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Abstract— The ability to grasp unknown objects is an im-
portant skill for personal robots, which has been addressed
by many present and past research projects, but still remains
an open problem. A crucial aspect of grasping is choosing an
appropriate grasp configuration, i.e. the 6d pose of the hand rel-
ative to the object and its finger configuration. Finding feasible
grasp configurations for novel objects, however, is challenging
because of the huge variety in shape and size of these objects.
Moreover, possible configurations also depend on the specific
kinematics of the robotic arm and hand in use. In this paper,
we introduce a new grasp selection algorithm able to find
object grasp poses based on previously demonstrated grasps.
Assuming that objects with similar shapes can be grasped in a
similar way, we associate to each demonstrated grasp a grasp
template. The template is a local shape descriptor for a possible
grasp pose and is constructed using 3d information from depth
sensors. For each new object to grasp, the algorithm then
finds the best grasp candidate in the library of templates. The
grasp selection is also able to improve over time using the
information of previous grasp attempts to adapt the ranking
of the templates. We tested the algorithm on two different
platforms, the Willow Garage PR2 and the Barrett WAM arm
which have very different hands. Our results show that the
algorithm is able to find good grasp configurations for a large
set of objects from a relatively small set of demonstrations, and
does indeed improve its performance over time.

I. INTRODUCTION

Autonomous robotic grasping is one of the pre-requisites
for personal robots to become useful when assisting humans
in daily life. Seemingly easy for humans, it still remains
a very challenging task for robots. An essential aspect of
robotic grasping is to automatically choose an appropriate
grasp configuration given an object as perceived by the sen-
sors of the robot. The high variety in the size and geometry
of objects to be grasped (for example, household objects,
see Fig. 5) makes it very hard to develop an algorithm that
provides promising grasp hypotheses. Grasp planners have
been proposed that require exact object models describing
their size and geometry. These approaches usually search
among all feasible grasp configurations and choose the one
that maximizes a grasp quality metric. In [1] a large scale
data base of object models is created such that partial sensor
information of unknown objects can be matched in order to
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Fig. 1. User demonstrates a feasible grasp to the PR2 robot (left). Extracted
template and gripper-pose (right).

choose from pre-computed gripper-configurations. In [2] a
set of object primitives considering shape and material prop-
erties together with stable grasps computed in GraspIt! [3]
are used for generalization to other object models using a
nearest neighbor metric. The algorithm, proposed in [4],
computes the medial axes on point clouds sampled from
object models and applies a set of heuristics to compute grasp
configurations.

However, online generation of object models, especially
for articulated objects, remains challenging. Model free ap-
proaches have been proposed that directly operate on point
clouds provided by 3d sensors (for example a stereo camera
system, or the Microsoft Kinect). Hsiao et. al. developed an
algorithm that searches among feasible top and side grasps
to maximize the amount of object mass between the finger
tips of the robot gripper [5]. Klingbeil et. al. developed an
algorithm that searches for a good grasp configuration by
maximizing the contact area between the robot’s gripper and
the perceived point cloud [6]. Both of these approaches gen-
erate a ranked list of grasp hypotheses suitable for execution
on the robot. The ranking of these grasp hypotheses is fixed
and does not adapt over time. Furthermore, these algorithms
do not allow to add an appropriate grasp hypothesis if none
of the generated grasp configurations lead to a successful
grasp. In [7] and [8] models of objects with grasp densities
are learned in form of hierarchies of features using early
cognitive vision descriptors. In [9] grasp affordances are
learned by trial-and-error from local features extracted from
2d images. In these algorithms grasps are executed for a
fixed finger configuration such that only objects suited for
the particular configuration can be grasped. The algorithms,
presented in [10] and [11] use supervised learning with a
set of features extracted from 2d and 3d vision to learn
grasp configurations. However, the high amount of training
data forces these algorithms to learn from simulated data
rather than from executions in real world environments. In



Fig. 2. Overview of the presented algorithm. (a) A 3d point cloud showing the object with background as it is perceived by the robot. The object (yellow
point cloud) is segmented out from the table (yellow rectangle) for further processing. (b) The convex hull of the object (red) and its normals (green) are
used as approximation of the object surface to reduce search space of templates. (c) Three of k template candidates extracted from the object relative to
various (purple) height-axes. (d) Candidates are matched against a grasp library to lookup good grasp configurations. (e) The matching distance is used to
rank resulting configurations. If a grasp attempt fails, feedback is returned to the grasp library and used in successive matching steps to adapt ranking. (f)
New grasps are added by user demonstrations to the grasp library. Each template l is stored together with the according gripper configuration gl and a set
Fl of templates from failed grasp attempts.

this paper, we propose a novel model free grasp selection
algorithm with the following favorable characteristics:

• Appropriate grasp poses together with finger configura-
tions can be taught through kinesthetic teaching.

• Our proposed local shape descriptor, the template, en-
codes hand-sized regions on the object that are suitable
for grasping such that it generalizes across different
objects.

• Our algorithm is able to autonomously improve the
ranking of generated grasp candidates over time based
on feedback from previous grasp executions on real
robots.

• The presented approach is applicable to different hand
architectures.

• Finally, our proposed method is computationally effi-
cient.

Our approach is based on the simple and common assump-
tion that similarly shaped objects can be grasped with similar
grasp configurations. Although, there might be more factors
that influence the choice of a good grasp, (e.g. its surface
or inertia properties) we will show that local shape patches
provide a major feature for successful grasp selection. For
example, a pen can be grasped from the table with a strategy
similar to that used to grasp a screwdriver of the same
size. Recently, templates have been successfully used to
encode local regions of terrains enabling a quadruped robot
to choose good footholds [12]. In [12], templates have been
used to encode terrain heightmaps. In contrast, in our work,
we use templates to encode object heightmaps that are
sampled from various height-axes. We store known object

shapes represented by templates together with feasible grasp
configurations in a library. To obtain good grasp hypotheses
for novel objects, our algorithm samples and compares
shape patches to those patches in the library and retrieves
the associated grasp configuration for the best match. An
initial set of object shapes can be acquired by demonstrating
feasible grasp configurations for a particular set of objects
to the robot and store them as a template associated to a
grasp pose. A grasp configuration is given by a 6 degrees-
of-freedom (DOF) end effector pose as well as the joint
configuration of the robot’s gripper.

II. OVERVIEW

An overview of the proposed grasp selection algorithm is
shown in Fig. 2. In Section II-A we describe the proposed
templates in more detail. The heuristic used to sample
templates from an object is described in Section II-B. In the
following Section II-C we explain how new grasps can be
added to the grasp library. Matching of sampled templates to
the grasp library is described in Section II-D. In Section II-
E we describe how feedback is used to improve ranking of
grasp hypotheses.

A. Templates

We make the assumption that the region of an object being
in contact with a gripper is most important for the success of
a grasp attempt. One could think of a further step that takes
holistic features as e.g. inertia of the object into account to
improve ranking of the grasp hypotheses computed by our
algorithm. However, a local descriptor has the advantage, that
similar regions can be found on differently shaped objects



Fig. 3. One example template extracted from the point cloud of a carton
box. Height values (small black arrows) are measured relative to a plane
perpendicular to the height-axis h, here indicated by the black line z. Tiles
of type surface (green) are extracted from the object surface. Tiles of type
background (red) describe the height between z and the table. Void regions
(blue) are bounded to the limits of the bounding box of the gripper. Tiles of
type occlusion store the height of the upper bound of an occluded region.
They depend on the viewpoint v and the detected object surface.

to ensure better generalization to new objects as seen e.g.
in Fig. 4. We use templates to encode object heightmaps
that are sampled from various height-axes as described in
Section II-B. Besides a height-axis (purple arrows in Fig.
2c) the coordinate frame of a template is also defined by a
rotation about the height-axis. The map is rasterized to n×n
tiles, which encode the described object region by height
values relative to the height-axis. In addition to a height
value each tile also stores a region type. We distinguish four
different types:
• Regions on the object surface are significant for the

shape of the grasped object part.
• For a grasp configuration it is desirable to avoid prema-

ture contacts with the object. Thus fingers need to be
fit in void regions.

• The background, i.e. the table needs to be treated differ-
ently, too. Finger should neither fit into those regions,
nor they should enclose it.

• Regions that cannot be determined as one of the previ-
ous types due to occlusion are encoded as well.

Hence each tile containing a height value and a type is
defined as

t ∈ T = R×{surface, void, occlusion, background}.

A template is defined as a vector of tiles c ∈ T n2
with raster

granularity n and template size set according to the gripper
in use. As we are interested in the region grabbed by the
gripper, a gripper pose gc ∈R6 is associated to each template.
It is either taught by a user or looked up in the grasp library
in the matching step. The bounding box defined by gc and
the size of the gripper is used to limit height values to the
the bounding box. The type of exceeding values is set to
void. Templates are extracted from perceived point clouds as
illustrated in Fig. 3.

B. Template Acquisition
Before height values can be extracted, it is necessary

to define the template’s coordinate frame relative to the

object, i.e. a height-axis and a rotation about it. To make the
algorithm computationally efficient, we limit the search space
consisting of these coordinate frames. Therefore we sample
height-axes that are perpendicular to the object surface. A
rough approximation of the surface is obtained by computing
the convex hull of the object point cloud. For each polygon
of the resulting mesh we use the center and normal-vector
to define a height-axis as shown in Fig. 2b. The rotations
about one height-axis are discretized into r steps resulting
in r templates per polygon. Hence the number of sampled
templates depends on the number of polygons of the convex
hull times r. We ignore polygons with normals pointing away
from the viewpoint. As they are extracted from a convex
hull, they are on the backside of the object (relative to the
viewpoint). Approaching the object from such a direction
results in infeasible grasps anyways.

C. Learning good grasp configurations from demonstration

An initial set of grasp configurations can be learned from
demonstration through kinesthetic teaching. To add a good
grasp configuration to the library the user is required to
move the robot’s gripper to a favorable grasp configuration
as shown in Fig. 1. The proposed method then automatically
extracts the template and stores the demonstrated finger
configuration and gripper pose relative to this template into
the library. Thus, each library entry consists of an extracted
template l ∈ T n2

, an associated gripper pose gl ∈ R6 and a
finger joint configuration. We want to emphasize that for
extending the robot’s grasp repertoire these grasp configura-
tions can be taught by a user who is not required to have
any expert knowledge.

D. Matching

This section describes how candidate templates c ∈ T n2

are matched against library templates l to find similar object
shapes known from demonstration. For this purpose we
define the difference between templates as a weighted `1
distance. Both, geometrical shape of templates encoded by
height values ci, li and information from region types ĉi, l̂i
are combined to

σ(c, l) = oc,l

n2

∑
i

Wĉi,l̂i
|ci− li| , (1)

where W ∈ R4×4 weights height distances according to
region types. The lower σ is, the more similar are c and l
to each other according to geometrical shape and types of
region. W is a matrix of weights

sur f ace void occlusion background
sur f ace 50 50 50 50

void 50 12 12 12
occlusion 50 12 12 12

background 50 12 12 12

We use only two weights for the 16 possible combinations.
A higher weight is used to give more importance to differ-
ences in heights of tiles that contain an object. Additionally
the sum is weighted by a global normalization factor oc,l ∈R.



It is used to make templates with different number of surface
tiles comparable. The normalization factor is defined as

oc,l =
max{surfc,surfl}

surfc,l

where surfc, surfl are the number of surface tiles in c, l
and surfc,l is the number of elements in {ĉi = l̂i | ĉi = l̂i =
sur f ace, i ∈ 1 . . .n2}, which is the number of indices that
refer to tiles that are of type surface in both templates. The
objective is to maximize overlay of surface regions relative
to their size.

E. Improving grasp selection from experience

So far the presented algorithm is capable of producing
grasp hypotheses by sampling candidate templates from an
unknown object and matching them against a library of
known templates. The distance σ can further be used to rank
grasp hypotheses among each other. The lower the distance,
the higher the rank. However, we do not use σ directly, but
define a matching function, that uses σ to improve matching
over time.
The core assumption we use for our algorithm is that if
c and l are similar, and a grasp gl works for l we infer
that gl also works for c. In our approach we try resulting
grasp hypotheses gl on c to verify the inferred statement.
In case gl does not work for c, this implies that c and l
were not similar in the first place. This allows to improve
similarity matching between templates. However, the impli-
cation cannot be inverted. E.g. let c describe the top of a cup
and let l describe the bottom of a cup standing upright on
the table. The same overhead grasp can be applied in both
cases, although the shapes are clearly not similar. Hence only
negative grasp trials can be used to improve the similarity
matching. Nevertheless, it is still possible to add successful
grasps as new entries to the library. However, we do not
consider this possibility in this contribution.
To consider templates from failed grasp attempts we extend
the grasp-library by adding a set Fl ⊂ T n2

of failures to each
library template l. If a candidate template was matched to
l and the related gripper-pose gl led to a failed grasp trial,
we add the candidate template to Fl. Feedback is not applied
globally to all library templates as it is related to a particular
gripper-pose gl.
The presented matching function takes experience from
failures into account and is composed from three template
distances

α = σ(c, l),
β = min{σ(c, fi) | fi ∈ Fl},
γ = min{σ(l, fi) | fi ∈ Fl}.

If Fl = /0, β = γ ' ∞ (initial state of the grasp-library
after demonstration). Additionally to the distance to a library
template α we take the distance to the least different failure
template β into account. γ is a quality measure for l. The
higher it is, the more l is robust to variation in shape. We
combine these three distances to a matching function

Fig. 4. The bottom row shows candidate templates from unknown objects;
the top row shows the corresponding best match to the templates contained
in the library. The purple arrows show the height-axes of the templates.

m(c, l) =
α

[1− exp(−3β 2)][1− exp(−10γ2)]
, (2)

which yields a mismatch measurement for a candidate
template c∈ T n2

and a library template l∈ T n2
. The sigmoid-

shaped functions in the nominator have the effect that c
and l, if they are less different from failures, will receive a
higher mismatch value. For each candidate the best matching
library template is chosen. Additionally m(c, l) is used to
rank candidates among each other. The resulting gripper-
poses are looked up in the grasp library and set relative to
the coordinate frames of candidate templates. The highest
ranked feasible grasp is applied to the unknown object.

III. RESULTS

A. Experimental setup

We evaluated the presented grasp selection algorithm on
two different robots with different end effectors.

1) PR2: We used the Willow Garage PR21 together
with a head-mounted Microsoft Kinect for 3d point cloud
extraction (see Fig. 1). Our algorithm was integrated in the
pr2 tabletop manipulation pipeline. The gripper of the PR2
consists of two fingers and 1 DOF for closure (see Fig. 7).
We used position control in order to move the gripper to the
grasp pose and closed the fingers until the joint reached a
globally predefined effort.

2) Barrett Hand BH280: We further evaluated our ap-
proach on a Barrett WAM arm with a Barrett Hand BH2802

as end effector. A head-mounted and calibrated Asus Xtion
sensor has been used to obtain point clouds. The grasp
planner was used in combination with the motion planner,
presented in [13]. The gripper pose was adapted by force
control using the 6-axis force torque sensor in the wrist of the
hand. We set a desired force of -1N along the approaching
direction to guarantee that the palm is in contact with the
object. A torque of 0Nm for pitch and yaw is applied to
adapt for slightly miss-oriented grasp poses which lead to
premature contact with the table. The other three dimensions

1http://www.willowgarage.com/pages/pr2/overview
2http://thearmrobot.com/aboutRobot.html



are not force controlled. These settings were set globally for
all the experiments. Different to the PR2 the Barrett Hand
has three fingers with 1 DOF each. An additional DOF
controls the spread between the left and right fingers resulting
in 4 DOF (see Fig. 8). Although the hand architectures are
quite different, the only parameter that had to be adapted
was the size of templates, because it was set according to
the gripper size. It was set to 15cm×15cm for the PR2 and
to 25cm×25cm for the Barrett Hand.
During the experiments, objects were placed in front of the
robot on a table one at each time. A ranked list of grasp
hypotheses was created using the grasp selection algorithm
presented in Section II. The best feasible one was chosen by
the planning environment and applied to the test object.

B. Experiments

1) Grasp selection from demonstrations: For the first
experiment we demonstrated 15 grasps on a training set of 7
objects to the PR2 as described in Section II-C. The trained
algorithm was tested on a set of 38 differently shaped objects
(see Fig. 5). They were placed in different orientations to
cover distinct viewpoints on the object. After grasping and
lifting the object, the robot waited a few seconds to see if
the object slips due to bad grasps. A particular grasp was
considered a success if the robot was able to lift the object
off the table. Our algorithm achieved a success rate of 87%,
i.e. 83 out of 95 grasp hypotheses led to a stable grasp.
A subset of the achieved grasps3 is shown in Fig. 7. The
results indicate that our template representation is able to
generalize from only 15 demonstrations to a large variety
of objects. It also indicates that our algorithm is robust
against different viewpoints on the object. A few attempts
failed due to slightly miss-oriented grasp poses which led
to pre-mature contact with the object and made them fall
over or roll away. More sensitive closure of the hand can
be achieved by exploiting additional features from tactile
sensing.

Fig. 5. Seven objects used in the training set (left) and 38 objects used as
test set to evaluate the proposed algorithm on the PR2 (right).

We chose a different test set to demonstrate 6 gripper
configurations on 4 objects to the Barrett Hand as seen in
Fig. 8. The algorithm was applied to 10 different objects
placed in 5 different poses each. Different from the previous
experiment, we notified the robot of failed trials. If a grasp
failed we positioned it in the same pose for the next trial until
it succeeded. The algorithm computed grasp hypotheses that

3Some of the grasp executions can be seen in the video supplement and
on http://www.youtube.com/watch?v=noRv2gsy2u0

Object Success rate
Spray Can 4/5

Pipe 4/5
Flashlight 4/5

Shovel 3/5
Phone Handle 5/5

Toy Wheel 3/5
Box 4/5

Red Spray Bottle 5/5
Canteen 5/5

Duster with Pan 4/5
Overall 41/50

TABLE I
GRASP ATTEMPTS ON A BARRETT WAM ARM WITH BARRETT HAND.

resulted in 41 out of 50 successful trials as shown in Table I.
In case of an unsuccessful grasp attempt, the robot achieved
to grasp the object in the same pose after at most 2 additional
trials using feedback from the previously failed attempts.

2) Improvement over time: In a further experiment we
tried to grasp one object over and over again notifying the
algorithm of failed grasps to test if our grasp planner is
able to improve over time autonomously. The object was
placed in different poses on the table as in the previous
experiments. On the PR2 we used a whiteboard marker (see
image in the center of the upper row in Fig. 7). The robot
tried to grasp it 34 times in a row using the demonstrated
grasps from the previous experiment. Although grasping
failed quite often in the beginning, we could increase the
overall success rate about 30% as shown in Fig. 6. The
first trials failed mainly because of grasp poses that led to
premature contact with the object. However, for the last
trials the PR2 tended to approach the object perpendicular
to the table such that premature contact was avoided and
the grasps succeeded more often. We could show that our
algorithm is able to improve ranking over time using a
simple form of feedback. In our experiments a human
notified the robot of failed grasp attempts. However, one
could think of an autonomous implementation.

Fig. 6. Success rate with increasing number of grasp trials using feedback
from failed attempts. Success rate is computed for the last ten trials at each
step. Results on a PR2 and a whiteboard marker (left) and a WAM arm
and a rock (right). One can recognize a convergence to suboptimal success
rates due to slightly miss-oriented grasp poses and the slippery surface of
the rock.

We conducted a similar experiment on the Barrett WAM
arm, where the robot tried to grasp a rock shaped object
40 times in a row (see third image from left in the bottom
row of Fig. 8). As seen in Fig. 6 we could increase success



Fig. 7. Subset of the achieved grasps on the test set on the PR2.

rate from 30% to 60%. For the first trials the robot chose
the grasp configuration that we taught on the bowl as seen
in the bottom left image in Fig. 8. This made the rock slip
away quite often. However, the ranking of grasp hypotheses
changed over time such that the configuration demonstrated
on the leather bag was chosen more often. This lead to
more stable grasps and increased the success rate. However,
some grasps still failed due to the slippery surface of the
object.
Our results show that the presented grasp planner computes
grasp hypotheses that lead to successful grasps. We did not
need new parameterization of the algorithm to achieve a
high success rate on different data sets. The presented grasp
planner was tested on two very different real robots with
real sensor data. Further, we could show that our algorithm
works on two different hand architectures.
As described in Section II-B the computational time of our
algorithm depends on the parameters r and n. We set an
r = 16, and n = 30 to keep computational time low. Indeed,
we noticed that increasing both values did not increase
performance notably. During experiments our algorithm
finished computations after 5 to 30 seconds when it ran
together with other tasks on the built-in computer on the
PR2. Please note that the implementation is not optimized
for speed.

Fig. 8. All demonstrated grasps on a Barrett WAM arm (left) and a subset
of the achieved grasps (right).

IV. CONCLUSION

In this paper we presented a template-based grasp selection
algorithm which uses demonstrated grasp configurations and
generalizes them to grasps for novel objects. We showed
on two robots and two different test sets that the proposed

template representation is able to capture object features
enabling our algorithm to achieve a good success rate on a
challenging set of differently shaped objects. New grasps can
be taught through kinesthetic teaching to extend the robot’s
grasp repertoire. Additionally, the proposed method was
able to improve the grasp selection process autonomously
through trial-and-error. The algorithm has been implemented
efficiently and results have been presented on the PR2 and
WAM arm.
In future work we will analyze the system in more extend
to provide deeper insight. Although we achieved a high
success rate in our experiments, our goal is to adapt grasps
using tactile sensing in order to prevent slippage and further
increase the stability of grasps. Also information about the
task to be achieved with an object is to be used in order to
provide a more refined grasp selection.
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