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Abstract— The ability to detect failure during task execution
and to recover from failure is vital for autonomous robots
performing tasks in previously unknown environments. In this
paper, we present an approach for failure detection during
the execution of grasping and mobile manipulation tasks
by a humanoid robot. The approach combines multi-modal
sensory information consisting of proprioceptive, force and
visual information to learn task models from multiple successful
task executions, in order to detect failures and to externalize
them for humans in an interpretable way. To this end, we
define symbolic action predicates based on multi-modal sensory
information to allow high-level state estimation based on action-
specific decision trees. To allow symbolic failure detection,
we then learn task models that are represented as Markov
chains. We evaluated the approach in several pick-and-place
and mobile manipulation tasks performed by a humanoid robot
in a decommissioning and a household scenario. The evaluation
shows that the learned task models are capable of detecting
failure with an F1-score of 93%.

I. INTRODUCTION

Mobile manipulation of unknown objects is an essential
and difficult robot task that requires the integration of ob-
ject detection, grasp hypothesis extraction and selection, as
well as the sensory based execution. During such complex
tasks, failures can occur at any time due to inaccuracies
in perception and execution. To increase efficiency and
autonomy, robots must be able to detect these failures based
on sensory feedback and recover from them to successfully
complete the task. In addition, the externalization of these
failures to a human operator contributes significantly to the
explainability of the robot’s behavior. Thus it is important to
develop methods that go beyond anomaly detection based on
sensory data and extend to failure detection on a symbolic
level. Given a task model with different actions, as well as
predicates and states that describe them, the robot should
not only be able to detect failures, but also recognize which
actions failed in which state.

Figure 1 shows the humanoid robot ARMAR-6 grasping
unknown objects in a cluttered scene, and provides an
overview of how failures are detected on a symbolic level
during execution. The task consists of grasping these objects
located in one box and navigating to a second box, in which
the objects should be placed. The ability to recover from
failures allows the robot to continue the execution in case of
failure and hence drastically reduces the overall time needed
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Fig. 1. The humanoid robot ARMAR-6 grasping an object from a cluttered
scene in a nuclear decommissioning scenario with unknown objects of
varying shape and weight. Failures such as an object slipping out of the
robot’s hand while lifting it are detected. Symbolic action predicates are
extracted ➀ from multi-modal sensory data, to estimate the high-level state
of the robot using a decision tree ➁. Based on the transition between states, a
task graph is constructed ➂ and classified into success or failure ➃ according
to a task model learned from previous executions.

to perform the task. By introducing a failure detection we can
detect if and when the task execution should be stopped and
restarted to achieve the goal. Furthermore, different types of
failure can occur during task execution. For example, the
robot might fail to grasp an object due to an inaccurate
grasp hypothesis, or a grasped object might slip out of the
robot’s hand while lifting, holding or carrying the object.
Thus, relying on a single sensory modality is not sufficient
to detect all types of failure and to distinguish between them.

In this paper, we present an approach for failure detection
based on multi-modal sensory information combining pro-
prioceptive, force and visual input to detect failures in the
context of mobile manipulation tasks. Our main contributions
are (1) a framework for learning symbolic task models from
multi-modal data and (2) a method for detecting failures
based on the learned models in an interpretable way.



To this end, we define symbolic action predicates from
multi-modal sensory data (Section III-A) and build a decision
tree for the underlying actions to determine the current state
of the robot (Section III-B). Based on the detected states and
transitions we learn a task model from multiple executions
that serves as a reference to detect success and failure of the
task execution (Section III-C). We evaluate the approach by
conducting several pick-and-place and mobile manipulation
experiments with a humanoid robot (Section IV). The results
show that our system is able to detect failures with an
F1-score of 93% during online execution and visualize the
decision making process to a human operator.

II. RELATED WORK

In the context of failure detection for complex manipula-
tion tasks, we distinguish between model-based and model-
free approaches. Model-based methods usually estimate the
robot state from observations, create a reference model
for task execution and then detect failures based on the
model [1]–[10]. On the other hand, model-free methods
learn to classify success and failure cases directly from
observations [11]–[15]. This is usually done by training
various deep learning architectures in an end-to-end manner,
such as convolutional neural networks (CNN) [14], [15], or
long short term memories (LSTM) [13], [15]. In the same
way, classical machine learning models such as k-Nearest-
Neighbours (kNN) and Support Vector Machines (SVM)
can be trained for failure detection [11]. Classical machine
learning approaches can also be combined with deep learning
approaches [12] to improve feature extraction for failure
detection. While these approaches can achieve very high
performance in anomaly detection and failure classification,
the underlying decision making process can not easily be
externalized and made explainable for a human.

Model-based approaches can improve the explainability of
the decisions in several ways. In [1], the state of the robot
is estimated on a symbolic level. The hidden states of a
Hidden Markov Model (HMM) are learned using a clustering
procedure based on Kohonen networks, and labeled with
high-level descriptions [16]. Inceoglu et al. [6] define a set
of symbolic rule-based predicates that can be extracted from
proprioceptive, auditory and visual input. The predicates are
then used as observations for training several HMMs to
detect failures. Similar to [6], we define a set of action
predicates that describe manipulation actions based on multi-
modal sensory data. For state estimation on a symbolic level,
decision trees based on object relations have been used in
the context of labeling human demonstrations [17] and skill
transfer to humanoid robots [18]. Rojas et al. [19] propose
a taxonomy based on relative change in force signatures to
detect low-level and high-level behaviors in the context of
an assembly task, which can be used to detect failures [3].
In our work, we define action-specific decision trees based
on the proposed multi-modal action predicates to determine
the current high-level state of the robot. Thus, the state es-
timation process becomes more transparent and explainable
to humans.

Another way to improve explainability is by sequencing
separate models of each different skill or action within a
complex manipulation task [2], [4], [7], [9], [10], [20], [21].
This allows anomaly detection on the level of transitions
between skills. Kappler et al. [4] use a manually constructed
manipulation graph that models both normal and anomalous
behavior, where transitions are detected using an associative
skill memory [22]. HMMs with different emission processes
for state estimation based on multi-modal sensory data are
commonly used to model individual skills [2], [5], [7]–[10],
[20], [21]. To allow failure detection for complex manip-
ulation tasks with various sub-goals achieved by different
actions, we learn a model for each action by automatically
segmenting the observations according to the state of task
execution. Since we assume the states to be fully observable
in our approach, it is sufficient to represent these models as
Markov Chains.

The learned task models can then be used to detect
anomalies and failure cases. Even though anomaly detection
and failure detection are not generally the same problem,
we assume that a deviation from the model of successful
behavior means that a failure has occurred. Most methods
using HMMs detect failures based on applying a threshold
to the (log-)likelihood of the estimated hidden state space
trajectory [1], [2], [5], [7]–[10]. Since we are using Markov
chains in our approach, we can calculate a likelihood and
detect failures in the same way. In [1], the minimum and
maximum duration of hidden states is considered to calculate
error scores for each state. A different approach proposed
in [6] defines an HMM with two hidden states for success and
failure respectively. Failures are then detected based on the
estimated posterior probability of these hidden states. When
using multiple HMMs for different actions within a task,
the model with the highest likelihood is selected for failure
detection [2], [5], [7]–[10]. In this paper, we assume that
the currently executed action is known and given by the task
execution plan. Thus, we only evaluate the corresponding
model for the current action to detect failures.

Additionally, the approaches presented in [4] and [10]
show how task models can be extended to include recovery
behavior. However, this is out of scope of this work, and we
implement a recovery strategy which restarts the task from
the beginning.

III. LEARNING SYMBOLIC FAILURE DETECTION

We propose a failure detection system for grasping and
mobile manipulation tasks that makes use of multi-modal
sensory information to detect and externalize failures. Fig-
ure 2 shows an overview of the system. By incorporating
prior knowledge into the high-level state estimation process,
a task model is learned on a symbolic level, and the decision
making process can be visualized to the user. To this end,
we first ground sensor values into symbolic action predicates,
also taking into account the current execution context, such
as the target grasping pose. In the next step, we define a
decision tree to determine the robot’s current state based on
the detected predicates. Since complex manipulation tasks
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Fig. 2. Overview of the system architecture for failure detection, providing a high-level feedback loop for a task execution plan. In the first step,
multi-modal sensory data is grounded into symbolic predicates. The current state of the robot is determined using an action-specific decision tree based
on the detected action predicates. A task graph is constructed from the resulting series of states. Based on the experience from previous executions, a task
model is learned and then used to detect failures during task execution. Dashed arrows mark the flow of training data and are only relevant for learning
the task model.

consist of multiple actions, such as pick, place, etc., we
define a separate decision tree for each action. During task
execution, we continuously determine the current state, and
construct a task graph from the states and the transitions
between them. Next, several task graphs of successful exe-
cutions are used to learn a task model, which is then used
to detect failures during task execution.

Formally, we define multi-modal sensory data as a series
of observations x1:t ∈ X t, where X t is the observation space
over t time steps. We denote the probability of a series of
observations originating from a successful execution with
p(x1:t). In our approach, we further take into account the ex-
ecution context c1:t and the executed action a1:t at each time
step. The execution context ct is a set of variables containing
high-level information, such as the tool center point (TCP)
target pose for the current grasp. at denotes the current high-
level action as defined by the task execution plan, such as
pick or place. Therefore, we define ft, indicating the failure
state at time t, as

ft = f(x1:t, c1:t, a1:t) =

{
1, if p(x1:t|c1:t, a1:t) ≤ τ

0, otherwise.
(1)

where τ is the threshold for a successful execution. The
main challenge now is to determine the probability p, using
a learned symbolic task model. Therefore, we must first
estimate the high-level symbolic state of the robot. To this
end, we define a set of action predicates Γ, and a rule-based
grounding function g(xt, ct) based on the current observation
xt and execution context ct. From this data, we extract

features zγ for predicates γ ∈ Γ. By applying a threshold
τγ , the detected predicates for the current time step Γt ⊂ Γ
are given as

Γt = g(xt, ct) = {γ ∈ Γ | zγt ≥ τγ}. (2)

The predicates, features and grounding function are de-
scribed further in Section III-A. Next, we define a decision
tree T a for each action a, in order to determine the current
state st ∈ S based on the detected predicates Γt with

st = T at(Γt). (3)

The definition of actions, states and decision trees is de-
scribed in Section III-B. This yields a series of high-level
symbolic states s1:t. We can model this series as a task graph
Gt, which is the directed graph

Gt = (S, {(si, si+1) | i ∈ [1, t)}), (4)

defined by the states S and transitions in s1:t. This task graph
can be visualized in order to externalize the current execution
progress and failure state to a human operator. Further, we
use a set of task graphs Gtrain recorded from executions
of the entire task to learn task models Ma, represented as
Markov Chains, for each action a. To this end, each task
graph G ∈ Gtrain is labeled by a human operator such
that ytrain(G) = 1 if G models a failed execution, and 0
otherwise. The appropriate sub-graphs used for training each
task model are determined by a1:t. Finally, during the task
execution, the appropriate symbolic task models are used to



estimate the failure probability

p(x1:t|c1:t, a1:t) ≈ p(s1:t|Ma1:t), (5)

and the resulting failure state is determined using (1). We
describe the learning of task models and failure detection
further in Section III-C.

A. Predicate Definition

General action predicates are defined based on features
extracted from multi-modal sensory input to allow failure
detection on a symbolic level. Table I provides a list with the
defined action predicates. The used input modalities include
motor encoders, wrist-mounted 6D force-torque sensors, and
mobile platform pose determined based on laser scanner data.
Following (2), we denote a predicate γ ∈ Γ as detected at
time step t, if the corresponding feature zγt (xt, ct) exceeds
a threshold τγ , and thereby define g(xt, ct). In the first
step of feature extraction, a median filter with fixed window
size is applied to the measured sensor values. If not denoted
otherwise, all variables refer to the measurement at the
current time step t after filtering. Some of the defined
features depend on the change in a certain measurement, e.g.
to detect end-effector movement relative to the target pose.
For scalar quantities θ ∈ R, we define the difference of that
measurement between two time steps as ∆θ = θt − θt−1.
Similarly, for vectors v ∈ Rn, we define ∆v = ∥vt−vt−1∥.
For rotation matrices R ∈ SO3, we calculate the axis-angle
representation of RtR

T
t−1, and set ∆R to the resulting angle.

In this work, we define the following predicates and their
grounding rules:

• Object in hand: The norm of the force vector f ∈
R3 measured by the force-torque sensor in the wrist
exceeds a threshold with respect to a reference force
fref ∈ R3. The reference force is recorded shortly before
grasping and is captured in the current execution context
ct.

• TCP moves: The absolute change in TCP position
xTCP ∈ R3 or TCP orientation RTCP ∈ SO3 exceeds a
threshold.

• TCP near target: The distance between the TCP
position xTCP and the target position xtarget ∈ R3

exceeds a threshold. Here, xtarget is the grasp pose
captured in the current execution context ct.

• TCP approaches and TCP retreats: The change
in distance of the TCP position to the target position
exceeds a threshold. If the TCP is neither approaching
nor retreating from the target, the relative TCP direction
is indeterminate.

• Hand opens and Hand closes: The change in joint
angle of the fingers θfingers ∈ [0, 1] or thumb θthumb ∈
[0, 1] exceed a threshold. In ambiguous cases, closing
takes precedence over opening.

• Platform moves: The change in platform position
xplatform ∈ R2 or orientation ωplatform ∈ (−π, π]
exceeds a threshold.

With the exception of platform moves, all predicates
are defined for both arms of the humanoid robot ARMAR-6

TABLE I
PREDICATE DEFINITION

Feature Condition Predicate

∥f∥ - ∥fref∥ ≥ τforce Object in hand

∥∆xTCP∥ ≥ τtcp move TCP moves|∆RTCP| ≥ τtcp rotate

∥xTCP − xtarget∥ ≤ τnear TCP near target

∆(∥xTCP − xtarget∥)
≤ τapproach TCP approaches
≥ τretreat TCP retreats

∆θfingers or ∆θthumb
≤ τopen Hand opens
≥ τclose Hand closes

∥∆xplatform∥ ≥ τmove Platform moves|∆ωplatform| ≥ τrotate

|Vdiff | ≥ τvoxels Object placed

and can be grounded independently from each other. Thresh-
olds can be determined separately for both arms, in order to
deal with slight differences in hardware.

Furthermore, we define the vision-based predicate
Object placed, which is evaluated after the execution
of a pick-and-place task. To this end, a point cloud of
the scene is captured before and after placing the object.
The former point cloud is denoted as Pbefore, the latter as
Pafter respectively. The captured point clouds are cropped
to only include the relevant part of the scene, e. g., points
above a given threshold. Then, the iterative closest point
algorithm (ICP) is applied to cancel slight inaccuracies in
robot placement and head positioning. Pbefore and Pafter are
then voxelized, resulting in the respective point clouds Vbefore

and Vafter. The voxel size can be adjusted depending on the
geometry of the used objects.

Finally, the difference between Vbefore and Vafter is com-
puted by recursive comparison, resulting in the spatial change
of point clouds, denoted as Vdiff . If the total number of
voxels in Vdiff exceeds a threshold, i. e., the scene has
changed significantly, then the predicate Object placed
is detected. Thus, the exact placement pose of the object
within the scene is not considered, but only if it is placed
within a certain area.

B. States and Decision Tree Definition

During the different phases of the pick-and-place task,
the robot has various goals that can be achieved by dif-
ferent actions. This means that the states and transitions
indicating a successful or failed execution vary between
different actions. Therefore, we define a set of actions A =
{apick, acarry, aplace} and thus distinguish between the three
actions pick, carry, and place. For each action, an individual
task model will be learned. Furthermore, we define the
possible states Sa for each action a ∈ A, and construct a
decision tree for determining the robot state based on the
detected predicates. Formally, each decision tree T a maps
the current set of predicates Γt ⊂ Γ to the current state
st ∈ Sa. The functions T at in (4) are then defined by the
respective decision trees for actions at.
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Fig. 3. Examples for recorded task graphs of the pick-and-place task.
Starting from the idle state, edges are labeled following the chronological
order of detected transitions, ignoring self-transitions. The final state of
a successful execution is marked in green. A failed transition and the
respective state where the failure occurred are marked in red.

Due to the complexity of the pick action, we use all
proprioceptive predicates described in Section III-A to define
the relevant states and the decision tree. On the top level of
this decision tree, a decision is taken for whether an object
is in the hand or not. In the case that an object is in the
hand, the three states holding, lifting and carrying can be
detected, depending on whether the platform and the TCP
are moving. Otherwise, i. e., an object is not in the hand,
the decision tree distinguishes between the states platform
moves and other manipulation action related states such as
reaching, grasping, etc.

For the action carry, we use a reduced version of this
decision tree that contains only the states idle, holding,
carrying and platform moves. This means, that all TCP
movement and finger motion is ignored, since the only
relevant factors are whether an object is being held in the
hand and whether the robot is moving.

For the action place, it is sufficient to detect that the
object was released and to check whether it was successfully
placed at the target location. Thus, we define a decision tree
that depends only on the predicates Object in hand and
Object placed. Depending on whether an object is still
in the hand, the active state is either holding or placing. The
visual predicate Object placed will determine the final
state of the task graph as either placing successful or placing
failed.

C. Task Modeling and Failure Detection

To decide whether the execution of a task was successful
or failed, we first learn a task model. To this end, the robot
state is continuously monitored during the execution of a
task based on the predicates and decision trees as defined in
Section III-A and Section III-B. The states and the transitions
between them are used to construct a task graph. It is worth
mentioning that a transition between two states can occur
multiple times, and thus we label each transition with a list
of the respective time steps, as shown in Figure 3. Using the

recorded task graphs from several successful task executions
as a training set, we learn a task model which is represented
as a set of Markov Chains M = {Ma | a ∈ A}, where each
Markov Chain Ma corresponds to one action a as defined
in Section III-B. Accordingly, we define Sa as the set of
states that can occur during the execution of action a. We
assume that it is known which action at is executed at any
time t. Thus, the task execution module automatically selects
the appropriate task model based on the currently executed
action. The recorded task graphs Gtrain and state sequences
Strain for training are segmented accordingly into separate
training sets Sa

train. Furthermore, we define na
ij(Gtrain) as the

number of times that a transition from state i to state j has
occurred within Sa

train. The models Ma are then given as

Ma = (Sa,Πa), Πa =

πa
11 . . . πa

1m
...

. . .
...

πa
m1 . . . πa

mm

 (6)

πa
ij =

na
ij(Gtrain)∑

k∈Sa na
ik(Gtrain)

. (7)

The transition matrices thus give the probability of each
transition between two states, assuming a successful execu-
tion. Finally, the learned task model can be used to detect
failures online during task execution. Following (5), the
current execution is evaluated by calculating the likelihood
of the current state trajectory s1:t given the model Ma as

p(s1:t|Ma) =
∏

t′∈[1,t)

πa
st′st′+1

. (8)

Due to the Markov property, we can further simplify this
to p(s1:t|Ma) = πa

st−1st , i. e., transitions only depend on
the current state, not the entire history of states. In the case
that the action is not changed between two time steps, i. e.,
at = at−1, the failure state is determined using (1). However,
failures can also occur when switching between actions. In
this case, the failure state is determined by whether the
current state is well-defined in the models for both actions,
and we set

ft =

{
0, if st−1 = st ∈ Sat−1 ∩ Sat

1, otherwise.
(9)

If a failure is detected, the task execution enters a failure
state and a recovery action is triggered to restart the task.

IV. EXPERIMENTS AND EVALUATION

To evaluate our approach, we conduct pick-and-place
experiments using the humanoid robot ARMAR-6 [23]. We
learn a task model using the task graphs of several successful
executions of manipulation actions in the context of 1)
a decommissioning scenario and 2) a household scenario.
Furthermore, we conduct an ablation study to analyze how
our approach performs with and without visual input.



(a) Scenes from the decommissioning scenario (b) Scenes from the household scenario

Fig. 4. Random cluttered scenes from two scenarios. Unknown objects are randomly placed in a box or on a table, where they have to be picked from
and placed into another box or table. We assume no prior knowledge about the objects.

A. Experimental Setup

For the decommissioning scenario, eight unknown objects
with different shape and weight are randomly placed into
a box as shown in Figure 4a. The goal is to empty the
box by grasping the objects in the box, carrying them and
placing them at a target location. For the household scenario,
seven household objects are placed on a table as shown in
Figure 4b, and the robot has to clear the table by grasping
the objects and placing them at a target location. During
task execution, the failure detection is running continuously
and a recovery action is triggered when a failure is detected.
Furthermore, each execution of the pick-and-place tasks is
labeled by a human operator. The task execution is consid-
ered successful if and only if an object was grasped, carried
to a target location and successfully placed there.

Both experiments were conducted using ARMAR-6. Grasp
candidates for unknown objects are generated and executed
using our previous work described in [24], [25]. The robot
can use its right or left arm for grasp execution, depending
on the reachability of the detected grasp candidates. The
motions for reaching objects and for recovery are learned
from kinesthetic teaching and executed using via-point move-
ment primitives [26]. The system is implemented in the
robot software framework ArmarX [27]. Experiments for
both scenarios are shown in the accompanying video.

B. Data-Driven Task Model Learning

We execute a pick-and-place task in the decommissioning
scenario and record the generated task graphs such as shown
in Figure 3. The task was executed 50 times in total, of which
18 attempts were labeled successful. Next, the task graphs of
the 18 successful executions are used to create Markov chains
by counting the frequency of each transition in the task graph
across all executions, as described in Section III-C. The task
execution module automatically selects a separate model for
the actions pick, carry and place, resulting in one learned
model per action.

Figure 5 shows the resulting transition probabilities be-
tween states in the learned Markov chain for the pick action.
Since self-transitions occur most of the time, some transitions
have a very low probability in the learned task model.
Notably, the crucial transition between grasping and holding
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Fig. 5. Learned transition probability matrix from recordings of the pick
action as described in Section IV-B, visualized as a heat map with logarith-
mic scaling. The probabilities are normalized per row, which represents the
transitions from a source state st to any consecutive state st+1.

occurs at most once per execution, while the transition of
grasping to idle occurs more often due to noisy predicate
detection. Another critical aspect is that the states holding,
lifting and carrying only transition between each other, and
never to other states. This means that once an object is in
the hand, it must stay in the hand for the action pick to
be successful. An example is shown in Figure 6, where the
object is pulled out of the robot’s hand while carrying it to
a target location. In this case, a transition from carrying to
platform moves is detected, which has a probability of 0 in
Macarry and is thus classified as a failure.

C. Experimental results

We conducted two experiments in a decommissioning and
a household scenario.

In the first experiment, we executed 103 grasp attempts
in the decommissioning scenario. The results are shown as
confusion matrices in Figure 7. Overall, 40 task executions
were successful, of which 31 were correctly labeled by
the failure detection as success, and 9 were labeled as



Fig. 6. An example for a failure case from the real-world experiments. The grasped object is pulled out of the robot’s hand while carrying it to the
target location. Since there is no longer an object in the hand, a transition from carrying to platform moving is detected. The robot detects this as a failure
according to the task model and restarts the task by lowering the arms and navigating back to the box. A video showing the full experiment is attached
to this contribution.
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failure, i.e., false positives. In most cases, this error occurs
because the measured force by the wrist-mounted force-
torque sensor was under the threshold of the predicate
Object in hand, which results in a failure being detected
according to the learned task model. Furthermore, placing
the smaller objects did not always lead to sufficient visual
change in the scene to exceed the threshold for the predicate
Object placed. Out of the 63 failed executions, only
one was incorrectly classified as a success. In this case, the
predicate Object in hand was wrongly detected after a
failed grasp execution.

In the second experiment, we executed 50 grasp at-
tempts in the household scenario. We used the same task
model that was learned for the decommissioning scenario
without changes. Most of the predicates’ thresholds were
left unchanged, with the only exception being the predi-
cate Object placed. For this predicate, we adjusted the
threshold for spatial change because the used household
objects are generally smaller than the pipes from the decom-
missioning scenario. In this scenario, our approach reached
an F1-score of 93.9%. All failure cases were correctly
identified by the failure detection, while four success cases
were incorrectly labeled as failure. Like in the first scenario,
this error can be explained by the faulty detection of the
predicate Object in hand. However, the visual placement
detection was more reliable in this scenario, because the
household objects are all of similar size, unlike the objects
used in the decommissioning scenario. The results show
similar performance in both scenarios, thus showing that the
learned task model can be transferred to different scenarios.

Finally, we analyze the impact of including visual input for

TABLE II
ABLATION STUDY

Scenario Vision Precision Recall F1 Score

Decommissioning ✗ 0.897 0.968 0.931
✓ 0.873 0.984 0.925

Household ✗ 0.882 0.968 0.923
✓ 0.886 1 0.939

All ✗ 0.892 0.968 0.928
✓ 0.877 0.989 0.93

detecting object placement in an ablation study. We reuse the
data from the previous experiments, and discard the output
of the visual predicate Object placed. Table II shows the
precision, recall and F1 score of both configurations (vision
enabled and disabled) in each scenario. In both scenarios,
incorporating visual information increases the recall, i. e.,
fewer failed executions are wrongly labeled as successful.
However, the precision slightly decreases in the decommis-
sioning task, as successfully placed objects were not always
detected as such, thus increasing the false positive rate.

V. CONCLUSION

In this paper, we proposed a novel approach for learn-
ing multi-modal symbolic success and failure detection for
grasping and mobile manipulation tasks. We defined a set of
action predicates that are extracted from multi-modal sensory
data and used action-specific decision trees to estimate the
high-level symbolic state of the robot. This enabled learning
task models for failure detection, while also externalizing the
decision making process to a human operator. To evaluate our
approach, we first learned an execution model of a pick-and-
place task from repeated execution of the task and manual
labeling of successful cases. The learned task model was then
used in two different scenarios, reaching an F1-score of 93%.
The experimental results showed that the system is capable
of detecting failures during task execution, thus reducing
the time to complete the task. We showed that including
visual input for verifying the object placement improves the
performance in some cases.

In future work, we plan to extend our approach in several
ways. Firstly, we want to improve the detection of force-
torque- and vision-based predicates, as these were the limit-
ing factor in our evaluation. By integrating Bayesian filters
and deep learning methods into the framework presented in



this paper, we hope to achieve robust high-level symbolic
state estimation while maintaining the aspect of explainabil-
ity. To further increase the autonomy of humanoid robots,
we want to extend our system to predict failures and plan
recovery actions in mobile manipulation tasks.
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