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Abstract

With the number of scientific papers published
every year growing and current large language
models (LLMs) showing state-of-the-art perfor-
mance on natural language processing (NLP)
tasks, we ask the question if LLMs could be uti-
lized to answer questions on scientific papers.
We investigate how well state-of-the-art large
language models (LLMs) can answer questions
on scientific paper by experimenting with long-
context versions of the LLaMA 2 model and
evaluating and training on the Qasper dataset.
We analyze how well the LLMs handle longer
papers and questions that can only be answered
by accessing information from far out para-
graphs. During our experiments, we see that the
performance of these LLMs drops with grow-
ing length and position of relevant informa-
tion. We employ different measures from sim-
ple prompts to chain-of-thought prompts and
zero-shot usage to fine-tuning with QLoRA.
While we still observe a performance loss with
increased context length, our measures reduce
the effects of this flaw, and we can achieve F1

scores similar to bigger models like GPT-4.

1 Introduction

The number of scientific papers published every
year is growing exponentially (Fire and Guestrin,
2018). This creates a problem for scientists but also
the general public to keep up with the developments
in science. A natural language processing (NLP)
system that can reliably answer questions on scien-
tific papers could help in this situation. Question
answering (QA) systems often rely on task-specific
machine learning models that can only be used for
this purpose. Large Language Models (LLMs) are
a newer type of deep learning model trained to be
general-purpose models for NLP. Current commer-
cial and open-source LLMs are often used in an
intuitive, conversational manner as chatbots. They
offer the ability to answer follow-up questions and
have an intuitive interface for most users. They

show state-of-the-art (SOTA) NLP performance
(OpenAI, 2023; Anil et al., 2023) and even display
some reasoning capabilities (Brown et al., 2020;
Chowdhery et al., 2023; OpenAI, 2023; Anil et al.,
2023) and would be one contender for the core of
a QA system focused on scientific papers.

Scientific papers present great challenges as con-
text for QA when using LLMs for multiple rea-
sons: Their text part is typically about around
4,000 to 13,333 tokens long assuming that one
word amounts to around 1.3 tokens (Björk et al.,
2009; OpenAI, b). The base versions of newer
commercial models like GPT-3.5 and GPT-4 have
context windows of 4,096 (OpenAI, a) and 8,192
(OpenAI, a) tokens while open-source LLMs like
LLaMA 2 (Touvron et al., 2023b) offer a 4,096 long
context window. Also, scientific papers consist of
long unstructured (except sectioning etc.) raw text
making, it hard to determine which part is impor-
tant to answer the question. The answer type is also
not clear as the question could be about explaining
some concepts presented in the paper, simple facts
or even yes or no questions, or the question could
be unanswerable. The unstructuredness and length
of the context is especially problematic even for
long-context LLMs as Liu et al. (2023) found: For
multi-document QA where the LLM has to select
the relevant context part from multiple options, the
performance curve has a U-shape with respect to
the position of the documents as the ones at the be-
ginning and the end are better retrieved than those
in the middle.

In this paper, we evaluate how well a small open-
source LLM can perform as a QA system for sci-
entific papers if used in a zero-shot manner – es-
pecially regarding long papers (>4k tokens) and
those questions whose relevant paragraphs are far
out token-wise. To do this, we bin the papers per
length and the questions per position of the relevant
paragraphs. We try to improve the performance us-
ing recent LLM adaptation techniques (prompting,
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parameter-efficient fine-tuning). We also investi-
gate what weaknesses (e.g., instruction-following,
long-context understanding) of the models specifi-
cally the fine-tuning improves. Finally, we compare
our best model with bigger ones. We observe that
increased context length and position of the rele-
vant paragraphs result in worse performance even
for long-context LLMs. While more sophisticated
prompting does not help, fine-tuning increases over-
all performance significantly but mostly by improv-
ing the instruction-following of the LLMs.

2 Related Work

Large Language Models The foundation for
most current Large Language Models (LLMs) like
the Gemini (Anil et al., 2023), GPT (Brown et al.,
2020; OpenAI, 2023), LLaMA (Touvron et al.,
2023a,b), and Mistral (Jiang et al., 2023, 2024) fam-
ilies is pre-training Transformer decoder-only mod-
els with billions of parameters on Internet-scale
data enabling them to perform tasks they were not
explicitly trained on. As we want to experiment on
LLMs themselves which includes fine-tuning and
modifying them, we utilized available open-source
models: Large Language Model Meta AI (Meta AI,
2023) (LLaMA) (Touvron et al., 2023a,b). Follow-
ing the work on training-compute-optimal LLMs
(Hoffmann et al., 2022), the authors of LLaMA fo-
cus on training smaller models with more data (and
more compute) to achieve better inference-compute
efficiency.

Vicuna is a collection of fine-tuned LLaMA mod-
els (Chiang et al.; Zheng et al., 2023). On top of
models fine-tuned for better chatbot performance,
there are models with longer context windows than
the original LLaMA model (version 2: 4k (Touvron
et al., 2023b)) with up to 32k tokens using a tech-
nique similar to Positional Interpolation developed
independently (Ken; Li et al.). Chen et al. (2023)
propose Positional Interpolation (PI) to easily in-
crease the context window length: Stretching the
original context window (L) to the new maximum
length L′ by downscaling the position indices that
are the input to the positional encoding function.

Question Answering Task The type of context
for Question answering (QA) can differ as it may
be present as knowledge or as harder to manage
raw text. Modern QA system mostly use deep
learning-based models like (fine-tuned) BERT- or
GPT-style models. Datasets that cover the topic of
scientific papers focus on various aspects. Many

focus on the review process which yields differ-
ent artifacts. These enable different tasks: (Meta-)
Review Generation (Wang et al., 2020; Lin et al.,
2023), acceptance prediction / paper rating (Kang
et al., 2018; Yang et al., 2018), Argument Pair Ex-
traction from reviews and corresponding rebuttals
(Cheng et al., 2020), and Multi-document Summa-
rization on reviews (Li et al., 2022). But there are
also datasets specifically for question answering on
scientific papers (Dasigi et al., 2021).

Evaluating Long-Context Text Processing To
make comparison of long-context LLMs easier,
multiple benchmarks sets have been created to test
their abilities across different task types. Zero-
SCROLLS (Shaham et al., 2023) is a benchmark
focused on long text understanding in a zero-shot
setting. The included task types are summarization,
question answering and aggregation. A similar
benchmark called LongBench also includes Qasper
(Bai et al., 2023). Opposed to ZeroSCROLLS it is
bilingual and incorporates more task types. Also,
the authors showed the performance of the mod-
els that they tested for context lengths of 0 – 4k,
4k – 8k and 8k+ tokens individually. They only
investigated zero-shot prompting and they did not
show how the position of the important information
within the long context affects performance.

Han et al. (2024) presented with LM-Infinite a
technique to increase the ability of LLMs to handle
long-context without any parameter updates. How-
ever, their evaluation on Qasper showed only small
improvements over their truncation baseline (30.1
vs. 31.3) and did not contain fine-grained analysis
on Qasper.

3 Methodology

To improve the performance of the general-purpose
LLMs on the task of QA on scientific papers, we ap-
ply different prompting techniques and fine-tuning.
We list all our prompt templates in Appendix A.

3.1 Approaches

Simple Prompt Zero-shot prompting is a
straightforward approach, where the LLM is di-
rectly used out-of-the-box at inference time. Al-
though few-shot prompting in general improves
performance (Brown et al., 2020), the long input
size in our case precludes this approach. Therefore,
we have to resort to zero-shot prompting which
only includes the instruction for the model as a kind
of learning signal. However, this generally leads



to weaker instruction-following abilities. This ap-
proach with a simple prompt serves as the baseline
for the other methods (using the same model).

Extract-then-Answer Prompt Chain-of-
thought prompting (Wei et al., 2022) showed that
splitting a task into subtasks can help LLMs to
solve them. Inspired by this, we split the question
answering into two tasks: First the model has
to find the evidence – all relevant paragraphs to
answer the question. After that we prompt it
to answer the question based on the extracted
paragraphs in the previous step. Extracting the
relevant paragraphs is a useful task on its own: It
could be useful to see the context of the answer
inside the paper and improve interpretability.
There are also some downsides: We have to run
inference twice as this approach requires the
model to generate its input for the second step.
Also, as the model generates its own input (apart
from the second prompt), this approach may lead
to cascading errors. Similar approaches were
investigated for science QA on short context (Lu
et al., 2022; Wang et al., 2023; Yoran et al., 2023),
for (Chinese) multi-document QA (He et al.,
2023), and on smaller-scale models prior to the
emergence of LLMs (Dasigi et al., 2021).

Supervised Fine-tuning We can fine-tune the
LLM on supervised data with the simple prompt
and the extract-then-answer prompt. For the latter,
we fine-tune the model two subtasks: Evidence ex-
traction and answer generation given evidence. By
combining compute- and memory-efficient meth-
ods of implementing and training Transformer-
based models, we are able to fine-tune a small LLM
on long context. We replace the standard attention
algorithm with FlashAttention 2 (Dao et al., 2022;
Dao, 2023) and we use QLoRA (Hu et al., 2022;
Dettmers et al., 2023) for fine-tuning the model.

3.2 Evaluation

Besides the standard evaluation of QA quality pro-
vided by the dataset authors, we conduct various
fine-grained analyses to evaluate our approaches
regarding our specific focus.

3.2.1 Analysis by Context Length / Position
In addition to evaluating QA quality, we want to
evaluate per paper length and absolute evidence
position. We therefore split the evaluation data
into (partially) overlapping groups by the length /
distance in tokens.

Paper Length We want to find out if long-
context modifications enable models to process
longer context as well as context within the original
context window or if the performance differs per
paper length. Here, we bin per paper as the length
is the same for all associated questions. We count
the number of tokens to get the length.

Evidence Position It is also important to find out
if the position of the relevant information (“evi-
dence”) within the paper which is also provided
by the dataset does affect performance. We will
study the impact of the absolute token position
of the evidence. For “Unanswerable” and some
yes/no questions there is no evidence, we put these
questions into a separate bin (“No evidence”). In
contrast to the length binning, we group the eval-
uation data per question as the evidence positions
differ in general per question and not per paper.

3.2.2 Evidence-only Prompt
We want to find out how our investigated models
perform if we provide them with the evidence only
– both during inference and training. This should
give use an idea of the upper limits of the perfor-
mance of the models as this task should be easier
as the model has to process fewer tokens. Addi-
tionally, we think that a comparison between these
fine-tuned models and those that received the full
paper during training should indicate how much
our fine-tuning improves our goal of long-context
understanding and how much it just improves in-
struction following.

4 Experiments and Results

4.1 Experimental Setup

In the following, we will describe our experimen-
tal setup. We list utilized hard- and software and
the hyperparameters we used during inference and
training in Appendix C.

4.1.1 Dataset
The Qasper dataset (Dasigi et al., 2021) we used to
evaluate and train the considered models consists
of a total of 1,585 NLP papers with 5,049 ques-
tions on these papers. Each of these questions was
formulated by an NLP practitioner. The answers
were then answered by other NLP practitioners
who also selected the paragraphs, figures or tables
(“evidence”) in the paper that are relevant to an-
swer the question which are listed together with the



Models dev-short dev test ZC
Questions / % 990 100 1,005 100 1,451 100 500 100
Paper length
0k – 4k 333 34 333 33 511 35 149 30
4k – 8k 593 60 593 59 802 55 312 64
8k – 64 6 79 8 138 10 39 8
Absolute evidence position
0k – 4k 794 80 799 80 1182 81 405 81
4k – 8k 173 17 180 18 263 18 91 18
8k – 6 1 11 1 18 1 7 1
No evidence 77 8 78 8 99 7 37 7

Table 1: Qasper dataset statistics we created for our research questions: paper length and absolute evidence
position; the numbers for absolute evidence position exceed the total number of questions because the evidence for a
question can be from multiple paragraphs. ZC refers to the subset of the Qasper test set used in the ZeroSCROLLS
benchmark.

Q. type Frequency
Bin type Full dev-short Length Absolute evidence position
Specific bin 0k – 4k 4k – 8k 8k – 0k – 4k 4k – 8k 8k – No ev.
Extractive 51.8% 54.8% 53.3% 56.5% 47.4% 58.5% 55.1% 45.5% 0.0%
Abstractive 24.2% 24.3% 21.3% 25.5% 28.1% 25.9% 30.2% 27.3% 0.0%
Yes/No 13.9% 11.6% 13.8% 10.2% 13.2% 10.7% 11.8% 18.2% 24.6%
Unanswer. 10.2% 9.3% 11.6% 7.8% 11.4% 4.9% 3.0% 9.1% 75.4%

Table 2: Qasper dataset statistics (full dataset (full), (Dasigi et al., 2021)) and ours: question types for each dataset
bin (all bins are from dev-shot).

gold answer in the dataset. There are four types of
questions / answers in this dataset:

• Extractive: questions can be answered by
copying chunks of the relevant paragraph

• Abstractive: free text answers that are not lit-
erally in the paper

• Yes/no or boolean questions

• Unanswerable: questions that can not be an-
swered with the provided paper as context.

These question types appear in different frequen-
cies (Table 2) and the authors evaluated the per-
formance of their model for each question type
individually. The dataset website1 provides an offi-
cial evaluation script. Like for the SQuAD dataset
(Rajpurkar et al., 2016), the authors chose a span-
level F1 score as their metrics. If there are multiple
reference answers, the maximum of the F1 score
will be used.

For the final analysis, we use a subset of the
Qasper test split that is part of the ZeroSCROLLS

1https://allenai.org/data/qasper

(ZC) benchmark (Shaham et al., 2023). We saw a
similar statistic for this subset as for the (custom)
splits we used during development and final anal-
ysis. We therefore assume that the ZC subset of
Qasper will be representative for the performance
of our approaches.

4.1.2 Data Preprocessing

Five of the papers from the development / valida-
tion split of Qasper lead to out-of-memory errors
during inference. We therefore exclude these five
papers from our results and call the resulting split
“dev-short”. As these five only account for around
1.8% of the 281 papers in the dev split, we assume
that this does not skew our view of the quality of
the models. Also, the distribution of the length /
position bins is not changed much (Table 1).

We make a similar observation for the binning
itself (Table 2): The distribution of the questions
types does not vary much between the length / po-
sition bins (with exception of the one for questions
with no evidence). We therefore assume that our
analysis of the models by binning the dataset does
reflect the performance of the model for that spe-
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cific length / evidence position and is not influenced
by the distribution of the questions type in that spe-
cific bin.

As training data, we use the training split of the
Qasper dataset. As input, we use a prompt template
(subsubsection A.1.1) from the LongBench bench-
mark dataset (Bai et al., 2023) where the paper
text and the question are inserted the same way as
for zero-shot prompting. The target is the answer
from the dataset. As our tested models have text
as their only modality, it cannot process the figures
and tables provided with the dataset. We therefore
remove all questions from the training data that
mention figures or tables in their evidence field.
Many questions are annotated with multiple pos-
sible answers. In some cases, they clearly heavily
disagree with each other e.g., one possible answer
is “Unanswerable” and the other is “Yes” or “No”.
We remove these cases. We also have to limit the
training data to texts with a maximum of 8k tokens
as longer inputs cause out-of-memory errors even
with both QLoRA and FlashAttention used.

4.1.3 Models
We use three models with different context win-
dow lengths in our experiments. The creators of
FastChat (LMSYS Org) provide the Vicuna family
(section 2) of LLMs. We only test the smallest
available models with around 7 billion parameters
for compute and memory efficient experiments and
as this is the only model size that has a LongChat
version. This version has a context window of 32k
tokens (LC-32k). Vicuna 7B-4k (V-4k) has the
same as LLaMA 2 (4k) and Vicuna 7B-16k’s (V-
16k) was extended to 16k. We use the models of
version v1.5 which indicates that they are based on
LLaMA 2 instead of LLaMA 1 like the previous
versions.2 The fine-tuning data was 370M tokens
long. We omit the parameter count in the following
from the models’ names as they are the same of
every model we tested.

4.2 Results and Discussion

We start our experiments with all available small
(7B parameters) models from LMSYS Org with
varying context window lengths: Vicuna-4k,
Vicuna-16k, and LongChat-32k. Here, we only
report the results for LongChat-32k as it showed
the best long-context performance and show the

2https://github.com/lm-sys/FastChat/blob/
97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/
vicuna_weights_version.md

others in Appendix D and Appendix E. During our
experiments, we also investigated the performance
by relative evidence position. However, we saw no
U-shape of the performance and therefore do not in-
clude these results. This corresponds to prior work
(Liu et al., 2023) which found this strong primary
and recency bias only in large (>7B) models.

4.2.1 Simple Prompt
First, we run a simple zero-shot prompt and report
the results in the first two columns of Table 3.

Simple zero-shot prompt struggles with unan-
swerable questions While LongChat is able to
answer the “normal” questions, it seems to be un-
able to handle unanswerable questions (Table 3).
These questions can not be answered with the given
paper. Also, its ability to answer yes/no questions is
limited. Qualitative analysis showed that LongChat
almost never outputs “Unanswerable” and even if
it does, the answer is a whole sentence which ig-
nores the instruction in the prompt (examples: Ap-
pendix B).

Longer context leads to worse performance
Fine-grained analysis by input length shows that
after the threshold of 4k tokens, the performance
begins to decrease from an F1 score of 25.47 to
24.08 for papers with a length between 4k and 8k
tokens. After 8k tokens this decrease accelerates
(18.51) and is especially visible when binning the
F1 score by evidence position (F1: 26.73 → 23.35
→ 15.06). The model also especially struggles
with questions that require no evidence (most of
them are unanswerable). We assume that the lower
F1 score of LongChat on papers with more than 8k
tokens is a result of this weakness and not a general
property.

Fine-tuning: Trade-offs between generation and
classification As the empirical results showed
that LongChat had insufficient instruction follow-
ing, we now want to see how much fine-tuning can
increase the performance. Also, we want to find
out how much it improves the F1 scores for long
papers and evidence at high token positions. The
impact of QLoRA fine-tuning on LongChat-32k
(Table 3) is that extractive, boolean and unanswer-
able questions substantially improve (F1: 26.51 →
48.21, 36.79 → 76.47, 0.04 → 68.54). We assume
that the F1 scores for unanswerable questions do
not improve after the first epoch because it reached
the highest scores possible with this model size

https://github.com/lm-sys/FastChat/blob/97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/vicuna_weights_version.md
https://github.com/lm-sys/FastChat/blob/97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/vicuna_weights_version.md
https://github.com/lm-sys/FastChat/blob/97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/vicuna_weights_version.md


Training 0S FT 0S FT 0S FT
Variation 1S 1S 2S 2S 2S+ 2S+
Answer F1 24.19 47.02 24.94 39.08 17.85 41.18
Answer F1 by type
Extractive 26.51 48.21 23.19 37.50 16.37 41.82
Abstractive 20.78 20.10 17.35 14.92 16.03 19.41
Boolean 36.79 76.47 57.96 49.51 36.75 58.10
Unanswerable 0.04 68.54 11.84 89.09 5.33 69.23
Answer F1 per paper length
0k – 4k 25.47 52.15 25.68 41.57 19.26 44.78
4k – 8k 24.08 44.45 24.85 37.77 17.50 39.66
8k – 18.51 44.09 21.97 38.23 13.83 36.44
Answer F1 per absolute evidence position
0k – 4k 26.73 46.28 26.84 36.00 18.89 40.54
4k – 8k 23.35 37.74 23.40 30.31 16.64 34.97
8k – 15.06 67.94 28.96 56.19 2.75 39.78
No evidence 1.06 64.94 6.69 81.82 9.61 57.14

Table 3: LongChat, dev-short set, simple (one-step / 1S) and extract-then-answer prompts (two-step, 2S),
compare initial and advanced prompt (2-step+, 2S+), zero-shot (0S) vs. fine-tuned (FT) with QLoRA.

and pre-training and fine-tuning procedure. Here,
the model has to do a trade-off between generating
answers with more information (extractive, abstrac-
tive) or classify the question as unanswerable. The
answers to abstractive questions see an initial qual-
ity degradation and only converge back to their
initial level (F1: 20.78 → 20.10) late in training.
Our interpretation is that this is a result of the train-
ing data forcing the model to fit to the answer style
for around 75% of the questions in Qasper: extract-
ing word for word and short answers. With more
epochs of fine-tuning, the model re-learns the more
complex task of abstractive QA (Table 4).

Epochs 0 1 3 5
Answer F1 24.19 41.13 44.56 47.02
Answer F1 by type
Extractive 26.51 41.80 45.18 48.21
Abstractive 20.78 12.59 16.59 20.10
Boolean 36.79 70.49 80.33 76.47
Unanswerable 0.04 69.57 66.67 68.54

Table 4: LongChat-32k, dev-short set, simple prompt,
fine-tuned with QLoRA.

Fine-tuning mostly improves instruction-follow-
ing While we only train with sequences of up to
8k tokens, we see an improvement across all ana-
lyzed paper lengths and evidence positions and the
performance loss for papers with a length between
4k and 8k tokens and longer ones almost disappears

going from 5.57 (zero-shot) to 0.36 (fine-tuned).
However, we still see consistently reduced perfor-
mance for papers that exceed LLaMA 2’s original
context window length of 4k and especially for
questions where the evidence is further out than 4k.

In Appendix B, we list some qualitative example
how fine-tuning did improve the model’s answers.

4.2.2 Evidence-only Prompt
Our previous experiments showed that even models
whose context window was extended with a tech-
nique similar to Positional Interpolation struggle
with papers that exceed the original context length
of LLaMA 2 of 4k tokens – especially if the evi-
dence lies outside of that range. The question now
is if these questions or at least some of them are
inherently harder to answer. We evaluate if the per-
formance varies in our analysis if the context given
to the model is the evidence only instead of the full
paper.

Training only on evidence performs well except
for unanswerable questions When fine-tuning
LongChat on the evidence only, we more quickly
see better results that exceed those before (Table 5)
and therefore only train for 3 epochs. After training
LongChat on the evidence only, we compare its
performance directly against the model that we
trained on full papers: The performance of the
context-length-specific model is better in general
(F1: 41.66 vs. 44.56 / 47.02) but not on all sub



Epochs 3 3 3 5
Train split evo fp
Eval split evidence fp
Answer F1 57.22 41.66 44.56 47.02
Answer F1 by type
Extractive 62.19 47.01 45.18 48.21
Abstractive 27.01 24.15 16.59 20.10
Boolean 79.83 76.67 80.33 76.47
Unanswer. 80.56 2.70 66.67 68.54
Answer F1 per paper length
0k – 4k 57.93 42.68 50.22 52.15
4k – 8k 56.86 40.46 41.91 44.45
8k – 56.94 42.68 39.75 44.09
Answer F1 per absolute evidence position
0k – 4k 54.27 44.48 43.94 46.28
4k – 8k 50.86 37.46 34.80 37.74
8k – 63.61 43.71 64.76 67.94
No ev. 93.51 16.88 61.04 64.94

Table 5: Compare LongChat-32k, fine-tuned with
QLoRA on evidence only (evo) or full paper (fp).

scores. When evaluating the evidence-only model
on full papers we made an interesting observation:
This model has equal or better F1 scores on all
question types except for unanswerable questions.
The score for this type of question is probably so
low as the model only learned to map the absence
of evidence or the presence of a placeholder to the
question being unanswerable.

Fine-tuning improves instruction-following and
unanswerable question detection We assume
that this result together with less than 8k tokens
long training data improving performance on more
than 8k tokens long evaluation data means that
training the model mostly improves instruction fol-
lowing and does not promote better long-context
understanding. But we also note that in order for
the model to learn if a question is unanswerable it
has to explicitly learn the mapping of no evidence
in the whole paper to the question being unanswer-
able. During fine-grained analysis by input length,
we see that the model that we trained on evidence
only shows almost no performance decrease with
increased paper length but also its performance for
shorter papers is worse than those models that were
trained on full papers. We also see that training on
the full papers is useful as it dramatically improves
performance for questions where no evidence is
contained in the paper text.

4.2.3 Extract-then-Answer Prompt
Inspired by the results of using only the evidence
as context to answer the questions, we hypothe-
size that a chain-of-thought prompt could increase
performance: The model has to extract the rele-
vant paragraphs first and then answer the questions
based on the evidence found.

Epochs 0 1 3 5
Answer F1 24.94 19.93 34.52 39.08
Answer F1 by type
Extractive 23.19 8.27 29.98 37.50
Abstractive 17.35 1.52 10.28 14.92
Boolean 57.96 23.76 52.34 49.51
Unanswerable 11.84 98.45 89.57 89.09
Evidence F1 12.73 25.74 34.32 38.45

Table 6: LongChat-32k, dev-short set, extract-then-
answer prompt, fine-tuned with QLoRA.

Extract-then-Answer Prompt does not improve
performance During training, we saw an initial
drop in performance for all question types that can
be answered with the paper as context (Table 6).
When looking at the evidence score and during
qualitative analysis, we see that the model does not
extract the correct paragraphs leading to an inability
to answer most of the questions. After five epochs,
for 535 out of 990 questions (∼54%) the model
finds evidence. But during training, the model saw
evidence for 1,607 out of 1,904 questions (∼84%).
Yet after the same number of epochs as the one-
step prompt model, this model still performs worse
(47.02 vs. 39.08, Table 3).

Even for longer papers and evidence more diffi-
cult to reach, the extract-then-answer prompt does
not improve performance as the evidence extrac-
tion also suffers on longer context and also does not
help even inside the original context window. Out
of 990 questions, the fine-tuned model still finds
no evidence for 455 questions.

Handling Absent Evidence During training, the
most common unique evidence string presented to
the model is the placeholder we use for no evidence.
For an improved prompt, we therefore include a
prefix in the training data and as a hint in the prompt
that every no empty extracted evidence starts with
this prefix. We argue that this helps the model to
avoid resorting to generating the “easiest” evidence
which is none or the placeholder inspired by Atten-
tion Strengthening Question Answering (He et al.,



2023) which predicts the indices of the most rel-
evant document in multi-document QA. We also
adopt their approach of placing the question before
and after the context.

To further reduce the number of generated empty
evidence, we lower the number of examples in our
training data where no evidence should be found
to push the model into generating non-empty ev-
idence more frequently. In the training data (<8k
tokens), only around 16% of the questions are anno-
tated with no evidence. However, the model that we
fine-tuned on the “standard” extract-then-answer
prompt generates no extracted evidence for around
40% of the questions which is 2.5 times as often.
We assume a linear dependency between percent-
age of training answers without evidence and the
percentage of generated answers without evidence.
We lower the ratio of questions with no evidence
in the training data to around 6% to arrive at 16%
of generated empty evidence. We now employ all
techniques we presented previously to improve the
extract-then-answer prompt.

Adapted Prompt: Performance improves only
slightly While the answer F1 score does improve
with this adapted prompt for the fine-tuned model
(Table 3) when compared to the simpler extract-
then-answer prompt, the evidence F1 is lower even
though the percentage of empty evidence drops
from around 46% to around 22%. Also, for the
zero-shot prompt all question types show worse re-
sults and the evidence score even drops to 0.0. Man-
ual investigation shows that the model generated
very long paragraphs as evidence in the zero-shot
setup which led to this score. In further analysis,
the advanced extract-then-answer prompt shows
slightly better results for papers with under 8k to-
kens (F1: 41.57 vs. 44.78, 37.77 vs. 39.66) and
evidence below the same threshold (F1: 36.00 vs.
40.54, 30.31 vs. 34.97). But the F1 scores are
still below those of the one-step prompt (47.02 vs.
41.18) as the evidence extraction also still suffers
from long context.

4.3 Final Comparison against Baselines

Finally, we compare the results of our experiments
against task-specific models and strong LLMs. Our
comparison is on the ZeroSCROLLS subset of the
Qasper test set which we believe is representative
enough for the full test set (Table 1) to use it for
comparison to strong LLMs. The ZeroSCROLLS
subset uses a slightly different prompt for Qasper

Model Prompt Training Answer F1

Ours
LongChat ZC 0-shot 25.80
LongChat LB 0-shot 31.07
LongChat ZC 5 epochs 46.90
LongChat LB 5 epochs 52.73
Existing models
Flan-UL2 ZC 0-shot 56.90
GPT-4 ZC 0-shot 50.70
CoLT5 ZC fine-tuned 53.10

Table 7: Baseline results (Flan-UL2 (Tay et al., 2023),
GPT-4 (OpenAI, 2023), CoLT5 (Ainslie et al., 2023))
from ZeroSCROLLS benchmark (Shaham et al., 2023)
compared to our results (LongChat-32k, 5 epochs), Ze-
roSCROLLS subset of Qasper test set.

and does not include the title and abstract in the
input. We compare our approaches with both
prompts: ZeroSCROLLS (ZC) and LongBench
(LB). With the LongBench prompt used during
inference, our best approach exceeds GPT-4’s F1

score on the ZeroSCROLLS subset, comes close
to the strongest model, and represents a great im-
provement over the zero-shot setup (Table 7). It
is important to note that the ZeroSCROLLS au-
thors mentioned that GPT-4 sometimes struggled
more than other models to follow the prompt on
Qasper. When we use the same prompt as the
other models, both our zero-shot and the fine-tuned
model lose more than 5 F1 points showing how
important prompting can be. As the performance
drop is almost the same, we assume that for the
fine-tuned model this is not a result of the mis-
match between the training prompt and the infer-
ence prompt. The fine-tuned LongChat-32k model
with the LongBench prompt is only able to almost
match the task-specific model. We assume that
this observation and the fact that Flan-UL2 is the
best performing model are a result of these models
being full transformers with an encoder and a de-
coder. The bidirectional encoder that processes the
context together with the question and the prompt
before generating the answer could help here.

5 Conclusion

We wanted to investigate how well LLMs can han-
dle scientific papers and how we can improve their
performance. We observe that the (unmodified)
small open-source long-context LLMs we tested
are able to process scientific papers with up to about
16k tokens from the Qasper dataset but fall short of



commercial LLMs. Additionally, the performance
drops after the context exceeds the original context
window – especially if the relevant information to
answer to question lies in that region of the paper.

When we employ the current techniques for effi-
cient training QLoRA and FlashAttention, we can
fine-tune the models on papers with a length of up
to 8k tokens on a single datacenter GPU that is
available to a university student for research. The
performance of our fine-tuned model still increases
for even longer papers without being trained on
these lengths. Experiments with models that we
only trained on extracted paragraphs without pro-
viding the model the full paper suggest that our
training primarily improves instruction following
but also improves the models’ ability to determine
if a question is unanswerable as it has to learn the
connection between the absence of relevant infor-
mation and the unanswerability of the question.
When comparing our results against baselines, we
saw that our best approach reaches or surpasses the
result of the original GPT-4.

Limitations

This paper only investigates the Qasper dataset and
the LongChat LLM. The Qasper dataset is lim-
ited to scientific papers from the NLP domain and
mostly provides questions about facts and not more
complex prompts like asking for new research di-
rections based on the given paper. LongChat may
have different strengths and weaknesses than other
LLMs which may respond differently to the our
prompts, our fine-tuning scheme, and long context
in general (as seen by Liu et al. (2023)). While
our resulting model is an improvement over the
zero-shot LongChat, it still makes mistakes (like
determining a question as unanswerable even if it
is answerable).

We did not investigate all fitting configurations
of our experimental setup like providing a random
paragraph as evidence instead of no paragraph or
how the fine-tuning for one prompt type influences
the performance during inference with a different
prompt type (except for the model that we fine-
tuned on the evidence only).
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A Prompts

We used the following prompts during our exper-
iments. <CONTEXT> stands for the paper text
or a shortened version of it while <QUESTION>
is the placeholder for the specific question on the
provided context.

A.1 ZeroSCROLLS

You are given a scientific article and a question.
Answer the question as concisely as you can,
using a single phrase or sentence if possible. If
the question cannot be answered based on the
information in the article, write "unanswerable".
If the question is a yes/no question, answer "yes",
"no", or "unanswerable". Do not provide any
explanation.

Article: <CONTEXT>

Question: <QUESTION>

A.1.1 LongBench (our version)
You are given a scientific article and a question.
Answer the question as concisely as you can,
using a single phrase or sentence if possible. If
the question cannot be answered based on the
information in the article, write ’unanswerable’.
If the question is a yes/no question, answer ’yes’,
’no’, or ’unanswerable’. Do not provide any
explanation.
Article: <CONTEXT>
Answer the question based on the above article
as concisely as you can, using a single phrase or
sentence if possible. If the question cannot be
answered based on the information in the article,
write ’unanswerable’. If the question is a yes/no
question, answer ’yes’, ’no’, or ’unanswerable’.
Do not provide any explanation.
Question: <QUESTION>

A.2 Evidence only
You are given excerpts from a scientific article
and a question. Answer the question as concisely
as you can, using a single phrase or sentence if
possible. If the question cannot be answered based
on the information in the excerpts from an article,
write ’unanswerable’. If the question is a yes/no
question, answer ’yes’, ’no’, or ’unanswerable’.
Do not provide any explanation.
Excerpts from Article: <CONTEXT>
Answer the question based on the above excerpts
from an article as concisely as you can, using a sin-
gle phrase or sentence if possible. If the question
cannot be answered based on the information in
the excerpts from an article, write ’unanswerable’.
If the question is a yes/no question, answer ’yes’,
’no’, or ’unanswerable’. Do not provide any
explanation.
Question: <QUESTION>

A.3 Two-turn
Turn 0:
You are given a scientific article and a question.
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
article. If there are no relevant paragraphs answer
’No relevant paragraphs found’. Do not provide
any explanation.
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
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article. If there are no relevant paragraphs answer
’No relevant paragraphs found’.
Question: <QUESTION>

Turn 1:
Answer the question based on your extracted
relevant paragraphs from the above article and
answer as concisely as you can, using a single
phrase or sentence if possible. If the question
cannot be answered based on the information in the
article (your last answer was possibly ’No relevant
paragraphs found’), write ’unanswerable’. If the
question is a yes/no question, answer ’yes’, ’no’, or
’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.4 Two-turn, Advanced (Prefix for Evidence,
Question Repeated)

Turn 0:
You are given a scientific article and a question.
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from
the article and start with ’Found these relevant
paragraphs:’. If there are no relevant paragraphs
answer ’No relevant paragraphs found’. Do not
provide any explanation.
Question: <QUESTION>
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
article. If there are no relevant paragraphs answer
’No relevant paragraphs found’.
Question: <QUESTION>

Turn 1:
Answer the question based on your extracted
relevant paragraphs from the above article and
answer as concisely as you can, using a single
phrase or sentence if possible. If the question
cannot be answered based on the information in the
article (your last answer was possibly ’No relevant
paragraphs found’), write ’unanswerable’. If the
question is a yes/no question, answer ’yes’, ’no’, or
’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

B Example answers

We also provide a list of qualitative examples
how fine-tuning improved the performance (simple

prompt, test set). We separate multiple possible
answers by slashes.

• Answer more clearly to unanswerable ques-
tion

– Question: How does this result compare
to other methods KB QA in CCKS2019?

– Answer (ground truth): Unanswerable
– Answer (zero-shot): The proposed

method for open domain Chinese ques-
tion answering in CCKS2019 achieved
an F1 score of 70.45% on the test data.
This result is comparable to other meth-
ods in KB QA, as it also employs a com-
bination of information retrieval and se-
mantic parsing. However, the specific
comparison to other methods is not pro-
vided in the article, so it is unanswerable.

– Answer (fine-tuned): Unanswerable

• Detect unanswerable question

– Question: Which labeling scheme do
they use?

– Answer (ground truth): Unanswerable
– Answer (zero-shot): They use a se-

quence labeling scheme for both con-
stituency and dependency parsing.

– Answer (fine-tuned): Unanswerable

• Answer more concisely

– Question: Does regularization of the
fine-tuning process hurt performance in
the target domain?

– Answer (ground truth): No
– Answer (zero-shot): No, regularization

of the fine-tuning process does not hurt
performance in the target domain. In
fact, it can improve performance by re-
ducing catastrophic forgetting and pre-
serving the source domain’s performance
as much as possible while keeping the
target domain’s performance optimal.

– Answer (fine-tuned): No

• Answer more concisely and correctly

– Question: what are the baselines?
– Answer (ground truth): Reschke CRF,

Reschke Noisy-OR, Reschke Best



– Answer (zero-shot): The article does
not provide specific baselines for the ma-
chine reading task. However, it mentions
several related works and systems that
the authors aim to improve upon. These
include: 1. Reschke CRF: a conditional
random field model. 2. Reschke Noisy-
OR: a sequence tagger with a N̈oisy-
ORf̈orm of aggregation that discourages
the model from predicting the same value
for multiple slots. 3. Reschke Best: a
sequence tagger using a cost-sensitive
classifier, optimized with SEARN, a
learning-to-search framework. These
baselines represent different approaches
to machine reading and event extraction
from noisy sources. The authors’ pro-
posed architecture, called RAC, aims to
improve upon these baselines by incorpo-
rating attention-based mention scoring,
cluster-wide aggregation, and global con-
straints.

– Answer (fine-tuned): Reschke CRF.
Reschke Noisy-OR. Reschke Best.

• Answer more concisely and correctly 2

– Question: How do they preprocess
Tweets?

– Answer (ground truth): They removed
retweets, URLs, emoticons, mentions of
other users, hashtags; lowercased the text
and removed the punctuation. / re-tweets
do not bring any additional information
to our study, thus we removed them, re-
moved any expressions considered to
be semantically meaningless like URLs,
emoticons, mentions of other users (de-
noted by the @ symbol) and hashtags,
downcased and stripped the punctuation

– Answer (zero-shot): The article does
not provide specific details on how the
tweets are preprocessed. However, it
mentions that certain expressions are re-
moved, such as URLs, emoticons, men-
tions of other users, and hashtags, to
simplify textual pre-processing. Addi-
tionally, the tweets are downcased and
stripped of punctuation.

– Answer (fine-tuned): They remove re-
tweets, expressions considered to be se-
mantically meaningless, and downcase

and strip the punctuation from the text.

• Answer correctly

– Question: Do they evaluate only on En-
glish datasets?

– Answer (ground truth): Yes / The twit-
ter dataset is English-only; no informa-
tion for the reddit dataset is given

– Answer (zero-shot): No, they evaluate
on a diverse range of social media plat-
forms and content types, including En-
glish, Spanish, Portuguese, French, Ger-
man, Italian, and Arabic.

– Answer (fine-tuned): Yes

• Answer more specifically

– Question: How many layers of recurrent
neural networks do they use for encoding
the global context?

– Answer (ground truth): 2 / 8
– Answer (zero-shot): The article does

not provide specific information on the
number of layers of recurrent neural net-
works used for encoding the global con-
text. However, it mentions that they
use stacked recurrent neural networks
to capture the long-term dependencies
and global context information from the
whole sentence.

– Answer (fine-tuned): Two feed-forward
layers of size 400 with rectified linear
units (ReLU); One bi-directional gated
recurrent unit (BiGRU) layer with hidden
size 200; Two feed-forward layers of hid-
den size 200 with rectified linear units;
One BiGRU layer with hidden size 100;
Two feed-forward layers of size 100 and
50 respectively with ReLU activation.

C Further Experimental Setup

Evidence type Frequency
Text 81.6%
Table/Figure 11.6%
None 12.8%

Table 8: Qasper dataset statistics (Dasigi et al., 2021):
evidence types; the percentages add to over 100% be-
cause answers can include multiple evidence types.



Minor details To bin the evaluation sets, we to-
kenize the whole paper texts from the JSON files
that the dataset website provides. We used the tok-
enizer from Vicuna-16k, but the number of tokens
should be the same for the other tokenizers. For
the evidence positions, we determine the position
of the first token of the evidence paragraphs inside
the paper text. We assume this is representative as
most evidence is at most a few sentences long. If
there are multiple evidence paragraphs that are not
continuous in the dataset, we bin potentially one
paper multiple times.

A model tasked to extract the evidence should
output no paragraphs if there is none for the ques-
tion at hand. Instead, it should generate the string
“No relevant paragraphs found” which we include
in the prompts and filter out of the answers before
calculating the F1 score.

C.1 Hard- and Software

For evaluation and training of the tested models we
need high-performance GPUs. Therefore, we use
the bwUniCluster 2.03 for our experiments. De-
pending on availability, we use the NVIDIA A100
with 80 GB of accelerator memory or the NVIDIA
H100 with 94 GB. The bwUniCluster 2.0 allows
the use of NVIDIA Enroot4 which enables running
Docker5 containers on the computing cluster. We
use the PyTorch container6 by NVIDIA to train
the models in our experiments. FlashAttention is
only implemented per GPU type at the moment and
comes pre-installed with this container.

We run all our experiments (inference and train-
ing) with the FastChat7 (Zheng et al., 2023) frame-
work which is an open-source platform for “train-
ing, serving, and evaluating large language model
based chatbots”. It is developed by the Large
Model Systems Organization (LMSYS Org).8 The
LMSYS Org also operates the LMSYS Chatbot
Arena9 (Zheng et al., 2023) which tries to com-
pare the performance of current LLMs against each
other in a chatbot setting. FastChat provides code
to easily run models, feed them with input data, and
store their answers. Besides regular fine-tuning it
also provides a (Q)LoRA implementation that can

3https://wiki.bwhpc.de/e/Main_Page
4https://github.com/NVIDIA/enroot
5https://docs.docker.com/
6https://catalog.ngc.nvidia.com/orgs/nvidia/

containers/pytorch
7https://github.com/lm-sys/FastChat
8https://lmsys.org/
9https://chat.lmsys.org/

utilize FlashAttention. This script is run with the
DeepSpeed10 library.

C.2 Hyperparameters

All following stated hyperparameters are the same
on all experiments if not stated differently per ex-
periment.

During inference, we run the models with a tem-
perature of 0.0 which equates to greedy decoding.11

FastChat code also uses a temperature of 0.0 for
tasks like extraction and reasoning.12 This fits our
requirements as we want the most accurate and
truthful answer. Also, we saw a degradation in per-
formance when raising the temperature. We let the
models generate up to 1,024 tokens.

Our training configuration is the same as the
example from FastChat: We use a LoRA rank
r of 8 and a LoRA Alpha of 16. Rank r = 8
results in 4,194,304 trainable parameters out of
6,742,609,920 for LLaMA 2 7B based models. The
dropout is 0.05 and we apply no weight decay. The
learning rate is initialized with 2e-5 with a warm-up
ratio of 0.03 and a cosine learning rate scheduling.
We do no extensive hyperparameter search because
of time constraints regarding compute and because
the authors of QLoRA already noted that the most
important “hyperparameter” is the location of the
adapted parameters inside the model. We train each
model for 5 epochs on the training split after our
preprocessing. We chose this duration as it could
be done within a few hours on a single GPU, and
we saw performance saturation within this training
duration.

D Additional Evaluation Results

We provide additional evaluation results for all
models – zero-shot (Table 9) and fine-tuned with
QLoRA (Table 10).

We also tested if changing the temperature in-
creases performance (Table 11): Our rationale is
that the most probable evidence is none as the
placeholder string for this is always the same and
occurs more often during training than any other
evidence string. Also, it is not that important if the
found paragraphs are perfectly correct (e.g., not too
long): It just has to be useful to answer the ques-
tion. Yet, increasing the temperature monotonously

10https://github.com/microsoft/DeepSpeed
11https://huggingface.co/blog/how-to-generate
12https://github.com/lm-sys/FastChat/blob/

085c2c37dca426059f023e2a080c45717c742fd1/
fastchat/llm_judge/common.py
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Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer F1 per paper length
0k – 4k 333 25.53 27.20 25.47
4k – 8k 593 0.40 24.01 24.08
8k – 64 0.00 19.55 18.51
Answer F1 per absolute evidence position
0k – 4k 794 9.79 25.82 26.73
4k – 8k 173 0.38 18.02 23.35
8k – 6 0.00 3.78 15.06
No evidence 77 11.80 23.38 1.06

Table 9: Analysis of the models we tested, dev-short set, LongBench prompt (Bai et al., 2023), zero-shot.

Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer F1 per paper length
0k – 4k 333 38.89 50.26 52.15
4k – 8k 593 18.53 43.02 44.45
8k – 64 2.48 39.55 44.09
Answer F1 per absolute evidence position
0k – 4k 794 23.99 43.54 46.28
4k – 8k 173 9.33 35.23 37.74
8k – 6 0.00 64.37 67.94
No evidence 77 52.81 75.32 64.94

Table 10: Models we tested, dev-short set, LongBench prompt (Bai et al., 2023), fine-tuned with QLoRA for 5
epochs.

decreases both the evidence and answer F1 scores.
On top of reduced quality, the percentage of empty
evidence rises from ∼46% (0.0) to ∼66% (1.0).

We compare our best approach against the base-
line model from the original publication of the
Qasper dataset (Dasigi et al., 2021). Their model is
the Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020) in two sizes: base and large. It contains
more fine-grained results than the comparison on
the ZeroSCROLLS (Shaham et al., 2023) subset of
Qasper. Also, they estimate a lower bound for the
human performance on the test set by calculating
the agreement between different annotator answers
for each question. Their best model for question
answering is LED-base that receives the full paper
as input. One variant includes evidence extraction
during training.

Our comparison (Table 12) shows that LED has
a similar distribution of the F1 scores per type. The
extractive score is higher than the abstractive score
and the boolean score is the highest or close to
it. We can also see a similar behavior of the LED
model to the extract-then-answer prompt when in-
tegrating evidence extraction into the answer gener-
ation process: The extractive and abstractive scores

suffer while the model detects unanswerable ques-
tions better. Also, our best approach performs bet-
ter on questions with very short answers (yes/no,
unanswerable) than the lower bound for human
performance. This could be an explanation of our
observation that longer training does not improve
these scores after they reach a certain level (trade-
off: short vs. long answers). However, the quality
of the abstractive answers is considerably worse
(39.71 vs. 18.79).

For the evidence extraction, our best model is
LongChat-32k fine-tuned with the extract-then-
answer prompt. While the evidence extraction did
not improve the answer quality in our case, it can
be a useful addition for the user of a QA system to
contextualize the answer. Here, the difference be-
tween our approach and the Qasper baseline LED-
large (Table 13) is not as high as for the answer F1

score but we still see a clear improvement over the
baseline.

E Additional Training Results

Here, we list how the F1 scores during our train-
ing runs changed compared to the zero-shot re-
sults with the same prompt. For the evidence



LongChat-32k 0.0 0.2 0.4 0.6 0.8 1.0
Answer F1 39.08 37.61 35.05 33.15 30.57 29.60
Evidence F1 38.45 37.20 35.31 33.54 31.85 29.16

Table 11: LongChat, dev-short set, extract-then-answer prompt, fine-tuned 5 epochs with QLoRA, varying
temperatures.

Models

LongChat-32k
LongBench

prompt
zero-shot

LongChat-32k
LongBench

prompt
5 epochs

LED-base
without
evidence
extraction

LED-base
with

evidence
extraction

Human
(lower
bound)

Test answer F1 28.81 55.20 32.80 33.63 60.92
Test answer F1 by type
Extractive 28.39 54.89 30.96 29.97 58.92
Abstractive 20.82 18.79 15.76 15.02 39.71
Boolean 56.11 84.68 70.33 68.90 78.98
Unanswerable 2.14 86.42 26.21 44.97 69.44

Table 12: Comparison of our approaches against baselines from the Qasper paper, test set.

only prompt (Table 14) and for the extract-then-
answer prompt (Table 6, Table 15), we only trained
LongChat-32k.



Models

LongChat-32k
extract-then-answer

prompt
5 epochs

LED-base LED-large
Human
(lower
bound)

Dev evidence F1 38.27 23.94 31.25 –
Test evidence F1 42.57 29.85 39.37 71.62

Table 13: Comparison of our approaches against baselines from the Qasper paper, full dev and test set, evidence
extraction.

LongChat-32k Zero-shot 1 epoch 2 epochs 3 epochs
Answer F1 36.16 55.65 56.97 57.22
Answer F1 by type
Extractive 37.58 61.04 61.41 62.19
Abstractive 21.80 25.20 25.60 27.01
Boolean 47.96 72.27 80.99 79.83
Unanswerable 53.48 84.00 83.33 80.56

Table 14: LongChat-32k, evidence only dev-short set, fine-tuned with QLoRA.

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer F1 17.85 27.59 41.54 41.18
Answer F1 by type
Extractive 16.37 22.27 45.00 41.82
Abstractive 16.03 10.64 21.06 19.41
Boolean 36.75 59.66 68.14 58.10
Unanswerable 5.33 59.79 40.23 69.23
Evidence F1 0.00 26.37 31.12 35.13

Table 15: LongChat, dev-short set, extract-then-answer prompt, improved, fine-tuned with QLoRA.
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