
Markerless Human Motion Tracking with a Flexible Model and
Appearance Learning

Florian Hecht, Pedram Azad and Rüdiger Dillmann

Abstract— A new approach to the 3D human motion tracking
problem is proposed, which combines several particle filters
with a physical simulation of a flexible body model. The flexible
body model allows the partitioning of the state space of the hu-
man model into much smaller subsets, while finding a solution
considering all the partial results of the particle filters. The
flexible model also creates the necessary interaction between the
different particle filters and allows effective semi-hierarchical
tracking of the human body. The physical simulation does
not require inverse kinematics calculations and is hence fast
and easy to implement. Furthermore the system also builds an
appearance model on-the-fly which allows it to work without a
foreground segmentation. The system is able to start tracking
automatically with a convenient initialization procedure. The
implementation runs with 10 Hz on a regular PC using a stereo
camera and is hence suitable for Human-Robot Interaction
applications.

I. INTRODUCTION

Finding and tracking the posture of a person over time is
fundamental to several applications. It is used extensively in
the animation industry to capture the performance of actors
for films and computer games. The pose of a person is also
very important in Human-Robot Interaction (HRI). When
humans and robots interact, it is expected that the robots can
understand the human body language, that is, they should be
able to recognize certain actions such as waving or pointing.
Also to teach a robot new actions it would be very helpful,
if the actions could be taught by demonstration, where the
robot learns the specific motions by observing the human
performing them. To do all that the robot needs to have a
notion of the body posture of the persons it is interacting
with.

Motion capture applications in films and games use a large
number of high-speed cameras in a studio environment to
capture the performance of an actor in a tight suit with
carefully placed markers. This expensive and complicated
setup allows very precise measurements of the performed
motions. For the application on a robot we cannot require the
person being tracked to wear special clothing with markers
or sensors. The robot also has only a limited view with a
mono or stereo-camera and not a set of conveniently placed
cameras around the person. With these restrictions it becomes
much harder to track the movements of a person.
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It would be beneficial to have sophisticated camera-based
tracking systems that have only few requirements. Such a
system should work with few regular cameras and should
not require any preparations, neither of the person to be
tracked nor of the environment. Such a system would be a
lot cheaper and would not be restricted to certain locations.
A person could work with such a system without special
preparation or training. Ideally, such systems should have
good performance in the following criteria at the same time:
Robustness, precision and computational effort.

A. Previous Work

There is a plethora of different approaches to human
motion capture that differ in the sensors used (accelerom-
eters, cameras, depth cameras), the number of sensors, the
model that is constructed (2D, 3D, with appearance, etc.)
and the underlying algorithms. Since the proposed method
uses particle filters and a 3D model with a single perspective
view of the person, we will focus on previous work in these
areas.

The use of short-baseline stereo cameras gives some addi-
tional 3D information about the scene [1], [8], [9] compared
to a single camera, but has the same difficulties as monocular
systems [3], [15] as only one fundamental perspective is
available. These systems have to handle occlusions and the
fact that motion in the depth direction is not directly visible.

There are several different approaches to determine the
posture from a given set of images. For monocular 2D-3D
registration, where the actual 3D pose is determined from
a single view, a precise model and optimization algorithms
are use to find the correct pose, as done in [15]. Systems
that use stereo cameras usually extract the 3D location of
key body parts like the head and hands and use other
methods to solve the position of elbows and other body
parts [1], [8]. Algorithms that use more cameras can extract
3D information from the different views and then fit an
articulated model to this 3D data [9], [2], [4], [16], [11]. A
different approach is to project a model into each view and
determine the change of the model from each view either by
optimization [3], [7], [15], filtering or sampling.

Particle filters are used in several algorithms [1], [5], [6],
[8], [12], [14]. The biggest problem with human motion
tracking with particle filters is the exponential growth of the
needed number of particles with the increase in dimensions
of the search space. For most whole body human models in
3D we have about 30 DoF, which is infeasible to solve with
a regular particle filter. One of the tasks to solve when using
particle filtering for human motion capture is to deal with
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this high dimensionality. Several different approaches have
been proposed:

One approach is to split the search space into smaller
search spaces in combination with hierarchical search or the
localization of certain body parts by other means, like the
head, hands or the the dominant axis of the torso [12]. One
big criticism of these approaches is that, say the two arms,
are treated independently from each other, where in fact the
position of the one-side influences the position of the other.
In [6], an automatic partitioning scheme is proposed that
reduces the needed number of particles while still creating
the needed interactions.

In [14], a strong motion model is used to predict the state
of the skeleton in the next frame. This learned motion model
reduces the number of needed particles since the particles
will be relatively close to the actual position. This system
is limited to tracking one type of motion at a time (walking
in that paper) and is therefore not universally applicable,
but showed that a good prediction can significantly improve
tracking results.

Another approach to deal with the high dimensional search
space is the annealed particle filter as proposed in [5].
Similar to the optimization technique simulated annealing,
several filtering runs are performed, with increasing detail in
the weighting function. This guides the particle set to coarse
peaks first, and then optimizes the result with finer details.
With this approach the method can find the correct optimum
with a reduced number of particles. The annealed particle
filter is analyzed for application in non-studio-like environ-
ments in [13] and was found to depend on relatively noise
free measurements for reliable results. In [6], extensions to
this method are proposed including decreased noise that is
dependent on the variance of each state space variable. The
purpose of this is to focus attention to variables which are
not yet determined precisely and to prevent losing an already
precise localization of variables due to added noise.

Another algorithm is presented in [15], where covariance
scaled sampling is proposed, which is a generalization of
the variance-based noise extension of the annealed particle
filter. The state space distribution is represented as a mixture
of Gaussians. Samples are generated from each Gaussian,
with a distribution that captures the dimensions with the most
variance computed by eigen decomposition of the covariance
matrix.

None of [14], [5], [15] achieve real-time results and are
thus not applicable for use on a robot.

B. Outline

This paper presents a new method that was developed
for the purpose of HRI. The focus here is on performance
and robustness under certain conditions, like a short-baseline
stereo camera and a frame rate of at least 10 Hz on a regular
PC. The proposed method is not restricted to the application
on a robot, but can be used in multi-camera scenarios with
increased precision. The flexible model that represents the
human pose is introduced in Section II. The integration of the
particle filters into the complete tracking system is described

in Section III, which is followed by experimental results in
Section IV. Concluding remarks and ideas for future work
can be found in Section V.

II. FLEXIBLE MODEL

The flexible model used in this application is a mass-
spring system as illustrated in Fig. 1. Unlike a classical
kinematic model, which uses a hierarchy of joints, we have
a set of point masses, which are connected through springs.
The springs represent abstract bones for the extremities,
but are also used to construct a two-part torso, which is
not completely rigid. The state of the model consists of
the positions of the 16 points, which means the model has
16 · 3 = 48 DoF, which is more than the usual 30 DoF for a
kinematic model, but still less than the 11 · 6 = 66 DoF for
a model consisting of connected individual body parts1.

Another thing to note is that the model does not represent
rotations explicitly. Some rotations can be recovered from
the positions of the mass-points, but the rotations around the
arms’ axes for instance cannot be derived. If the 24 springs
in the system where completely rigid, then the number of
DoF of the complete system would be 48−24 = 24. But the
springs are not 100% rigid and hence give the model more
flexibility. Parametrizing the human model this way seems
a bit of a waste, but enables a locality of change, since
movements in a certain point can be implemented simply
by moving that mass-point and do not require an inverse
kinematics calculation. Note that the 48 DoF are estimated
in a semi-hierarchical way as will be explained in Section
III. Also this model allows splitting of the state space, while
still retaining interaction between the subparts, which enables
a good estimate for one part to fix the bad estimate for
another part, thus greatly improving the robustness of the
whole estimate.

head

neck

left shoulder

left elbow
left waist

left wrist
left hip

left knee

left ankle

Fig. 1. Mass-Spring model of a human showing the mass-points and the
springs.

The model is enhanced with additional constraints to limit
the angular motions of the limbs. Since rotations are not
modeled, several coordinate frames are derived from sets
of the three positions of mass-points. In these frames the

1This assumes two parts per extremity, two for the torso and one for the
head, thus 11 parts, where each part has 6 DoF as a rigid body.
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rotational limits are defined. Further constraints prevent the
self-penetration of the arms and the torso (by using an
anisotropically scaled cylinder collision), as well as cross-
over situations through distance constraints between the legs.
This limits the number of states the model can get into
further. The model is suspended in the air with gravity
dangling from the position of the head.

The mass-spring system is solved in a Verlet frame-
work [10], [17], which makes the implementation very
simple and the physics simulation very stable. The system of
constraints is solved by iteratively applying them individually
several times, similar to Gauss-Seidel iterations for linear
systems. The Verlet integration step is

xxxt+1 = 2xxxt − xxxt−1 + aaat∆t2,

where xxxt denotes the position of a point at time t, aaat is
the acceleration which is computed from the accumulated
forces during a frame, and ∆t is the time step. The significant
difference to the regular Euler integration is the absence of
the velocity, which is implicitly calculated by the difference
to the previous position. This implicit velocity makes the
solution stable, since position and velocity cannot get out
of sync. It also simplifies the implementation of various
constraints, since the current position is simply projected to a
valid state without having to calculate a new velocity, which
is implicitly handled by the previous position.

The weights of the mass points are chosen so that the torso
points are heavier and the points of the extremities are lighter.
The head has an infinite weight, which makes it immovable,
i.e it is only moved by assigning the position measured by the
head tracker. The strengths of the springs have been chosen
in a way to reflect the movability of the mass-points with
regard to their corresponding joints in humans, which gives
the shoulder points a certain amount of play. The springs
also allow the model to adapt to a limited amount of size
change of the tracked person.

The state of the mass-spring model is used to calculate the
state of a cylinder model, which consists of two cylinders for
each extremity, two for the torso and one cylinder for the
head. This model is used for projections in the measurement
model of the particle filters, as well as for the occlusion
model, and for visualizations. See also Fig. 2.

The various parameters of this model have been deter-
mined empirically and may not be realistic with regard to
a real human, but the simulation produces quite realistic
results and enables good predictions. This model can be
used for people of a similar stature, but the lengths and
diameters would have to adapted for persons of different
stature (depending on the body height). The constraints and
spring coefficients can stay the same.

III. TRACKING WITH A FLEXIBLE MODEL

The tracking of the body takes place in a two-step semi-
hierarchal way: The head is tracked by a special particle
filter-based face tracker, using skin color segmentation. This
is the only place where the stereo-camera is actually required,
as the rest of the system could be using only one of the

Fig. 2. Overlays of the model over the rectified image. From left to right:
The mass-spring system, the cylinder model and the simplified cylinder
projection.

images. Unfortunately, the 3D estimate of the particle filter is
not precise enough for a robust 3D localization of the head.
Therefore we use stereo correspondences with features on
the face to get a better depth estimate. The head point of the
mass-spring system is moved to the head position and the
rest of the points are moved 80% of the translation that the
head point moved.

When the model is moved with the head, the rest of the
body pose is determined by tracking the extremities with
particle filters and solving the mass-spring system, which
creates an implicit solution for the torso. The approach to
deal with the curse of dimensionality is to split the problem
into smaller sub parts and to integrate the partial solutions
into an overall solution. However, one cannot simply split
the state space into smaller parts without considering the
interactions between the sub-parts. The needed interaction is
achieved by the mass-spring system, which influences and is
influenced by the four particle filters of the extremities, as
shown in Fig. 3. The particle filter for a limb has a formal
state space with 3·3 = 9 dimensions, combining the positions
of the three mass-points that define the state of that limb,
e.g. shoulder, elbow, and wrist position for an arm filter.
However, for the same reason as before, the actual DoF is
lower, since with rigid springs only 4 DoF would be used
for each extremity. So with not completely rigid springs, as
was used here, we have more than 4 DoF but much less than
the formal 9 DoF.

The estimation of the particle filter for each extremity is
put into the mass-spring system by overwriting the position
of the points that are filtered. The mass mi of the i-th point
is changed to reflect the confidence in the estimate of the
particle filter, which is based on the variance σi of the i-
th point in the particle filter. While unrealistic in a physical
simulation sense, it works very well as way to integrate the
4 weighted results into the complete state estimate.

mi = mbase +mvariablee
sσi ,

with mbase being the base mass and a variable part mvariable,
and s < 0. It hence gives more weight to points it is confident
about and less weight to points for which the estimate is not
reliable. The solution of the mass-spring system will then
determine a state which reflects these confidence measures.
The four extremity particle filters are run independently from
each other and use the current state of the mass-spring system
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in their motion models. The estimates are put into the mass-
spring system at the same time.

Mass-Spring
System

Head
PF

L. Arm
PF

R. Arm
PF

R. Leg
PF

L. Leg
PF

Fig. 3. The particle filter (PF) of the head influences the mass-spring
system, while there is a two-way coupling of the extremity PFs and the
physics simulation.

A. Motion Model

Each particle of the particle filters consists of three points
(pppt1, ppp

t
2, ppp

t
3), representing an alternative state to the one in

the mass-spring system at time t. The points are first moved
with a constant velocity model

p̄ppt+1
i = pppti + η(pppti − pppt−1

i ),

where η is a factor that determines the trust in this constant
velocity model (empirically set to 50%−80%). The previous
position is stored for all particles and points. After that, noise
is added, which is a mixture of two Gaussian distributions:
a process noise and a “depth” noise that is intended to push
particles into the direction that is not visible in the camera
image to improve the search for the correct state, similar
to the use of covariance scaled sampling in [15]. The new
position of the point is drawn according to the probability
distribution of the new position p(pppt+1

i ), which is modeled
as:

p(pppt+1
i ) = (1− α) N (p̄ppt+1

i , σiI) + α N (p̄ppt+1
i ,Σi),

where p̄ppt+1
i is the prediction from the constant velocity

model, I is the identity matrix and σi the variance of the
first normal distribution N (p̄ppt+1

i , σiI). The second normal
distribution has a covariance matrix instead of a uniform
variance. The mixture weight α determines how many parti-
cles are drawn in average by the second distribution. We use
a value of α = 0.25. The first variance σi, which represents
the unknown motion, consists of three components: a base
noise level, one that depends on the variance of the point
positions2, and one that depends on the motion in the image
at the projected position of the particle. The amount of
motion is sampled from a motion image for each of the three
points of the particle. For this purpose the motion image is
a down-sampled and heavily blurred thresholded difference
image between the previous and current image. If more
computational power is available, this could be improved by
the use of optical flow.

2This is the same variance that is used to determine the mass of the points
in the mass-spring system, that are estimated by the particle filters.

The second part of the noise distribution is the depth
component with the covariance matrix Σi. This matrix is
constructed as follows:

Σi = T R

σx σy
σz

 RT TT

The diagonal covariance matrix that expresses the different
scale factors in a frame where the z-axis is the depth
direction. This covariance matrix is rotated into camera
coordinates by R and then into world coordinates by T.
The transformation into world coordinates T comes from the
camera projection. The rotation matrix R is constructed for
each point, as a coordinate frame which has the z-axis in the
depth direction. The scale factors are chosen σx = σy = ε
to be very small and the σz is chosen differently for each
point of a particle, to give the end of the extremities, wrists
and ankles, more depth noise than the other points3. Since
the noise in the x- and y-directions in the rotated frame
are small and since the construction has to be done three
times for every particle, an approximation to this Gaussian
distribution is used, which is simply Gaussian noise along
the depth direction.

At this point we have combined a constant velocity model
with a model for the assumed and estimated random distri-
bution of the particles. But since we estimate these values
independently for the three points of the particle, the particles
might have reached positions which do not correspond to
physically or anatomically correct states of the extremity.
To force the particles back to valid states as defined by the
constraint system of the body model, the three points are put
into the mass-spring system and the active constraints that
affect these points are applied to them for several iterations.
The other points in the mass-spring system are assigned an
infinite mass and do not move (See Fig. 4). This is the other
direction of the coupling between the mass-spring system
and the particle filters, since the state of the mass-spring
system influences the state the particles can get into.

Fig. 4. Constrains in the particle filter of the right arm — points
from the particle are black, the active constraints are light blue and the
disabled constraints and mass points are gray. Only the spring constraints
are displayed.

3Empirically set to σz = 1.0m/0.5m/0.15m for wrists/elbows/ shoul-
ders. Same for the legs.
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B. Measurement Model

The measurement model is using the projection of cylin-
ders into the images to calculate two scores per particle, an
edge score and a surface score. The edge score is calculated
by comparing the projected long edges of the cylinders
against an edge image (like in [5]), which is a blurred version
of the combination of a thresholded difference image and a
thresholded gradient image. This combination has the benefit
of having a higher score for moving edges that are assumed
to belong to the moving person. The second benefit is that
this scheme does not depend on a foreground segmentation.
The drawbacks are that it is not as clean as silhouette edges
from a segmented image and that it also features edges that
do not belong to the person, which is compensated to an
extent through the moving edges.

The surface score is calculated by sampling the surface
of the simplified cylinder projection with a regular grid, as
illustrated in Fig. 5. One possibility for calculating the score
is counting the number of foreground samples, as it is coming
from a foreground segmentation. But this requires a good
segmentation, which is hardly possible with motion segmen-
tation. Therefore we use an appearance model instead, where
each sample on the grid gets a reference color, which is
compared to the actual color in the current image (sum of
absolute differences). The color model for each body part
(left/right upper arm, left/right lower arm, etc.) consists of ten
reference colors along the cylinder for that part and assumes
that the color is constant on a ring around the surface of the
limb. The colors are linearly interpolated to get the reference
color for a sample, by using the normalized distance from
the base of the cylinder as an index.

The color model is learned during the first couple of
frames, with an running average scheme. The color in a
frame is sampled on a regular grid and the points that are
classified as foreground (from the segmented image) are
averaged together per ring of the cylinder and learned over
several frames. Once the learning is complete, a foreground
segmentation is no longer needed and an active head could
start moving again.

The whole measurement model makes use of an occlusion
model, which is based on the current state of the mass-
spring system. The occlusion model consists of the convex
quadrilaterals of the simplified projections of the cylinders.
The quadrilaterals have a minimum and maximum depth
and are indexed through a spatial grid, which makes the
query whether or not a sample point is visible very fast.
All samples, for the edge and the surface score, are tested
and receive special default scores if a sample is occluded or
is outside of the view. These default values have to be chosen
carefully to prevent a preference for occluded or unoccluded
states.

C. Initialization

The system is initialized by taking the first frame as
a background model, which is used for the background
subtraction. The head tracker is looking for a suitable skin
blob to track as the head. When a head is found, the model is

Fig. 5. The left image is showing the sampling grid for the arms displayed
on the mean estimates. The surface samples show the quality of the match
in a red to green scale. Occluded sample points are yellow. Edge samples
are white or black (occluded). The right image shows different backgrounds
and clothes.

moved to the measured position of the head and the physics
simulation starts — but at this time without the particle
filters, which results in a relaxed state of the model with
arms and legs simply dangling. The configuration from the
physical simulation is run through the measurement model
and the edge score is used to determine when a match
between the relaxed state and the image occurs. When a
match is found an initial appearance model is captured
and the tracking with the filters starts. During the next
frames the color model is updated as already explained. The
learning rate depends on the local confidence values, which
are interpolated along the extremities. When the learning
stops, the appearance model is fixed and the foreground
segmentation is no longer needed, allowing the camera to
be moved.

Note that this initialization procedure assumes that the
person will get into a pose that is close to the relaxed state
at the beginning.

IV. EXPERIMENTAL RESULTS

A. System Parameters

The single threaded tracking application runs on a Pen-
tium 4 3.2 GHz CPU with 10 Hz. The calibrated stereo
camera consists of two Dragonfly cameras by Point Grey
Research Inc. Image processing is performed on 640× 480
color images. The used lenses are 4 mm M12 micro lenses,
which have a significant radial distortion, but provide a big
enough field of view, to see the complete human at a distance
of 2–3 m. The software was built using the Integrating
Vision Toolkit4 which offers a clean camera abstraction and
a generic camera model.

The particle filters used 200 particles per extremity and
100 particles for the head. The processing time is ≈35 ms
for the image processing and ≈50 ms for the filtering, where
the motion model is consuming about half the processing
power.

B. Range of Motions

The tracking of the arms is able to follow the motions
of a single arm very robustly, even through complicated

4http://ivt.sourceforge.net
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and ambiguous situations. This is achieved through the
combination of the angular constraints, the occlusion model
and the motion model, which guide the estimate through
ambiguous situations. The tracking is even able to detect if
parts of a limb are hidden behind the body or the head, due
to the occlusion model. The interactions of the two arms
are tracked as long as both arms are visible to a certain
extent, cross-over situations are successfully tracked due to
the occlusion model. Fig. 6 shows tracked arms positions.
Furthermore folded arms are captured, but the estimate does
not reflect which one of the arms is visible, since it yields
fluctuating depth estimates. When opening the folded arms,
the tracking can get confused, but usually recovers through
the opening motion.

The legs are tracked individually very well, including
the detection of knee bends and folded up calves, which
works also when standing on one leg. As with the arms the
interaction of the two legs is more complicated to track. As
they are closer to another than the arms, they have a tendency
to both capture the same leg. To compensate that, a plane
separation constraint forces the points from the two legs away
from each other similar to the self penetration constraint,
which improves the tracking, but makes it impossible to
capture natural cross-over situations. When a person turns
side ways, one leg is completely occluding the other, which
can cause significant confusion for the filters.

As the tracking depends strongly on the localization of
the head, more precisely the face, the person cannot turn
away more than 90◦ from the camera. The suspension of
the head together with the simulation of gravity implies
that the person has to be standing. The waist area is also
relatively stiff at the moment, and thus does not model the
flexibility of a human. The constraint framework allows easy
implementation of external constraints, like collisions with
objects or furniture, which should allow the integration of
specific knowledge into sitting and other special motions,
but this has not been explored yet.

C. Precision

To measure the precision of the estimate one needs ground
truth to compare to. Unfortunately, a motion capture system
was not available, so the tracking of an object in the
right hand, which was localized with the stereo camera, is
compared to the estimate of the right wrist point of the
human motion tracking application. This is a substitute for
better ground truth and is not very precise, but confirms that
most of the error – as one would expect – is in the depth
direction and that the correct estimation of bent limbs needs
a certain amount of foreshortening of the limbs before the
model will capture it. Comparing the 3D renderings of the
estimates to images gives enough insight into how good the
estimate is and where the precision deteriorates. See also the
accompanying video. The focus of the proposed system is not
on precision, but on speed and robustness, since the estimated
body posture is used for the recognition of states and gestures
and not the capturing of performances for animations.

Fig. 6. A series of pictures from a tracking session. The left side shows
the simplified cylinder projection, while the right side shows a 3D overlay
over the rectified image. The 3D model is transparent and uses the color
from the appearance model. The head and torso color are derived from the
left arm.

D. Tracking Failures

Unfortunately, the system has problems when the person
is seen from the side, since two limbs are not visible. The
estimate for the parts that are not visible will deteriorate
rapidly which will affect the estimates of the other limbs,
since they are connected through the flexible model. Turning
back to face the camera again, does usually not recover the
correct estimate.

If two limbs are close to each other and one is moving
while the other is still, the moving limb can affect the
estimate of the still limb, by pulling the estimate away,
since moving edges yield a higher score than still gradients.
Particles from the still limb will follow the moving edges.

Naturally, motions which are too fast for the 10 Hz pro-
cessing rate of the system cannot be tracked
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Fig. 7. Plot of the absolute error between the tracked object position and
the wrist estimate of the human motion tracking, showing that the biggest
error is in the depth direction, which also correlates the most with the overall
error. Note the different scales!

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a new way to approach the human
motion tracking problem, by coupling a physical mass-spring
simulation with probabilistic particle filters to get an estimate
for the pose of a human. Due to the reduced dimensionality
of the particle filters achieved by semi-hierarchical decom-
position, the system can run with 10 Hz on a regular PC,
which allows real-time tracking of the motions of a person.
The flexible model enables the tracking system to adapt to
the person being tracked and creates a natural interaction
between different parts of the body model.

A simple appearance model with reference colors is
learned on-the-fly and allows the system to work without
background subtraction, which enables the camera to be
moved after the appearance model has been learned. The
use of a strong motion model, which takes motion cues
from the images and enforces the constraints of the system,
allows tracking through ambiguous situations. Together with
the occlusion model this creates a robust system that is able
to track through complicated situations. All this is done with
a stereo camera, where the stereo is only used for the head
tracking. The filtering is basically monocular5.

B. Future Works

Particle filtering is very well-suited for a parallel imple-
mentation. The speedup from such an implementation should
be substantial and would increase the range of motions that
can be tracked, due to the current speed limit.

The current mass-spring system is flat and has been chosen
because it is the simplest model for the purpose, which
results in few springs. A more elaborate mass-spring skeleton
could enable more realistic deformations for the waist area
and more freedom for the hip.

The current system uses only a stereo-camera and is
therefore suitable for application on a humanoid robot head.

5We actually alternate between the two images, but the benefits are
minimal.

However, we plan to evaluate how a system with several
cameras can benefit from the proposed flexible body model.
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