framework of redundant
serial manipulator control can be adapted to it. For instance,
null space projection or joint limit avoidance can be im-
plemented to solve the inherent redundancy [21]. Finally,



task space control offers to control the gaze (i.e. changing
the view point), on top of stabilizing it [14]. However, a
limitation of stabilization methods based on joint kinematic
measurement is that they can only measure and thus stabilize
self-induced perturbations.

III. COMBINATION OF GAZE STABILIZATION METHODS

A straightforward manner to combine reflexes and inverse
kinematics control is to sum or to average their respective
contributions (Section III-A). However, such naive combina-
tion methods suffer from limitations that would eventually
degrade the stabilization performances. Taking inspiration
from neuroscience, this section introduces a more appropriate
combination approach based on the reafference principle [16]
in Section III-B.

A. Combination by summation and average: limitations

The OKR consists in a feedback contribution stabilizing
the image from a direct measurement of it. Regarding the
VOR, it can be seen as a predictive contribution triggered by
the head velocity. Hence, VOR and OKR can be combined
by summing their respective output [20]. In such a configu-
ration, the VOR compensates for the perturbations due to the
head motion and the OKR stabilizes the remaining motion
perceived in the image.

However, using the same summation method for the IK
contribution degrades the overall performance, because it
corresponds to a mechanism of different nature. On the
one hand, the IK controller captures voluntary control of
the gaze through neck and eye coordination. Its feedback
component offers to control (and thus to change) the view
point (i.e. the line of sight) while its feed-forward component
compensates for self-induced perturbations. On the other
hand, VOR and OKR correspond to reactive eye movements
aiming at stabilizing the gaze.

Due to these differences, summing the IK contribution and
the reflex ones would produce ineffective gaze stabilization.
First, summation of the commands would overcompensate
self-induced perturbations. Indeed, if the IK predictive model
is accurate enough, it should compensate for a large fraction
of the voluntary body motion. But at the same time, if the
VOR gain is well tuned, it would also generate a command
stabilizing the self-induced body motions measured by the
induced head velocity. Summing the contributions of these
two pathways would thus produce a command twice too
large.

On the contrary, averaging the commands would under-
compensate the externally induced perturbations. Indeed, the
IK method would not generate any command since it cannot
detect externally induced perturbations.

Furthermore, the reflexes would by nature counter-act any
voluntary change of gaze direction. For example, a voluntary
eye rotation to the right would generate an optical flow in the
left direction. This optical flow, if directly fed to the OKR,
would thus generate an eye rotation to the left, counteracting
the initial desired eye motion to the right.

B. Combination by reafference: principle

Facing this paradox of reflexes counter-acting voluntary
motions, neuroscientists identified the principles of reaffer-
ence [16], [22] and forward model [17].

Forward models (also known as internal models) receive
copies of the motor commands (efference copies) and predict
the expected sensory outcome of self-induced motions (pre-
dicted reafference). These reafferences are then subtracted
from the actual sensor measurements, thus isolating the
sensory consequences of externally induced perturbations
(called exafference). Interestingly, feeding the reflexes with
these exafferences rather than directly with the sensor mea-
surements does no longer induce a counter-action of volun-
tary motions.

From the seminal work of von Holst [16], evidence of such
a sensory cancellation mechanism feeding the optokinetic
reflexes has been widely demonstrated in animals (see [23]
for details). More recently, it was also shown for vesibulo-
ocular reflexes on monkeys [24]. Similar sensory cancellation
is also observed in humans [25].

Inspired by these concepts of reafference and forward
models from neuroscience, we implement such a sensory
cancellation mechanism to combine voluntary gaze control
from the IK with reflexive control from VOR and OKR.
Consequently, the limitations mentioned in subsection III-
A no longer impact the stabilization. An overview of the
proposed control scheme is provided in Fig. 4 and is further
detailed in the following subsections.
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Fig. 4. Combination of the inverse kinematics (IK) with the optokinetic
(OKR) and vestibulo-ocular (VOR) reflexes by the reafference method.
A forward model predicts the sensory outcome of self-induced motions
(reafference). The reflexes are fed with the exafference, i.e. the difference
between the sensory measurement (afference) and the reafference prediction.
q̇robot is the vector containing the velocity command for the robot joints,
i.e. q̇robot = [q̇body , q̇neck, q̇eye]. In practice, in the implemented model
the efference copy is replaced by a direct measurement of the joint velocity.
This canonical scheme is kept for the sake of simplicity.

C. Forward model

The proposed gaze stabilization requires a forward model
predicting the sensory consequences of the self-induced



movements, known as the reafferences (Fig. 4). In the present
case, the forward model must thus predict the self-induced
contribution on the head rotational velocity ωhead reaf and
on the optical flow of the camera images (u̇reaf , v̇reaf ).

As a first step toward a full forward model, we considered
here a forward model being purely kinematic, and thus
embedding no dynamical contributions. As opposed to a
kinematic model, a dynamic model would take the joint
torques as input and compute the resulting joint trajectories
through direct dynamics integration. Instead, our kinematic
model uses joint velocities as input and predicts their effect
through forward kinematics. This approach is similar to the
feed-forward component of [10] taking the velocity refer-
ence commands as input. Moreover, rather than using the
velocity reference commands as input (efference copies) we
propose to use the actual encoder measurements. In practice,
measurements obtained from the encoders are accurate and
almost delay-free. Interestingly, this does not limit the whole
robot to be controlled in velocity but allows any kind of
control (e.g. force control for the lower body).

The forward model predicting the head rotational velocity
is straightforward. Knowing the location of the IMU in the
head, it is possible to get the IMU orientation (given as the
rotation matrix Rimu) and its rotational velocity ωimu as
a function of the joint positions q and velocities q̇, where
Rimu and ωimu are both expressed in the world frame. Then,
the reafference for the gyroscope velocities (expressed in the
IMU frame), is given by:

ωhead reaf = Rimu(q) ωimu(q, q̇) (6)

The optical flow can be estimated from the image Jacobian
Jim (also called interaction matrix), originally developed
for visual servoing [26]. This Jacobian linearly maps the
cameras linear and rotational velocities (expressed in the
camera frame)

[
vcam, ωcam

]
to the optical flow

[
Ẋ, Ẏ

]
as: [

Ẋ Ẏ
]T

= Jim(X,Y )
[
vcam ωcam

]T
(7)

where (X,Y ) are the coordinates of the point of interest in
the image frame.

Assuming that the visual target is centered in the image
frame, i.e. that the gaze is properly stabilized, the target im-
age velocity can be estimated as Jim(0, 0)

[
vcam ωcam

]T
,

thus giving:[
u̇reaf
v̇reaf

]
=

[
(f/Z)vcam x + fωcam y

(f/Z)vcam y − fωcam x

]
(8)

where Z is the distance between the camera and the visual
target and f the camera focal length. This captures the
contribution of the translations and the rotations along the
horizontal and vertical axes of the image, x and y, respec-
tively. The optical flow corresponding to (8) can then be
expressed as a function of the robot kinematics using:[

vcam ωcam

]T
= RcamJcam(q)q̇ (9)

where Jcam is the Jacobian matrix of the camera-fixed
frame and Rcam is its rotation matrix given by the forward
kinematics.

IV. EXPERIMENTAL VALIDATION

This gaze stabilization method was validated in two exper-
iments. First, the three stabilization modalities (IK, VOR and
OKR) were individually assessed. Then, different methods
combining these modalities were evaluated, including the one
based on reafferences (Section III).

A. Experimental set-up

The experiments were performed with the ARMAR-III
humanoid robot (Fig. 1A). This robot features a human-like
head in terms of both kinematics (range of motion, velocity)
and vision (foveal vision) [18]. This makes it a suitable
platform for evaluating bio-inspired control. More precisely,
the head has 7 degrees of freedom as represented in Fig.
1B. However, the upper pitch joint was not used during the
experiments due to redundancy already provided by other
pitch joints.

Each eye is equipped with a wide and a narrow angle
camera. The wide camera video stream is available at 30Hz.
Optical flow computed from feature tracking was used as
input for the OKR3. An XSense IMU was mounted on the
head for the VOR.

The VOR gain kvor was set to 1. The OKR gain, kokr
was set to 0.8, to avoid instability due to the delay of the
visual feedback. The feedback gain of the IK, Kp was set
to 0, i.e. no drift compensation was used, since drift was
neither compensated with the VOR and OKR reflexes. The
full OKR (Eq. 3) was used except for the reafference method
that used the reduced version (Eq. 2).

B. Evaluation scenarios

Three scenarios were used in order to provide a general
assessment of the proposed method.

In the first scenario, the perturbation consisted in a pe-
riodic motion of the hip yaw joint, as in [8] and [10]. A
sinusoidal motion of 0.48 rad (amplitude) at 0.125Hz was
used, which corresponds to peak velocity of about 20 deg/s
(similar order of magnitude as in [10]). This voluntary self-
generated perturbation is the only one that the IK method
can detect and thus stabilize.

The second scenario captured the unpredictable motions of
the robot pose in space (e.g. as would occur with an external
push). For the sake of reproducibility, it was generated by
controlled rotations of the robot omnidirectional platform. A
sinusoidal rotation of the platform around the vertical axis of
0.48 rad (amplitude) at 0.125Hz was used. Importantly, this
motion was not sent to the gaze stabilization controllers and
can thus be considered as an externally induced unpredictable
perturbation.

Finally, the last scenario involved motions of the visual
target in space, as it typically occurs in dynamic environ-
ments. It was generated by a moving chessboard displayed
on a TV screen. Once again, no information was provided
to the stabilization controllers. The TV and the video were
set up to generate perturbation of 0.1 rad at 0.066Hz.

3From the OpenCV methods goodFeaturesToTrack and calcOpticalFlow-
PyrLK.



These three scenarios account for all possible perturbations
that can induce image motion: self-induced voluntary robot
motions, externally induced robot motions and visual target
motions respectively. They will be denoted hereafter as Self
Robot, External Robot and External Target.

C. Gaze stabilization assessment

To assess the quality of the image stabilization, the dense
optical flow was used like in [10]. It is computed with the
Farnebacks algorithm of OpenCV [19] using the actual video
stream of the wide camera as input. The dense optical flow
φ is a 2D vector field capturing the apparent velocity of each
pixel in the image frame. This field was then averaged, over
a centered window having half of the image width w and
height h, using the root mean square error as:

φrmse =

√√√√√ 1

(w/2)(h/2)

h/4∑
−h/4

w/4∑
−w/4

‖φ‖2 (10)

Finally, to get a global stabilization index for the whole
experiment, the mean of φrmse(t) over the whole video
duration was computed (in deg/s). Thus, the better the
stabilization, the lower this stabilization index should be4.
Note that the dense optical flow used here is different from
the optical flow based on feature tracking used as input of
the OKR.

V. RESULTS

A. Individual modalities

In the first experiment, each isolated stabilization method
(IK, VOR and OKR) was tested in the three scenarios. As
a reference, tests with the stabilization disabled, hereafter
referred as No Stabilization, were conducted, i.e. all neck and
eye joints were kept fixed. The results of this experiment are
reported in Fig. 5. For each type of perturbation, a specific
method provides better results than the two others.

As expected, the IK is only stabilizing self-induced robot
motions. The VOR can also stabilize externally induced robot
motions and the OKR can stabilize any type of perturbations.

Interestingly, the less versatile methods are also the most
efficient ones. In particular, the IK stabilizes better than the
other methods in the Self Robot perturbation and the VOR
stabilizes better than the OKR for the perturbation induced
by robot motions.

This lower performance of the OKR is due to the optical
flow computation being both slow and noisy. On the other
hand, the good stabilization featured by the IK method —
in the Self Robot experiment — can be explained by two
reasons. First, it is the only method that takes advantage of
the whole head’s degrees of freedom (neck and eyes). Sec-
ondly, it has relatively low delay since encoder measurements
are available at high frequency. Regarding VOR, it benefits

4For a full perception of the quality of the stabilization, please
refer to the video submitted as supplementary material available at
https://youtu.be/WFzg5PzyFDU

from the low input delay of the IMU but is limited to the
eye joints.

This experiment clearly showed that all stabilization
modality are complementary, depending on the type of
perturbation. It also strongly suggests that the ideal gaze
stabilization method should combine the three sources of
information in order to be both versatile and efficient.

Fig. 5. Stabilization index obtained for each isolated stabilization mecha-
nism (IK, VOR and OKR) in the three scenarios (Self Robot, External Robot
and External Target).

B. Combined modalities

In the second experiment, the proposed gaze stabilization
combination method based on reafferences was tested in the
same scenarios as in the first experiment. In each case, it
was compared to the best individual modalities from the
first experiment. Furthermore, it was compared to two naive
combination methods not relying on reafference prediction,
i.e. where the sensory output (afference) is directly fed to the
reflexes. The first method, Sum, simply sums the output of
each modality. The second method, Mean, takes the average
of the contributions of the three modalities (Section III-A).

The resulting stabilization performances are displayed in
Fig. 6. One can observe that the proposed reafference method
performs similarly as the best individual modality for each
perturbation. In contrast, more naive methods not using
reafferences do not perform as well.

The poor quality of the Sum method is due to an over
compensation of the perturbation, as described in Section III-
A. More specifically, for the Self Robot and External Robot
scenarios, more than one stabilization method is active. As
a consequence, the sum of the output produces too much
compensation.

In contrast, the lower quality of the Mean strategy is due
to under compensations. Indeed, the IK modality is inactive
for the external disturbances. Thus, the mean of the output
tends to decrease the velocity command.

More interestingly, the Reafference method can automat-
ically detect when it is appropriate to activate or inhibit a
reflex, in order to avoid over or under compensations. For
example, in the Self Robot perturbation, the forward model
accurately predicted the inertial and visual feedbacks (see
Figs. 7 and 8). Therefore, the input of the reflexes, i.e.
the exafferences of Fig. 4 is close to zero, leading to an
inhibition of the reflexes. In other words, the reafference

https://youtu.be/WFzg5PzyFDU


Fig. 6. Stabilization index obtained for the reafference method and
two other naive combination methods (Sum, Mean) in the three scenarios
(Self Robot, External Robot and External Target). The stabilization is also
compared to the best individual stabilization mechanism from Fig. 5.

method naturally selects the most effective stabilization, i.e.
the IK in this case.

Fig. 7. IMU yaw rotational velocity signals used by the reafference method
in the Self Robot scenario. The afference is the measurement from the IMU
gyroscopes, the reafference is its prediction from the forward model and the
exafference is the difference between both used as input for the VOR.

VI. CONCLUSION

In this contribution, three gaze stabilization controllers
were implemented: A classic inverse kinematics (IK) con-
troller along with two bio-inspired reflexes, the vestibulo-
ocular reflex (VOR) and the optokinetic reflex (OKR). More
importantly, a method combining these three stabilization
mechanisms based on the neuro-scientific principles of for-
ward model and reafference was introduced. The stabilization
performances obtained was assessed in practical experiments
with the ARMAR-III humanoid robot.

We first demonstrated that each of the three stabilization
mechanisms (IK, VOR and OKR) presents its own com-
parative benefit. Indeed, as a function of the perturbation,
one sensory information proves to be more appropriate than
the two others. While the IK performs best for voluntary
self-induced perturbations, inertial sensing makes the VOR
most efficient for external pushes on the robot. Finally,

Fig. 8. Optical flow signals (along the horizontal axis) used by the
reafference method in the Self Robot scenario. The afference is the flow
computed from the video stream, the reafference is its prediction from the
forward model and the exafference is the difference between both used as
input for the OKR. The same scale as for the IMU signals (Fig. 7) is set to
allow comparison between both reflexive inputs.

visual feedback of the OKR is the only information that can
compensate for a moving visual target.

Then, it is shown that combining these individual con-
trollers with the reafference method provides a versatile
stabilization. Actually, for each type of perturbation, the reaf-
ference method provides stabilization performances of com-
parable quality as the best individual method. Interestingly,
no parameter tuning is necessary for the combination by
reafference. The method automatically inhibits the reflexes
when appropriate, provided that the forward model is good
enough.

In this study, the effectiveness of the reafference method
was only evaluated with slow perturbations in one dimension.
Our future work will focus on the validation of the proposed
approach in more challenging scenarios. Additionally, the
integration of this multimodal gaze stabilization on other
robots will be considered. Another perspective is to explore
the potential of the reafference principle in other tasks than
gaze stabilization.
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