
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST 2025 1

MoRe-ERL: Learning Motion Residuals using

Episodic Reinforcement Learning
Xi Huang, Hongyi Zhou, Ge Li, Yucheng Tang, Weiran Liao, Björn Hein,

Tamim Asfour and Rudolf Lioutikov

Abstract—We propose MoRe-ERL, a framework that combines
Episodic Reinforcement Learning (ERL) and residual learning,
which refines preplanned reference trajectories into safe, feasible,
and efficient task-specific trajectories. This framework is general
enough to incorporate into arbitrary ERL methods and motion
generators seamlessly. MoRe-ERL identifies trajectory segments
requiring modification while preserving critical task-related ma-
neuvers. Then it generates smooth residual adjustments using
B-Spline-based movement primitives to ensure adaptability to
dynamic task contexts and smoothness in trajectory refinement.
Experimental results demonstrate that residual learning signif-
icantly outperforms training from scratch using ERL methods,
achieving superior sample efficiency and task performance.
Hardware evaluations further validate the framework, showing
that policies trained in simulation can be directly deployed in
real-world systems, exhibiting a minimal sim-to-real gap.

Index Terms—Motion and Path Planning; Reinforcement
Learning; Integrated Planning and Learning

I. INTRODUCTION

ROBOTIC applications, such as multi-arm cooperation,
often require frequent motion adaptation to ensure safety

and task efficiency. The adaptation must be reactive, smooth,
and feasible, with algorithms responding rapidly. Moreover, it
is desirable that the new trajectories consider system dynamics,
such as potential environmental changes. Taking these changes
into account reduces the need for repeated online adaptations.
Episode-based Reinforcement Learning (ERL) methods [1]–
[4] have shown success in addressing complex tasks. Based
on the initial observations, the ERL methods generate full tra-
jectories in deterministic computation time by parameterizing
the movement primitives (MPs), accounting for the possible
changes and interactions in the environment, ensuring smooth
execution across an episode. Recent developments in MPs
[5], [6] support various boundary conditions, enabling smooth
transitions during trajectory switches. Replanning techniques
[3] further allow trajectory updates as the episode progresses.
This paper proposes MoRe-ERL (Motion Residuals using
ERL), a general framework that generates motion residuals
to refine previously planned task-related reference trajecto-
ries. Given a reference trajectory, MoRe-ERL identifies the
trajectory segments that require modification while preserving

Manuscript received: May 4, 2025; Revised July 24, 2025; Accepted August
18, 2025.

This paper was recommended for publication by Editor Jens Kober upon
evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology, Germany {x.huang, hongyi.zhou,
ge.li, weiran.liao, bjoern.hein, asfour,
lioutikov}@kit.edu, yucheng.tang@partner.kit.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: MoRe-ERL applies residuals to adjust the trajectory
of a KUKA iiwa robot into a safe and feasible motion

, effectively avoiding the moving UR5 robot. Snapshots of
the KUKA iiwa executing the adjusted motion are outlined
in green, while the red marker highlights the frame on the
reference trajectory where the robots would have collided.

critical task-related behaviors. Trajectory refinements for these
segments are generated using B-Spline-based movement prim-
itives to ensure smooth transitions. Three refinement strategies
are investigated, and their performance is evaluated in multiple
simulation tasks. The segment identification and the trajectory
refinements are jointly learned as a correlated policy. Having
the reference trajectory as prior knowledge, MoRe-ERL signif-
icantly outperforms training from scratch using ERL methods,
achieving superior sample efficiency and task performance.
Our main contributions are

• To the best of our knowledge, the first RL algorithm that
combines ERL and residual learning, achieving superior
sample efficiency and task performance.

• An end-to-end policy that identifies the segments of refer-
ence trajectories needing modification and parameterizes
movement primitives as residuals.

• Three novel trajectory refinement strategies using B-
spline-based movement primitives, which enforce smooth
transition between the reference and the fixed trajectories.

II. RELATED WORKS

A. Episodic Reinforcement Learning
ERL is a distinct family of RL that emphasizes the maxi-

mization of returns over entire episodes, typically lasting sev-
eral seconds, rather than optimizing each step in the episodes

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST 2025

Motion
Generator

Task Context Execute Reference Traj.

Execute Fixed Traj.New Obstacle

Reference Trajectory

Residual
ERL Policy

B
-Spline M

P

α

[w!, α!]! ∼ N (µ,Σ) w Fix Reference Traj.

Fig. 2: Illustration of the MoRe-ERL pipeline. The robot follows the reference trajectory provided by a motion generator, with
the executed segment shown in and the remainder in , based on the task context. When the task context changes, such
as the appearance of new obstacles, MoRe-ERL identifies critical segments on the remaining reference trajectory () using
learned parameters α = [αs, αe]

⊤ and parameterize residuals f(w) for the selected segments using B-spline-based movement
primitives. The adjusted trajectory, after applying these residuals, is shown by the solid blue-green curve ().

while interacting with the environment [7]. Unlike Step-based
RL, such as PPO [8] and SAC [9], ERL shifts the solution
search from per-step actions to a parameterized trajectory
space, leveraging techniques like MPs [10], [11] for generating
action sequences. This approach enables a broader exploration
horizon [2]. Recent advances in Deep Black-Box Reinforce-
ment Learning (BBRL) [4] have integrated ERL with deep
neural networks. MoRe-ERL employs ERL to learn motion
refinements and improve the sample efficiency by leveraging
prior knowledge from pre-planned reference trajectories.

B. Learning Motion Residual with RL

The idea of using RL to learn motion residual [12], [13]
leverages the generalization capability of RL to handle com-
plex dynamics like contacts and friction. At the same time,
learning motion residuals simplifies the RL problem, thereby
reducing the demand for samples and making real-world
applications more feasible [13], [14]. Recent works have also
explored incorporating MPs into residual RL [15], [16], where
MPs serve as a base motion generator, and step-based RLs are
used to learn the motion residual for every control step. For
example, model-free RL generates step-based residuals for a
DMP-based policy using only task observations [16]. Sim-
ilarly, ProMP-based policies serve as fixed nominal policies,
with step-based agents computing residuals in a low-frequency
control loop [16]. However, step-based residual RL suffers
from similar limitations to step-based RL, including a lack
of smoothness in generated motions and a heavy reliance
on dense Markovian reward. In contrast, MoRe-ERL takes
reference trajectories from arbitrary base policies as input
and uses BMPs to parameterize residual sequences. It fully
leverages BMPs by allowing partial refinement of the reference
trajectory rather than modifying it entirely, thereby preserving
critical task behaviors. Consequently, the length of the residual
sequence is flexible and determined by the policy. Compared to

DMPs [10] and ProMPs [11], BMPs mathematically guarantee
enforcement of initial and terminal conditions, making them
well-suited for generating motion residuals. To our knowledge,
MoRe-ERL is the first framework to combine BMPs with ERL
for parameterizing residual sequences.

C. Motion Planning in Robotics

Two important categories in motion planning methods are
sampling-based and optimization-based motion planning. In
a dynamic environment, sampling-based methods usually ad-
dress problems using reactive methods or fully taking into
account the states of the environment in the future. Reactive
methods [17]–[19] enable fast replanning but neglect temporal
aspects, often producing solutions that soon become invalid.
On the other hand, methods such as ST-RRT* [20] extend
the spatial space and take into account the temporal aspect.
They assume full knowledge of all paths of participants in the
environment. In real-world scenarios, however, full knowledge
of the environment in the future is usually not accessible.
Optimization-based methods [21], [22] directly output a tra-
jectory with parameterized velocity and acceleration profile
regarding user-defined constraints. Methods of this category
can naturally support the temporal aspect when providing full
knowledge of how the environment evolves. In MoRe-ERL,
motion generators serve the role of base planner and provide
reference trajectories in an offline manner. MoRe-ERL is base-
planner-agnostic and refines trajectories during execution.

III. PRELIMINARIES
A. Episodic Reinforcement Learning (ERL)

ERL [2], [23] predicts an entire sequence of actions to
accomplish a task by optimizing cumulative rewards without
explicitly modeling detailed state transitions within an episode.
ERL methods usually predict a weight vector w given the task
context. This vector is then used to parameterize a complete

HUANG et al.: MORE-ERL 3

trajectory y(t) = f(w) for y(t) ∈ RD and t ∈ [0, T],
where D corresponds to the dimensionality of the trajectory
space, such as the DoFs in a robotic system, T represents
the trajectory duration, and f [·] indicates a generic function
for trajectory parameterization using a motion generator. The
predicted trajectory can either be directly utilized as per-step
actions or serve as input to a trajectory tracking controller
for computing lower-level motor commands. Given the initial
state s0 ∼ p(s0) specifying the starting configuration and
task context, the goal of ERL is to find a weight vector
w that maximizes the return R(s0, f(w)) after executing
the trajectory y(t) = f(w). The ERL learning objective is
generally expressed as:

J = Ep(s0),πθ(w|s0) [R(s0, f(w))− Vϕ(s0)] , (1)

where πθ denotes the policy parameterized by θ, often im-
plemented using a neural network. The return R(s0, f(w)) =∑T

t=0 γ
trt is the cumulative reward obtained by following the

trajectory, where γ is the discount factor, and rt is the reward
at time step t. The term Vϕ(s0) represents a value estimator
of the state s0, parameterized by ϕ, and acts as a baseline to
stabilize training [24].

When compared to traditional step-based RL (SRL) meth-
ods like PPO [8], ERL shifts the solution search from the
per-step action space A to a parameterized trajectory space
W , predicting trajectory parameters as π(w|s). This often
facilitates broader exploration and results in smooth, correlated
motion trajectories. Additionally, the learning objective in
Eq. (1) relaxes the requirement for Markovian rewards [24],
which enforces that the reward rt at a given time step t
depends only on the current state s and action a. Step-based
RL methods such as SAC [9] rely on temporal difference
(TD) learning. This requires Markovian rewards in order to
assign value credits to per-step actions and states properly.
In contrast, ERL assigns task credit to the entire trajectory
episode parameterized by w by aggregating per-step rewards.
This removes the requirement for rewards to be Markovian,
allowing for the use of delayed or history-dependent rewards,
referred to as non-Markovian rewards [24]. Intuitively, non-
Markovian rewards offer greater flexibility and simplicity in
task design [4], as they rely on fewer assumptions compared
to their Markovian counterparts.

Usually, ERL methods use MPs as the motion generator.
MPs can encapsulate trajectories from a lower-dimensional
parameter space, thereby reducing the problem complexity.

B. Using Movement Primitives in ERL

Parameterizing trajectories using MPs [5], [10], [11] is cen-
tral to ERL methods. We first describe Probabilistic Movement
Primitives (ProMPs) and then introduce BMPs using the same
formalism as ProMPs.

Probabilistic Movement Primitives (ProMPs) [11] represent
a trajectory y(t) using a linear basis function:

y(t) = f(w) = Φ(
t

T
)⊤ω = Φ(u)⊤ω, (2)

where u = t/T ∈ [0, 1] denotes the normalized
time, also called the phase variable. The term Φ(u) =

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

y

B-Spline curve
Control points

(a) B-Spline in 2D

u0 u1 u2 u3 u4
0

0.2

0.4

0.6

0.8

1

u

V
al

ue
of

ba
si

s
fu

nc
tio

ns Φ0
0

Φ1
0

Φ2
0

Φ3
0

(b) Basis functions

Fig. 3: Illustration of BMPs: (a) A clamped B-spline curve in
2D parameterized with 6 control points. (b) Basis function of
different orders using recursive formulation, where Φp

0 denotes
the basis function of pth order for the 0th control point. The
knots u represent the change of time.

[Φ1(u),Φ2(u), ...,ΦN (u)]⊤ represents N basis functions
for each DoF, evaluated at u. The weight vector w =
[w1, w2, ..., wN]⊤ controls the trajectory shape by scaling the
basis functions. Typically, a neural network is used to predict
the mean µw and covariance matrix Σw and the weight vector
is sampled from the distribution w ∼ N (w|µw,Σw). For
non-periodic trajectories, ProMPs often utilize radial basis
functions (RBF) as the basis functions, with their centers
uniformly distributed in the phase space [0, 1].

ProMPs are advantageous due to their simple linear rep-
resentation, enabling fast computation and probabilistic mod-
eling [11]. However, ProMPs lack mathematical support for
enforcing specific boundary conditions at the trajectory’s start
and end points. This limitation restricts their ability to generate
new trajectories that seamlessly transition from an existing
one. However, this is a critical requirement for real-world
scenarios, where frequent trajectory switching is necessary.
Recent works [6], [25] address these inherent limitations by
replacing the RBF functions in ProMPs with B-splines. The
resulting model B-spline-based Movement Primitives (BMP)
retains the linear basis function representation of ProMPs
while supporting an arbitrary number and order of trajectory
transition conditions. Mathematically, these conditions are
known as boundary conditions.

Definition of BMP. The basis functions of BMP, ΦP (u) =
[ΦP

1 (u),Φ
P
2 (u), ...,Φ

P
N (u)]⊤, are defined as P -th order poly-

nomial functions, where 0 ≤ P < N . These basis functions
are constructed over M definition intervals, equally divided by
M +1 knots u0, ..., uM , with u0 = 0 and uM = 1. Typically,
M = N + P [26] and the intervals between two adjacent
knots have the same length δ. In the context of B-splines, the
weights w are also interpreted as control points, which define
a convex hull that bounds the trajectory, see Fig. 3a.

Each basis function ΦP
n , where n ∈ [1, N], is defined

recursively from order 0 to order P [26]. To illustrate this
recursive process, we denote intermediate orders with the
index p, where p ∈ [0, P]. For p = 0, the basis functions
are piecewise constant:

Φp=0
n (u) =

{
1 if un ≤ u < un+1,

0 otherwise.
(3)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST 2025

Type Condition w
(i)
1 = ?

Position w
(0)
1 = y(t0) w

(0)
1

Velocity w
(1)
1 = ẏ(t0)

P
δ
(w

(0)
2 − w

(0)
1)

Acceleration w
(2)
1 = ÿ(t0)

P (P−1)

δ2
(w

(0)
3 − 2w

(0)
2 + w

(0)
1)

TABLE I: Mapping between boundary conditions and control
points at t0. We present the control point w

(i)
1 , i = 0, 1, 2

given initial position y(t0), velocity ẏ(t0) and acceleration
ÿ(t0) conditions, respectively. By recursively applying Eq. (6)
and (7), the higher-order control point w(i)

1 can be eventually
represented using the 0-th order control points.

For p > 0, each basis function Φp
n(u) is computed by

interpolating between two corresponding lower-order basis
functions, Φp−1

n (u) and Φp−1
n+1(u), using coefficients jn and

jn+1:

Φp
n(u) = jn Φp−1

n (u) + jn+1 Φp−1
n+1(u). (4)

jn =
u− un

p δ
, jn+1 =

un+p+1 − u

p δ
(5)

By recursively applying Eq. (4) until order P , the P -th order
basis function is obtained, see Fig. 3b. By substituting the
resulting BMP basis functions into Eq. (2), the trajectory
of BMP can be computed using the linear basis function
representation of ProMPs.

Derivative of B-Splines. It is worth noting that the i-th
order derivative of a P -th order B-spline remains a (P − i)-th
order B-spline:

y(i)(t) = ΦP−i(u)⊤ω(i), (6)

where ω(i) = [w
(i)
1 , ..., w

(i)
N−i]

⊤ represents the control points
of the B-spline’s derivatives. These control points are com-
puted recursively:

w(i)
n =

P − i

δ
[w

(i−1)
n+1 − w(i−1)

n]. (7)

Enforcing boundary conditions of arbitrary orders. To
ensure the trajectory passes through given starting and ending
positions, BMP employs clamped B-splines [26] where the
trajectory goes through the first and the last control points.
Thus, we directly align these two control points with the given
position values. Similarly, control points derived from Eq. (6)
and (7) enforce higher-order conditions, such as velocity and
acceleration. In Table I, we summarize the mapping between
boundary conditions at t0 and the corresponding control
points. Ending conditions follow similar mappings.

IV. METHOD

A. Problem Definition

For an task context c0, a robot trajectory yr,0:T =
{yr,0, . . . ,yr,T } is generated solve this task. As the task
context changed to cτ at time τ ∈ (0, T], this work aims
to find a policy that generates trajectory-level refinements,
∆yτ :T , based on the current context cτ and original robot
trajectory yr,τ :T . A state encoder s(·) is used to encode cτ

and yr,τ :T into a state vector sτ = s(cτ ,yr,τ :T). Following
the previous section III-A, an ERL problem is formulated
to optimize the policy distribution π(w|sτ) by maximizing
the expected roll-out return R(sτ ,w) of an episode using the
following objective function

J = Ep(sτ),πθ(w|sτ) [R(sτ ,w)− Vϕ(sτ)] , (8)

where the vector w determines the start and the end of the
residual action as well as the parameterization of the action
sequence using BMPs. While MoRe-ERL adopts BBRL [4] for
the optimization, the framework is modular enough to plug in
any other ERL algorithms.

B. Learning Residuals for Reference Trajectories

Reference trajectories contain information for completing
the given tasks and can be accessed from various sources,
such as sampling-based motion planning or other learned
policies. This information serves as a valuable prior in two
key aspects: (a) it reduces the complexity of learning, thereby
improving sample efficiency, and (b) it preserves dexterous
robot behaviors that are challenging to learn from scratch.

When the task context changes to cτ at time τ unexpectedly,
e.g., the environment didn’t evolve as anticipated, the policy
generates trajectory-level refinements ∆yτ :T based on the
context cτ and the reference trajectory yr,τ :T , see Fig. 2. The
reference trajectory yr,τ :T is a partially executed trajectory
grounded on the previous context ct at time t < τ . The
refinements are applied on top of the reference trajectory,

yτ :T = yr,τ :T +∆yτ :T . (9)

To allow for greater flexibility in modifying the reference tra-
jectory, we introduce two additional timing variables, αs, αe ∈
[τ, T] with αs ≤ αe, marking the refinement’s start and end on
the reference trajectory. Using these variables, the refinements
at time k ∈ [τ, T] are defined as:

∆yτ :T =

{
∆yk for k ∈ [αs, αe]

0 otherwise.
(10)

Fig. 4 (right) visualizes the refinements described in Eq. (10),
termed as MoRe-ERL residuals. The reference trajectory is
partially modified by the learned residuals ∆yk between αs

and αe. These two timing variables are represented by bold
solid points. To ensure continuity and smoothness at αs and αe

during trajectory switching, we use BMPs to parameterize the
residual. BMPs enforce boundary conditions up to arbitrary or-
ders. In this case, the boundary conditions are set to be 0. This
ensures that the position and velocity of the refined trajectory
align with the reference trajectory αs and αe, guaranteeing the
continuity and smoothness on trajectory switches. To be more
specific, to parameterize a residual trajectory ∆yαs:αe

using N
control points w1:N = [w1, ..., wN]T , BMPs use w1 and w2 to
enforce the boundary conditions at the start of the refinement,
and use wN−1 and wN at the end. The remaining control
points w3:N−2 = [w3, ..., wN−2]

T parametrize the transition
behavior ∆yαs:αe

. The control points w3:N−2 are jointly
learned with αs and αe. Given the encoded state sτ , the policy
π(w,α|sτ) returns the mean µw,α and the covariance matrix

HUANG et al.: MORE-ERL 5

Partial Replacement MoRe-ERL ResidualFull Residual

Type Learned Parameters How to Refine

Full Residual w Residuals on top of the reference

Partial Replacement αs, αe,w Replace the reference

MoRe-ERL Residual αs, αe,w Residuals on top of the reference

Fig. 4: MoRe-ERL residuals and two ablation variants. The
reference trajectory is shown in green, with bold solid points
indicating the timing variables αs and αe. Cyan sections show
learned residuals or replacements, and the solid blue-green
curve denotes the adjusted trajectory.

Σw,α of a single Gaussian distribution. Sampling from this
Gaussian distribution [w⊤

3:N−2, αs, αe]
⊤ ∼ N (µw,α,Σw,α),

the residual sequence can be expressed as

∆yαs:αe
= Φ⊤

αs:αe
w3:N−2. (11)

Fig. 5 illustrates how the MoRe-ERL residual is applied to
the reference trajectory. Different from the jerky motions pro-
duced by step-based methods, BMPs ensure smooth transitions
between the reference trajectory and the refinements.

Refinement Variants. In addition to partially applying
residuals, we consider two alternative approaches, termed full
residual and partial replacement. The full residual variant is
a special case of Eq. (10) with αs = τ and αe = T , applying
residuals to the entire trajectory (Fig. 4, left). The partial
replacement variant partially replaces segments between αs

and αe with the refinement sequences (see Fig. 4, middle).
The partial replacement modifies the reference trajectory as:

yτ :T =

{
∆yk for k ∈ [αs, αe]

yr,k otherwise.
(12)

When parameterizing trajectories with BMPs in partial re-
placement, boundary conditions are set to match the position
and velocity of the reference trajectory at αs and αe. We
exclude full replacement from consideration as it equates to
learning the trajectory from scratch.

Among MoRe-ERL residuals and these two variants, MoRe-
ERL residuals demonstrate the best overall performance across
various scenarios. Learning residuals leverages prior knowl-
edge embedded in reference trajectories, preserving critical
maneuvers and enhancing task completion. The identification
of αs and αe contributes to retaining essential behaviors.
Further details are provided in Section V.

V. EXPERIMENTS

More-ERL is evaluated in two simulation experiments in
MuJoCo [27] and an experiment with real-world hardware. In
both simulation scenarios, baseline methods include sampling-
based motion planning methods, episode-based RL methods,

0 20 40 60 80 100

1

1.5

2

Steps

Jo
in

ta
ng

le
[r

ad
]

Reference
Ref. + residuals

(a) MoRe-ERL residuals

0 20 40 60 80 100

1

1.5

2

Steps

Jo
in

ta
ng

le
[r

ad
]

Reference
Ref. + residuals

(b) Step-based residuals

Fig. 5: Random roll-out using MoRe-ERL and step-based
residual method. In the demonstrated case, the trajectory with
MoRe-ERL residuals () deviates from the reference trajectory
at αs = 20 and converges back at αe = 70.

and step-based RL methods. While the episode-based meth-
ods work perfectly with non-Markovian rewards, the step-
based methods perform poorly in such settings [4]. For an
unfavourable comparison against our method, we shape a
Markovian reward grounded on the performance of step-based
methods and evaluate MoRe-ERL on both Markovian and non-
Markovian rewards. Despite this unfavourable setting, MoRe-
ERL shows comparable performance with Markovian rewards
in both tasks and achieves superior performance with non-
Markovian rewards.

The Markovian returns of an episode with ne steps summa-
rize rewards from each step with a discount factor γ

RM =

ne∑
t=τ

γt(βcrc,t + βgrg,t + βlrl,t), (13)

where rc,t, rg,t, and rl,t indicate the reward terms at t
regarding collision, goal reaching, and joint limit violation,
respectively. The collision reward is assigned rc,t = −1 when
a collision occurs. The other two terms are both computed
using L2-Norm. These reward terms are weighted by corre-
sponding coefficients β[·]. The non-Markovian return RNM

does not collect rewards regarding collision and goal reaching
at every step, but at the end of the episode

RNM = βcrc + βgrg︸ ︷︷ ︸
Non−Markovian

+βl

ne∑
i

γirl,t. (14)

This setting links the reward closer to the definition of success
and avoids potential reward hacking. The results of both sim-
ulation scenarios show that MoRe-ERL with non-Markovian
rewards achieved a significantly higher performance than
baselines, see Fig. 7 and TABLE II. A video for simulation and
real-world experiments is attached to the multimedia materials.
Parameters for RL and BMPs are selected based on a grid
search over the parameter space.

A. Multi-Box

The multi-box scenario has an UR10e robot mounted on
a table, which travels among three regions separated by two
bars to complete arbitrary tasks, see Fig. 6a. While the robot is
operating, dynamic obstacles enter the robot’s working space,
either moving with constant velocity or following parabolic

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST 2025

(a) Multi-box (b) Dual-arm (c) Real-world hardware setup

Fig. 6: Simulation experiments in Mujoco and real-world experiment setup. The robot with reduced opacity in simulation
indicates the desired goal. In (a), green boxes follow parabolic trajectories, while the red box moves at a constant velocity.
Each box is released at a different timestamp. In (b), the UR5 robot moves in the directions shown by the green arrows.

MoRe-ERL Full Residual Partial Replacement BBRL PPO PPO-Res SAC SAC-Res

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
N

on
-M

ar
ko

vi
an

,I
Q

M

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
M

ar
ko

vi
an

,I
Q

M

0 0.5 1 1.5 2 2.5
0

10

20

30

40

Environment Interactions (×107)

C
ol

lis
io

n
C

ou
nt

s,
IQ

M

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

Environment Interactions (×107)

D
is

ta
nc

e
to

Ta
rg

et
,I

Q
M

(a) Multi-box experiment

0 1 2 3 4

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
N

on
-M

ar
ko

vi
an

,I
Q

M

0 1 2 3 4

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
M

ar
ko

vi
an

,I
Q

M

0 1 2 3 4
0

10

20

30

40

Environment Interactions (×107)

C
ol

lis
io

n
C

ou
nt

s,
IQ

M

0 1 2 3 4

0

0.5

1

1.5

Environment Interactions (×107)

D
is

ta
nc

e
to

Ta
rg

et
,I

Q
M

(b) Dual-arm experiment

Fig. 7: From left to right: (1) Success rate with non-Markovian reward; (2) Success rate with Markovian reward; (3) Collision
counts; (4) Distance to target. Better results from the two reward settings are shown in (3) and (4). MoRe-ERL and its variant
full residual show an advantage with respect to sample efficiency and task performance compared to baseline methods in both
tasks, even with Markovian rewards. In the multi-box experiment, the full residual variant achieves better sample efficiency
due to its smaller search space. In the scenarios requiring more dexterous behaviors, such as the dual-arm task, MoRe-ERL’s
ability to identify the residual interval shows clear advantages compared to applying residual to the entire trajectory.

paths. In every episode, the initial joint configurations and
goal are randomly selected. The obstacles are released to move
at different time stamps. The trajectories of the obstacles are
designed to be adversarial to our method that at least one
of the obstacles will hit the robot if the robot follows the
reference trajectory. The episode terminates when the goal or
the pre-defined maximum duration of 3 seconds is reached.
For episode-based methods, the observation includes (a) the
current robot configurations and velocity, (b) the goal of the
robot, and (c) the parameters from which the agent can infer
the trajectories of the dynamic obstacles, such as their position,
velocity, and end position. The end positions of the obstacles
serve the purpose of distinguishing the parabolic trajectories

from the ones with constant velocity. On the other hand,
the step-based methods receive a new observation at every
simulation step and return the next joint position as an action.
The observation for step-based methods additionally includes
the current timestamp.

The residual version of both episode-based and step-based
methods must be aware of the reference, on which the residual
acts. Reference trajectories is generated by RRT-Connect [28].
A representation of the reference is included in the observation
of the residual methods. The ERL residual methods use
five intermediate waypoints of the reference trajectory as the
representation, while the step-based methods use the next
reference action. The reference trajectories are generated using

HUANG et al.: MORE-ERL 7

a sampling-based motion planner. Note that this approach
is agnostic to the choice of planner, allowing an alternative
motion generator to be seamlessly integrated.

The results of baseline methods and ablations are summa-
rized in TABLE II, collected with a single core on an Intel i9-
9900K CPU. Sampling-based methods were allocated 1 second
of planning time for each problem in a space-time state space
(R6+1), with 6 DoFs for robot joints and 1 DoF for time. For
ST-RRT*, the maximum arrival time was set to 3 seconds,
while RRT-Connect [28] used a fixed arrival time of 3 seconds
due to its inability to handle unknown arrival times. For RL
methods, the Markovian reward uses βc = 5, βg = 20 and
βl = 0, and the non-Markovian reward uses βc = 10, βg = 40
and βl = 1.

The learning curves in Fig. 7a demonstrate that MoRe-ERL
achieves higher sample efficiency and yields better perfor-
mance compared to ERL trained from scratch and step-based
RL approaches, under both Markovian and non-Markovian
reward settings. However, with a sufficient planning time
budget, ST-RRT* achieves a success rate of 92.8% in this
task. When the budget is reduced to 100 ms, the success rate
of ST-RRT* drops to below 70%. In contrast, MoRe-ERL
maintains a significantly faster inference time of 10.1 ms while
achieving a competitive success rate of 88.9%. Note that the
scenarios are initialized to be adversarial to residual methods.
ST-RRT* does not suffer from such a disadvantage, which
reduces the task complexity for ST-RRT*. A common solution
is to wait for the boxes to settle and approach the goal. For
a more complicated task where the environment is constantly
moving, such as the dual-arm task, MoRe-ERL significantly
outperforms ST-RRT*.

B. Dual-Arm

The dual-arm scenario involves a UR5 and a KUKA iiwa 14
robot, mounted on a shared workspace, as shown in Fig. 6b.
The UR5 follows pre-defined trajectories, acting as a dynamic
part of the environment, while the KUKA iiwa 14 actively
avoids collisions and moves toward the goal pose.

Similar to the multi-box environment, episodes are ran-
domly initialized and terminate when either the goal is reached
or the pre-defined maximum duration of 5 seconds elapses. For
step-based methods, the observation includes (a) the position
and velocity of both robots, (b) the goal of the iiwa robot and
(c) the current timestamp. As in V-A, the step-based residual
method includes the next reference action in the observation,
while MoRe-ERL incorporates 5 intermediate waypoints from
the reference trajectories. Sampling-based baselines reported
in TABLE II are given 5 seconds planning time budgets for
each problem in a space-time state space R7+1. The maximum
arrival time of ST-RRT* is set to 5 seconds, and RRT-Connect
has a fixed arrival time. The Markovian reward is weighted by
βc = 5, βg = 20 and βl = 0 and the non-Markovian setting
is same as V-A.

MoRe-ERL achieves a 76.7% success rate under the non-
Markovian reward, outperforming ST-RRT*, which succeeds
in only 39.2% of cases after 5 seconds of planning. It is
worth mentioning that the test cases are randomly generated,

Methods
Multi-box Dual-arm

PT [s] Success PT [s] Success

↓ ↑ ↓ ↑

ST-RRT* 1.0 0.928 5.0 0.392

RRT-Connect 0.609 0.587 4.229 0.204

ERL + DMPs
0.011

0.092
0.010

0.002

ERL + DMPs + Residuals 0.584 0.168

BBRL

0.010

0.731

0.0098

0.133

Full Residual 0.881 0.674

Partial Replacement 0.812 0.299

MoRe-ERL (ours) 0.889 0.767

TABLE II: Results of MoRe-ERL and baseline methods in
both environments, evaluated by planning time (PT) and suc-
cess rate. The arrow ↓ indicates lower is better, and ↑ indicates
higher is better. An episode is successful if the robot reaches
the goal region (radius 0.1) without collisions. Sampling-based
results are averaged over 10 seeds, RL results over 8 seeds.

and some of them may not be solvable. To approximate the
upper bound of success rate, we increased the planning budget
to 120 seconds, where ST-RRT* achieved success in 86%
of the test cases. No significant performance gain is shown
if the planning budget increases further. Fig. 7b shows that
step-based methods failed to learn a reasonable policy in
both Markovian and non-Markovian reward settings. MoRe-
ERL’s superior performance stems from its ability to identify
the residual intervals while retaining critical behaviors, e.g.,
retracting from a shelf. These behaviors are usually difficult
to learn from scratch.

C. Ablation Studies

Refinement Variants. We conducted ablation studies on
different trajectory refinement strategies illustrated in Fig. 4.
The results in Fig. 7a demonstrate that full residual achieves
slightly better sample efficiency compared to MoRe-ERL in
the multi-box task. This behavior can be attributed to the
fact that full residual is a special case of MoRe-ERL with
αs = τ and αe = T , leading to a reduced dimension of the
searching space. However, in scenarios that require dexterous
robot behaviors, such as the dual-arm task, identifying the
residual interval using αs and αe shows clear advantages in
both convergence speed and final performance. Meanwhile,
partial replacement underperforms in both tasks, highlighting
the effectiveness of learning motion residuals.

Movement Primitives. Prior work [29], [30] has modeled
obstacles in the task space using potential fields, which are
explicitly incorporated into the DMP formulation as coupling
terms. However, these methods are limited to simple obstacle
geometries, such as a single moving sphere, and therefore do
not scale to our experimental setup, which involves complex
static and dynamic structures like bookshelves and moving
robot arms. To demonstrate the benefits of BMPs, we replace
them with DMPs in both the learning-from-scratch (ERL +
DMPs) and residual settings. Table II shows that BMPs consis-
tently outperform DMPs, as DMPs achieve high collision-free
rates but often fail to reach the goal.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST 2025

D. Real-World Experiment

The hardware setup aligns with V-B, with modifications
with respect to real-world calibration between two robots.
Fig. 1 and Fig. 6c provide two distinct views of the setup.
Initially, the policy is trained in simulation using the procedure
outlined in V-B, achieving a success rate of approximately
95%. The trained policy is subsequently deployed on the real-
world hardware. Episodes are designed such that the goal of
the current episode becomes the starting point of the next,
allowing for seamless sequential rollouts. The policy learned
by MoRe-ERL demonstrates a minimal gap in transferring
from simulation to the real world.

VI. LIMITATIONS AND FUTURE WORKS

We proposed MoRe-ERL, a general residual learning frame-
work tailored for episodic reinforcement learning. MoRe-ERL
can be built on top of any method within the ERL cate-
gory and demonstrates significant improvements over learning
from scratch. By identifying the crucial intervals within the
reference trajectory and applying residual learning to these
segments, MoRe-ERL enhances both learning efficiency and
task performance. However, although MoRe-ERL is capable
of refining the trajectories and achieved a high success rate, its
performance highly depends on the quality of reference trajec-
tories. In case of poor quality, MoRe-ERL has to make extra
effort to escape from the pattern provided by the reference
trajectory and can not demonstrate advantages. Furthermore,
while MoRe-ERL offers a novel solution to refine trajectories,
the timing to trigger and request such refinements is also
crucial. An additional high-level decision-making layer is
needed to trigger refinement and select best suited refinement
strategies.

REFERENCES

[1] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, pp.
229–256, 1992.

[2] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Advances in neural information processing systems, vol. 21, 2008.

[3] F. Otto, H. Zhou, O. Celik, G. Li, R. Lioutikov, and G. Neumann,
“Mp3: Movement primitive-based (re-) planning policy,” arXiv preprint
arXiv:2306.12729, 2023.

[4] F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G. Neumann,
“Deep black-box reinforcement learning with movement primitives,”
in 6th Annual Conference on Robot Learning (CoRL 2022), ser. Pro-
ceedings of Machine Learning Research, vol. 205. Machine Learning
Research Press (ML Research Press), 2022, pp. 1244–1265.

[5] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann,
“Prodmp: A unified perspective on dynamic and probabilistic movement
primitives,” IEEE Robotics and Automation Letters, vol. 8, no. 4, pp.
2325–2332, 2023.

[6] W. Liao, G. Li, H. Zhou, R. Lioutikov, and G. Neumann, “Bmp: Bridging
the gap between b-spline and movement primitives,” arXiv preprint
arXiv:2411.10336, 2024.

[7] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[10] S. Schaal, “Dynamic movement primitives-a framework for motor con-
trol in humans and humanoid robotics,” in Adaptive motion of animals
and machines. Springer, 2006, pp. 261–280.

[11] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” Advances in neural information processing sys-
tems, vol. 26, 2013.

[12] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” arXiv preprint arXiv:1812.06298, 2018.

[13] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,
E. Solowjow, and S. Levine, “Residual reinforcement learning for robot
control,” in 2019 international conference on robotics and automation
(ICRA). IEEE, 2019, pp. 6023–6029.

[14] A. Ranjbar, N. A. Vien, H. Ziesche, J. Boedecker, and G. Neumann,
“Residual feedback learning for contact-rich manipulation tasks with
uncertainty,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 2383–2390.

[15] J. Carvalho, D. Koert, M. Daniv, and J. Peters, “Adapting object-centric
probabilistic movement primitives with residual reinforcement learning,”
in 2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids), 2022, pp. 405–412.

[16] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and S. Ra-
mamoorthy, “Residual learning from demonstration: Adapting dmps
for contact-rich manipulation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4488–4495, 2022.

[17] X. Huang, G. Sóti, H. Zhou, C. Ledermann, B. Hein, and T. Kröger,
“Hiro: Heuristics informed robot online path planning using pre-
computed deterministic roadmaps,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 8109–8116.

[18] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox,
“Motion policy networks,” in Conference on Robot Learning. PMLR,
2023, pp. 967–977.

[19] X. Huang, G. Sóti, C. Ledermann, B. Hein, and T. Kröger, “Planning
with learned subgoals selected by temporal information,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 9306–9312.

[20] F. Grothe, V. N. Hartmann, A. Orthey, and M. Toussaint, “St-rrt*:
Asymptotically-optimal bidirectional motion planning through space-
time,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 3314–3320.

[21] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in 2009 IEEE
international conference on robotics and automation. IEEE, 2009, pp.
489–494.

[22] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential con-
vex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Berlin, Germany, 2013, pp. 1–10.

[23] D. Whitley, S. Dominic, R. Das, and C. W. Anderson, “Genetic
reinforcement learning for neurocontrol problems,” Machine Learning,
vol. 13, pp. 259–284, 1993.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[25] P. Kicki, D. Tateo, P. Liu, J. Günster, J. Peters, and K. Walas, “Bridging
the gap between learning-to-plan, motion primitives and safe reinforce-
ment learning,” in 8th Annual Conference on Robot Learning, 2024.

[26] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline Tech-
niques. Berlin, Heidelberg: Springer, 2002.

[27] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[28] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[29] H. Tan, E. Erdemir, K. Kawamura, and Q. Du, “A potential field method-
based extension of the dynamic movement primitive algorithm for
imitation learning with obstacle avoidance,” in 2011 IEEE International
Conference on Mechatronics and Automation. IEEE, 2011, pp. 525–
530.

[30] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement re-
production and obstacle avoidance with dynamic movement primitives
and potential fields,” in Humanoids 2008-8th IEEE-RAS international
conference on humanoid robots. IEEE, 2008, pp. 91–98.

	Introduction
	Related Works
	Episodic Reinforcement Learning
	Learning Motion Residual with RL
	Motion Planning in Robotics

	PRELIMINARIES
	Episodic Reinforcement Learning (ERL)
	Using Movement Primitives in ERL

	Method
	Problem Definition
	Learning Residuals for Reference Trajectories

	Experiments
	Multi-Box
	Dual-Arm
	Ablation Studies
	Real-World Experiment

	Limitations and Future Works
	References

