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Abstract— Performing tasks with high accuracy while inter-
acting with the real world requires a robot to have an exact
representation of its inverse dynamics that can be adapted
to new situations. In the past, various methods for learning
inverse dynamics models have been proposed that combine the
well-known rigid body dynamics with model-based parameter
estimation, or learn directly on measured data using regression.
However, there are still open questions regarding the efficiency
of model-based learning compared to data-driven approaches
as well as their capabilities to adapt to changing dynamics. In
this paper, we compare the state-of-the-art inertial parameter
estimation to a purely data-driven and a model-based approach
on simulated and real data, collected with the humanoid robot
Apollo. We further compare the adaptation capabilities of two
models in a pick and place scenario while a) learning the
model incrementally and b) extending the initially learned
model with an error model. Based on this, we show the gap
between simulation and reality and verify the importance of
modeling nonlinear effects using regression. Furthermore, we
demonstrate that error models outperform incremental learning
regarding adaptation of inverse dynamics models.

I. INTRODUCTION

Humans are able to move their body through space with
high accuracy, even when moving fast, lifting heavy objects
or using tools. To achieve similar capabilities, a robot needs
to learn a representation of its own body with its dynamic
properties that can be adapted to new situations and environ-
mental interactions.

In the context of robot control, this is known as the inverse
dynamics problem. Given a desired trajectory with joint posi-
tions, velocities and accelerations, a dynamics model is used
to predict the torques (or efforts) that have to be applied on
each individual joint [1]. Deriving such an inverse dynamics
model analytically, e.g. by making use of the rigid-body
dynamics formulation, is not sufficient as it does not consider
nonlinearities like backlash or friction and thus, would lead
to large tracking errors. In such cases, the robot would
constantly have to track its current position and compensate
the errors with high-gain feedback control. This makes it
dangerous to interact with the real world and impossible to
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Fig. 1. The humanoid robot Apollo with 7 DoFs in each arm, executing
a pick and place task without (left) and with an object (right)

work in human-centered environments. Additionally, there
are cases in which the dynamic parameters are only partially
known in advance or might not even be available at all, so
that they need to be identified at run-time. Current state-
of-the-art methods address these problems by estimating the
inertial parameters of a robot [2] or learning the inverse dy-
namics model directly from measured data using regression,
see e.g. [3], [4], [5]. However, these methods strongly rely
on the data used for model inference. Hence, they might
only approximate the robot’s dynamics from previously seen
tasks or workspace configurations. Due to the fact that the
robot’s dynamics always depends on the current state, offline
learning would require large amounts of training data from a
well-explored state space. For robots with many degree-of-
freedom (DoF), this is not easily feasible.

Furthermore, one has to keep in mind that the robot’s
dynamics can change during task execution, for example
when using tools or lifting heavy objects. This means that
the robot would either have to learn new dynamics or
continuously adapt its existing model. A promising way
to overcome these limitations is to incrementally learn the
inverse dynamics model online [5], [6] or learn an error
model on top of an existing one [7], [8], [9]. However, there
are many challenges when it comes to online learning as the
robot has to adapt to the new dynamics without losing the
ability of its previously learned model, whereas many error
model approaches assume that learning can be done in a
task-specific way. Hence, the robot needs to have knowledge
about when to switch to a certain task [8], [10].

While regression-based learning methods for inverse dy-
namics have been explored in the past [11], there are still
many open questions regarding the efficiency of model-
based learning compared to data-driven approaches as well
as their capabilities to adapt to new situations with changing



dynamics. In this work, we target both challenges. First,
we compare three different methods for inverse dynamics
learning, the state-of-the-art inertial parameter estimation [2],
the model-based Dynamic Bézier Map [12] and a purely
data-driven approach that uses feedforward neural networks
[13]. The methods are evaluated 1) in simulation and 2) two
of them based on real data collected with the humanoid robot
Apollo (Fig. 1) with 7 DoFs in each arm. After that, we
compare the adaptation capabilities of the previously learned
models in a pick and place scenario, executed on a real robot,
while a) learning the models incrementally and b) extending
the models with an error model.

II. FUNDAMENTALS

In the following, we describe the basic concept of in-
verse dynamics models in the context of feedforward robot
control and provide an overview of existing state-of-the-art
approaches. After introducing the necessary theory, the most
interesting methods are evaluated in detail.

A. Inverse Dynamics in Feedforward Control

The inverse dynamics equation represents the mapping
between the robot’s motion expressed in generalized coordi-
nates (i.e. joint positions q, velocities q̇ and accelerations q̈)
and the generalized forces τ (i.e. joint torques) that are
required to achieve a particular motion. The symbols q, q̇
and q̈ as well as τ denote n-dimensional vectors where n
is the robot’s number of DoFs. The inverse dynamics of a
robot with n joints can then be described as

τ = H(q)q̈+C(q, q̇)q̇+g(q)+ ε(q, q̇, q̈) (1)

where H(q) is the symmetric and positive-definite inertia ma-
trix, C(q, q̇)q̇ is the centripetal and Coriolis force, g(q) is the
gravitational component and ε(q, q̇, q̈) are nonlinear backlash
and friction effects [14]. In order to control the robot, e.g. by
using feedforward torque control, the generalized forces have
to be transmitted to torque commands and sent to the motor
controller. Typically, the motor commands are computed as

τ = τFF + τFB (2)

where τFF is the feedforward and τFB the feedback com-
ponent. Given a desired motion with desired positions qd ,
velocities q̇d and accelerations q̈d , the feedforward compo-
nent τFF can be predicted by an assumed inverse dynamics
model. In common linear feedback controllers (PD), the
feedback term can be described as

τFB = Kpe+Kvė (3)

where e= qd−q is the tracking error and Kp and Kv represent
the feedback gains. Selecting the correct gains can be seen
as a trade-off between tracking the desired trajectory with
the inverse dynamics model and keeping the system stable
[1].

There exist various methods to derive an inverse dynamics
model from the above equation of motion when neglecting
ε(q, q̇, q̈). The most commonly used are the Lagrange and
the Newton-Euler formulation, derived from the rigid body

dynamics [14]. However, applying these methods can lead
to inaccurate inverse dynamics models, since many of the
robot’s parameters are usually not known in advance and
must be assumed such as the inertial parameters (i.e. the
mass, center of mass and inertia tensor matrix). Furthermore,
when making use of the rigid body dynamics, nonlinear
backlash and friction effects are neglected so that the feed-
forward command results in

τFF = H(qd)q̈d +C(qd , q̇d)q̇d +g(qd) (4)

which is only a rough approximation of the equation of
motion. Thus, it can lead to poor torque predictions and cause
imprecise movements of the robot.

B. Learning Inverse Dynamics

For the reasons given above, many efforts have been
made to identify the robot’s dynamics parameters at run-
time, or learn the inverse dynamics model directly from
measured data. State-of-the-art inertial parameter estimation,
for example, learn the inertial parameters of a robot by
re-formulating the well-known Newton-Euler equations into
a linear combination of known and unknown parameters
and solving a least-squares problem [2], [15]. With the
prior knowledge of the rigid body dynamics, the resulting
dynamics model is able to learn fast and generalize well on
simulated data, but it does not consider any non-linearities
and may lead to poor results on a real robot.

Nonlinear regression methods such as LWPR [5], GPR
[11] and ν-SVR [4] overcome this problem by directly learn-
ing from measured data of a robot. The local learning method
LWPR is very efficient due to its low computational costs
but often performs poorly in unseen regions, i.e. they suffer
from insufficient extrapolation capabilities [16], whereas the
global learning methods GPR and ν-SVR can learn more
accurate models but need much more time for training [11].
Due to the fact that regression methods only learn based
on previously seen data, they can only approximate the real
function of the robot’s inverse dynamics.

The so-called ”Dynamic Bézier Map” (DBM) proposed
in [12] allow to learn an exact encoding of a robot’s inverse
dynamics, represented by Lagrangian equations. Thus, they
can provide both high accuracy in trained regions, i.e. good
interpolation, as well as good extrapolation capabilities. But
this comes at a high cost as they require a large amount of
training data, especially if the training data is noisy.

The need to improve the inter- and extrapolation capability
of inverse dynamics models as well as their ability to adapt
to new situations, raises the following questions: Which ap-
proach is suited best for inverse dynamics learning? What are
the limitations of model-based and data-driven approaches?
How can the models perform in changing dynamics and
adapt to new situations? To answer these questions, we
compare three different methods for inverse dynamics learn-
ing: 1) the state-of-the-art inertial parameter estimation that
makes use of the prior knowledge about rigid body dynamics,
2) a purely data-drive approach with feedforward neural
networks which directly learns from measured data, and 3)



a model-based approach that tries to learn an exact encoding
of the robot’s inverse dynamics. In the following, we first
present the learning of inverse dynamics models. After that,
we show how the initially learned models can be adapted
to changing dynamics using incremental and error model
learning.

III. INVERSE DYNAMICS MODELS

In general, learning an inverse dynamics model can be
described as finding the function f (q, q̇, q̈) that maps the
applied torques τ to the target values y = τ , given an
observed trajectory with joint positions q, velocities q̇ and
accelerations q̈. If the learned function is sufficiently accu-
rate, it can then be used to predict the feedforward motor
commands for a desired motion with f (qd , q̇d , q̈d) = τFF .
The following sections provide an overview of the inertial
parameter estimation, the regression-based neural networks
and the model-based Dynamic Bézier Map.

A. Inertial Parameter Estimation

The inertial parameter estimation, further referred to as
PEST, makes use of the recursive Newton-Euler algorithm
derived by the rigid body dynamics. More specifically, the
Newton-Euler equations are re-formulated in a linear equa-
tion to only depend on the known parameters (i.e. the robot
kinematics and applied torques) and unknown parameters
(including the mass, center of mass and inertia matrix of the
robot’s links). This way, the linear equation can be described
as

τ = Kψ (5)

where τ denotes the applied forces/torques on each link, K is
the regression matrix with the prior knowledge of the robot’s
kinematic motion and ψ are the 10 inertial parameters of
each link [2]. Unfortunately, the inertial parameters cannot
be estimated by simply applying least squares, defined as

ψ = (KT K)
−1

KT
τ (6)

because the term KT K has a loss of rank and thus, is
not invertible [2]. In other words, some of the inertial
parameters are completely unidentifiable, whereas others
are only identifiable in linear combinations [15]. There are
multiple solutions to identify the important parameters, e.g.
by using the well-known principal component analysis or the
QR-decomposition method. The PEST model in this work
implements the singular value decomposition (SVD) of the
regression matrix, defined as

K =UΣV T (7)

where U and V are orthogonal matrices and Σ is the diagonal
matrix of ordered singular values ρ on the diagonal [15]. To
eliminate the irrelevant parameters, all singular values that
are below the threshold ρi ≤ 0.001 are set to 0. The solution
of the least squares problem can then be described as in [15]:

∆ψ = (V Σ
+UT )τ. (8)

Note that if the model is trained with perfect data, i.e.
data without noise and nonlinear backlash or friction, the

TABLE I
FFNN PARAMETERS FOR EACH JOINT OF THE NN MODEL

Joint FFNN structure η Batch size Epochs

1 3d,100,1 0.001 32 100
2 3d,100,100,1 0.001 32 100
3 3d,100,1 0.0007 32 100
4 3d,100,1 0.005 32 100
5 3d,100,1 0.001 32 100
6 3d,100,1 0.001 32 100
7 3d,100,1 0.001 32 100

parameter estimation is able to find a perfect solution for
the inverse dynamics problem. However, due to the fact
that the term KT K from Equation 6 is not of full rank, we
only calculate a pseudo-inverse of the regression matrix K.
Consequently, the identified inertial parameters ∆ψ typically
do not match the physical inertial parameters ψ of the robot.

B. Feedforward Neural Networks

The regression-based inverse dynamics model in this
work, further referred to as NN model, implements multiple
feedforward neural networks. Feedforward neural networks
(FFNN) are well-known for their nonlinear regression ca-
pability [13]. Thus, they pose an interesting alternative for
learning a robot’s inverse dynamics, particularly with regard
to nonlinear backlash and friction effects. Contrary to the
inertial parameter estimation, the NN model does not have
explicit knowledge about the robot, aside its number of DoFs.

For every robot joint, the NN model trains a separate
neural network that directly learns from measured data. The
input of each FFNN is the robot’s state, i.e. the positions q,
velocities q̇ and accelerations q̈ of all joints. Consequently,
the input layer takes 3d inputs where d is the number of
DoFs. The predicted value is the torque τ of the robot’s
joints so that the output layer results in size 1. To find a
suitable network architecture, we trained the FFNNs mul-
tiple times with different training parameters and network
configurations. The results were evaluated by analyzing the
training and validation loss. Table I shows the final structure
of the FFNN per joint as well as its training parameters (i.e.
the learning rate η , batch size and number of epochs). The
robot’s first joint, for example, takes an input size of 3d,
has one hidden layer with 100 neurons and an output size
of 1. All networks consist of fully connected layers and use
the nonlinear ReLU activation function [13], apart from the
linear output layer.

C. Dynamic Bézier Map

The work in [12] presents a completely different approach
that can be used for both learning the kinematics as well
as the dynamics model of a robot. The Dynamic Bézier
Map (DBM) is a parametrizable model that makes use of
the tensor product of rational Bézier functions, a method
from the field of computer aided geometrical design, to learn
the inverse dynamics of a robot. To this end, the DBMs
encode a combination of squared trigonometric functions to



represent the Lagrangian formulation from Hollerbach [17].
In this way, they are able to learn an exact representation
of the inertia matrix H(q), the centripetal and Coriolis
force C(q, q̇)q̇ and the gravity component g(q) from the
equation of motion (Equation 1).

To demonstrate the DBM abilities, the authors of [12]
use a dynamic simulator in the experiments with canceled
nonlinearities. The results show that the DBM algorithm
is able to provide high accuracy with good extrapolation
capabilities. This also applies to situations where the model
is trained with noisy data. But these features come at a high
cost, as the number of model parameters increases drastically
with the robot’s number of joints. This limits applications to
a small number of DoFs, especially in the case of noisy data,
where a large amount of training samples is required.

Due to the fact that DBM show both good interpolation
and extrapolation capabilities even in the presence of noise,
they pose an interesting alternative for learning the robots
inverse dynamics. Therefore, we evaluate the DBM approach
in detail and compare it to the inertial parameter estimation
and regression-based neural networks. Since we use an exact
implementation of the Dynamic Bézier Map, we refer to [12]
for further details of the method.

IV. ADAPTATION OF INVERSE DYNAMICS MODELS

Learning an inverse dynamics model once is not sufficient
as the dynamics of a robot might change when interacting
with the real world. Thus, the inverse dynamics model
has to continuously learn, i.e. adapt or extend its existing
knowledge, to cope with new situations. In the remainder
of this section, we discuss two approaches for adapting the
inverse dynamics, the incremental learning and the error
model learning.

A. Incremental Learning

One way to adapt the inverse dynamics model is to learn
the model incrementally during task execution. This means
that the model is trained with every new sample (the extreme
case) or with a small number of samples received from the
data stream of the current task. However, a key challenge
of incremental inverse dynamics learning is to extend the
underlying model without losing the ability of its previously
learned model. Furthermore, it requires a computationally
efficient learning algorithm that is able to estimate the
model’s parameters at run-time.

In this work, we apply the well-known δ -rule [18], also
referred to as the Widrow-Hoff rule, to update the weights of
the NN model as it allows an incremental adaptation of the
model parameters in an efficient way with low computational
costs [13]. To optimize the incremental learning process,
we performed multiple experiments on the NN model with
different batch sizes, number of epochs and adaptation rates,
i.e. number of data points the model is incrementally trained
with. Choosing the correct training parameters can be seen
as a trade-off between adapting to the new dynamics and not
losing the knowledge of the previously learned batch model.
At the same time, we ensure that the training parameter

candidates are within a reasonable range regarding their
training time and computational costs. The best training
configuration for incremental learning was performed with
an adaptation rate of 100, a batch size of 32 and learning 5
epochs which is also applied in the experiments. The average
training time of a single FFNN in this configuration is 0.68
seconds. However, the experiments were conducted on a
single core of a CPU without code optimization and thus,
could further be improved for online learning.

B. Error Model Learning

Another way to adapt a robot’s inverse dynamics, is to
learn an error model on top of an existing dynamics model,
as e.g. proposed in [8] or [9]. Error models benefit from
the fact that they do not directly depend on the underlying
dynamics model. Instead, they only make use of the model’s
predictions but are learned separately. In particular, the
feedforward command sent to the motor controller can be
interpreted as a combination of the torque predictions from
the existing dynamics model and the learned error model.
Let τpred be the torque prediction of the inverse dynamics
model, then the feedforward command τFF can be expressed
as

τFF(q, q̇, q̈) = τpred(q, q̇, q̈)+ τerr(q, q̇, q̈,ω) (9)

where ω are error model parameters and τerr are the pre-
dicted error torques [9]. Note that both models depend on
the actual state of the robot, i.e. the positions q, velocities q̇
and accelerations q̈. Given the applied torques τ sent to the
robot and its observed state (q, q̇, q̈), the error model can
be learned by minimizing the loss L with respect to the
predicted torques from the inverse dynamics model [8]:

L = ∑
(q,q̇,q̈,τ)∈D

‖τ− τpred(q, q̇, q̈)︸ ︷︷ ︸
τ̂err

− ferr(q, q̇, q̈,ω)‖2 (10)

where ferr(q, q̇, q̈,w) is the function learned by the nonlinear
error model, given its model parameters ω and the current
robot state (q, q̇, q̈). For each sample in the data set D , the
inverse dynamics model first has to predict the torques τpred .
After that, the predicted torques τpred are subtracted from the
applied torques τ so that the difference τ− τpred = τ̂err can
then be used as the target value to train the inverse dynamics
error model [8].

Similar to the work of [8], we employ feedforward neural
networks to model the error of each individual robot joint.
Our error model uses the same network structures as the
NN model described in Table I, because the target function
of the NN model is very similar to the one that has to be
approximated by the error model. The error models are then
learned incrementally to extend the existing PEST and NN
models during task execution.

V. EXPERIMENTS

In this section, we first describe the general data acquisi-
tion process for our experiments. Following this, we compare
the learning performance of PEST, NN and DBM based on
simulated data including noise-free and noisy data sets of a



reduced 4-DoF model of the humanoid robot Apollo. The
PEST and NN model are then evaluated on real data of the
7-DoF Apollo arm. Finally, the adaptation capabilities of the
inverse dynamics models are compared to each other on real
data of multiple pick and place tasks by extending the PEST
and NN model with error models and learning the NN model
incrementally.

A. Data Acquisition

1) Simulated data without noise: The simulated data is
collected in the software package SL [19] with a model of
Apollo. The trajectories are generated by executing a sine
task on all robot joints simultaneously such that they cover
a sufficiently rich robot state space. To acquire a wide range
of data with well-varying dynamics, the sine task is executed
multiple times with different velocities which results in slow
(low frequency) and fast (high frequency) movements of
the robot and thus, leads to different forces/torques acting
on the robot’s joints. The sine motion is executed 8 times
with frequencies ranging from 0.1Hz and 0.8Hz, where the
velocity is increased by 0.1Hz in each task. Every sine
task has an execution time of 10 seconds and the data is
measured with a sample rate of 500Hz. To limit the number
of training samples for the batch learning experiments, the
Apollo robot model is reduced to 4 DoFs, only considering
the most upper links. Due to the fact that the joint velocities,
accelerations and torques depend on the succeeding links,
they are not directly used from SL. Instead, the velocities
are computed by differentiating over the measured positions
through a convolution filter with a window size of 3. The
accelerations are then calculated in the same way, using the
velocities. Given the joint positions q, the velocities q̇ and
accelerations q̈, the ground truth torques τFF are computed
with the recursive Newton-Euler algorithm (RNEA) [20].
The total number of data points N from 8 sine tasks executed
with different velocities results in N = 8×4.500 = 36.000.

To evaluate the inverse dynamics models with respect
to both their interpolation and extrapolation capabilities,
we split the data into different training and test sets. The
interpolation experiment evaluates whether the models are
able to predict the forces/torques from a range of data points
that lie in the trained region. Thus, the models are trained
on frequencies ranging from 0.1Hz to 0.4Hz and 0.7Hz to
0.8Hz, whereas the tests are performed on data from 0.5Hz
and 0.6Hz. In case of extrapolation, the models are tested on
data samples that lie outside the trained region. Accordingly,
the training set consists of data from 0.1Hz to 0.6Hz and
the models are tested on 0.7Hz and 0.8Hz. An overview of
the simulated data sets used for inter- and extrapolation is
depicted in the first two rows of Table II. Note that both data
sets are generated based on the positions from SL and thus,
represent perfect data from a simulated robot without noise.

2) Simulated data with noise: To evaluate the inverse
dynamics models under more realistic conditions, the data
is modified to simulate the inaccuracies of a robot’s position
sensing. This is achieved by truncating the positions after the
5th decimal point. As before, the velocities and accelerations
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Fig. 2. Measured torques on the first robot joint during execution of a pick
and place task with (cyan) and without an object (red)

are then computed by a convolution filter. To evaluate the
prediction errors of the inverse dynamics models, the RNE-
torques are calculated based on the unmodified SL positions.
Note, if we used the modified SL positions to calculate the
torques, the methods would only have to learn the mapping of
the RNE-equations. Or in other words, learning the inverse
dynamics would be the same as in our experiments with
noise-free data, apart from slightly different positions –
whereas learning from noisy positions and accurate RNE-
torques allows us to evaluate the errors made by the models
due to learning from inaccurate robot states. The composition
of the noisy training and test set is given in Table II.

3) Real data: Instead of generating a new data set, this
work makes use of existing measurements from [21] which
were collected on the real humanoid robot Apollo with 7
DoFs in each arm. Hence, it comprises both noisy data as
well as nonlinear backlash and friction effects. The data is
measured during multiple pick and place tasks which include
the following stages: 1) approach target object, 2) grasp and
lift object, 3) move to target position and place object, 4)
retract arm from object.

First, the pick and place task is conducted without an
object such that the robot is able to learn its own inverse
dynamics. After that, an object with a mass of 851 g is used
(see Fig. 1) to which the robot has to adapt its inverse
dynamics model. In the real data experiments, the robot
learns from observations of its own state, i.e. q, q̇ and q̈
at time step t, after sending the motor commands τ to the
robot in time step t− 1. Hence, one training sample of the
inverse dynamics models can be described as (qt , q̇t , q̈t ,τt−1).
Each pick and place task is repeated 10 times and lasts about
9-10 seconds. The data is sampled with 1kHz so that the total
number of data points is 90000 per task.

In this work, the real data set is used for both evaluating
the batch learning as well as the adaptation of inverse
dynamics models. In the batch learning experiments, the
models are first trained on tasks without the object. Then,
the models are evaluated on the test set with the object to
evaluate their accuracy after changing the robot’s dynamics.
Fig. 2 shows the measured torques of the first robot joint
while executing the pick and place task without (cyan) and



TABLE II
DATA SETS USED FOR LEARNING AND ADAPTATION

Experiment description Training set
[Hz]

Test set
[Hz]

Sim. data w/o noise (Interpolation) 0.1-0.4, 0.7-0.8 0.5, 0.6
Sim. data w/o noise (Extrapolation) 0.1-0.6 0.7, 0.8
Sim. data with noise (Interpolation) 0.1-0.4, 0.7-0.8 0.5, 0.6
Sim. data with noise (Extrapolation) 0.1-0.6 0.7, 0.8
Real data (Batch learning) without object with object
Real data (Continuous learning) with object –

with (red) an object. Between the training sample 3.000 and
7.500, while grasping and lifting the object, the torques yield
much higher values due to the additional object weight. In
the adaptation experiments, the initially learned models are
learned continuously to adapt to the weight of the object.
Thus, the data set with the object will be used as a training
set in context of continuous learning, as shown in Table II.

B. Batch Learning

In the batch learning experiments, PEST, NN and DBM
models are trained on the full training set and evaluated on
the test set (Table II). The inverse dynamics models are then
compared with respect to their Normalized Mean Squared
Error, defined as NMSE = MSE(P)/Var(T ) where P are
the predictions of an inverse dynamics model and T are
the target values. The NMSE is calculated for each robot
joint separately. After that, the mean NMSE of all links is
computed to get the total NMSE of the model.

1) Simulated data: The batch learning experiment results
on simulated data are shown in Fig. 3a. On the interpola-
tion set without noise, all methods learn good models of
the robot’s inverse dynamics. The PEST and DBM model
are able to encode an exact representation of the inverse
dynamics as their torque prediction errors are very close to
zero. The NN model is able to interpolate the training data
and finds a good solution as its prediction error decreases
below a NMSE of 0.1, indicated by the black line.

The extrapolation experiment without noise illustrates that
PEST as well as DBM are able to learn a generalized inverse
dynamics model, because both methods show good extrap-
olation capabilities. Furthermore, they only have slightly
higher prediction errors than in the interpolation experiment.
Accordingly, they are even able to predict the torques from
robot states that lie outside the trained region. The NN
model’s extrapolation on the contrary, is not as good as
its interpolation. After training, its NMSE on the test set
is greater than 0.1. Thus, the NN can only predict torques
accurately if they are in a certain range of the trained region.

In the interpolation experiment with noise, all inverse
dynamics models show good results but suffer from the noisy
data as their prediction errors on the interpolation set increase
almost up to a NMSE of 10−2. Compared to the interpolation
experiment without noise, the prediction errors of the PEST
and the DBM model differ the most, because they are no
longer able to encode the exact inverse dynamics. The NN
model does not change too much in its learning behavior as

it is still able to interpolate the data. However, it can be seen
that on the noisy data set, the NN model reaches the same
prediction accuracy as DBM and PEST.

The extrapolation experiment with noisy data evaluates
both the model’s capability of learning a generalized model
from a restricted training region as well as their ability to
cope with noisy data. The noisy extrapolation experiment
results in Fig. 3a show that all of the model’s extrapolation
capabilities suffer heavily from noisy data. The predictions
of the PEST are now very close, but still below a NMSE
of 0.1. The DBM on the contrary, show bad extrapolation
capabilities on the noisy data set. That is, with a NMSE
greater than 102. The prediction error of the NN model
did not change much compared to the other experiments.
Although it is not able to interpolate, due to the training set
in this experiment, the NN model almost reaches a NMSE
of 0.1 which is very close to the accuracy of the PEST
model. At the same time, one should keep in mind that
the PEST makes use of the prior knowledge of the robot’s
kinematics, whereas the neural networks do not comprise any
prior knowledge.

2) Real data: In the real data experiments, we first
compare the PEST and the NN model after learning from
data of a pick and place task without an object, executed
on the humanoid robot Apollo with 7 DoFs. After that,
the previously learned models are tested on the same task
performed with an object to examine the models’ capabilities
regarding changing dynamics. The DBM model is excluded
from the real experiments as the number of training samples
required to encode a DBM increases exponentially with the
number of DoFs.

Fig. 3b shows the real data experiment results. It can
be seen that the PEST model is not able to encode the
inverse dynamics very well as its NMSE on the training set
is 0.35. This is due to the nonlinear backlash and friction
effects which cannot be encoded by the PEST and thus,
results in a big gap between simulation and reality. The NN
method on the contrary, is able to learn the robot’s inverse
dynamics very well with a NMSE of 0.007. This performance
is consistent with simulated data experiments from above as
it also reflects the good interpolation capabilities of the NN
model. On the test set with the object, however, both models
are far beyond a NMSE of 0.1, because the object in the
robot’s hand results in a different inverse dynamics of the
robot. As a consequence, the inverse dynamics models need
to be learned continuously during task execution to adapt to
the changing dynamics.

C. Continuous Learning

We evaluate the adaptation capabilities of the NN and the
PEST method using incremental and error model learning.
Similar to the real data experiments, the NN and PEST batch
models are first trained on the pick and place task without the
object. For the NN batch model, we use a slightly different
structure as its performance could further be improved on
real data. The FFNN configuration for each individual joint
is (21,100,100,100,1) while batch learning is performed for
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Fig. 3. Batch learning performed on simulated data (Fig. 3a) of a reduced 4-DoF Apollo model, considering the the inter- and extrapolation capabilities
of the DBM (purple), the PEST (green) and the NN model (blue) on noise-free and noisy data. In the real experiments (Fig. 3b), the PEST and NN model
are trained on real data of the full 7-DoF Apollo arm executing a pick and place task without an object (cyan) and tested on a data set with an object (red).

(a) (b) (c)

Fig. 4. Continuous learning experiments performed on real data of a pick and place task. The red lines indicate the task’s stage changes (e.g. from
approach to grasp). Fig. 4a shows the learning performance of the NN batch model without adaptation (dashed blue), using incremental learning (solid
blue) and error model learning (purple). In Fig. 4b, the performance of the pure PEST batch model (dashed orange) is compared to its extension with an
error model with (solid green) and without (dashed green) adaptation. Fig. 4c shows the comparison of the NN model with incremental learning (blue),
the NN model with error model learning (purple) and the PEST model with error model learning (green).

200 epochs with a learning rate of η = 0.001. Similar to
the NN and PEST batch models, the error models are pre-
trained on data without the object using the predictions of the
NN and PEST models, respectively. After that, the models
are continuously learned on data of the pick and place task
with the object using an adaptation rate of λ = 100, i.e.
the models always learn based on the next λ data points
received from the data stream. In every training step, the
models predict the torques on the small subset S. Based
on these predictions, the NMSE is computed for each joint
as NMSE = MSE(S)/Var(T ) where T represents the target
values (i.e. applied torques) of the pick and place task.

The results of the continuous learning experiments in
Fig. 4a show that the NN batch model without adaptation
(dashed blue) performs well during the approach and the
retract stage in which the robot does not interact with the
object. During grasping and placing the object, however,
the robot’s inverse dynamics changes due to the additional
weight so that the NMSE of the NN model without adap-
tation increases drastically. The incrementally learned NN
model (solid blue) on the contrary, is able to adapt to the
changing dynamics of the robot. One can see that its NMSE

slightly increases up to 0.1 during grasping, but recovers
after 4000 training samples. In the subsequent place stage,
the robot keeps moving its end-effector with the object so
that the adapted model still fits the robot’s inverse dynamics.
The NMSE of the NN model with incremental learning has
its highest peak at the end of the place stage. This could
be due to the fact that it adapted to the new dynamics
with the object and thus, has to re-learn the dynamics of
the robot without the object. The combination of the NN
with error model learning (purple) shows the best prediction
results. Even at the beginning of the grasping stage where the
robot’s inverse dynamics model changes, the combined NN
error model stays below a NMSE of 0.1 and continuously
decreases. Similar to the incrementally learned model, the
NN with error model learning has its highest NMSE at the
end of the place stage, but is able to recover and adapt to
the changing dynamics.

Fig. 4b shows that the pure PEST model without adap-
tation (dashed orange) yields very high prediction errors
throughout the pick and place task. Similar to the batch
learning experiments on real data, this emphasizes the im-
portance of modeling nonlinear effects which the PEST



cannot cope with. However, in combination with the pre-
trained error model (dashed green), the torque predictions
improve significantly for the approach and retract stage as the
regression-based error model is able to correct the prediction
errors. Due to the fact that the combined PEST error model
(dashed green) does not adapt during task execution, it has
high prediction errors in the grasp and place stage. As
expected, the combined PEST with error model learning
(solid green) yields the best results. It is able to compensate
the errors of the pure PEST model and, at the same time,
adapts to the changing dynamics of the grasp and place
stage. Similar to the adaptation experiments of the NN model
(Fig. 4a), PEST with error model learning has the highest
prediction errors at the end of the place task. Apart from
this, the model remains below a NMSE of 0.1 and even
decreases below a NMSE of 10−2 after grasping the object.

Fig. 4c shows the comparison of all three adaptation
models. Again, it can be seen that the models are able to
adapt to the changing dynamics of the pick and place task.
The highest NMSE of all models occurs while placing the
object on the table. This could be due to the abrupt change
of the robot’s dynamics or because the models completely
adapted to the dynamics with the object. The incrementally
learned NN model (blue), however, yields much higher
prediction errors on average than the adaptation models with
error model learning (purple and green). This is especially
true for the grasp stage where its highest prediction error
exceeds a NMSE of 0.1, whereas the combined error models
stay below a NMSE of 0.1. In case of error model learning,
the results of the combined PEST as well as the combined
NN are very similar. Both error models improve the batch
model’s accuracy significantly during task execution.

VI. CONCLUSION

In this paper, we compared three representative methods
for inverse dynamics learning, the state-of-the-art PEST, the
model-based DBM and the purely data-driven NN model.
In simulation, PEST and DBM learn exact representations
of the robot’s inverse dynamics. In presence of noise, all
models suffer heavily, whereby the PEST and the NN model
still yield plausible prediction results regarding extrapolation.
The experiments on the real data set, however, demonstrate
the big gap between simulation and reality. Due to nonlinear
backlash and friction effects, the PEST model performs
poorly on real data, whereas the regression-based NN method
still learns a reasonable inverse dynamics. We demonstrated
that learning an inverse dynamics model once is not enough
as the robot’s dynamics changes while interacting with the
real world. Instead, the dynamics models need to be adapted
at run-time. The continuous learning experiments show that
incremental learning the NN model is one way to deal with
the adaptation problem. However, combining the PEST or
NN with error model learning leads to even better results.

In the future, we plan to extend our experiments with com-
plex manipulation tasks while learning the inverse dynamics
models online. At the same time, we would like to perform a
comprehensive hyperparameter search for the NN and error

model including different network architectures and recurrent
structures. Furthermore, the impact of prior knowledge could
be investigated, as e.g. proposed in [22].
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