
Resource-Aware Object Classification and Segmentation for
Semi-Autonomous Grasping with Prosthetic Hands

Felix Hundhausen, Denis Megerle and Tamim Asfour

Abstract— Myoelectric control of prosthetic hands relies on
electromyographic (EMG) signals captured by usually two
surface electrodes attached to the human body in different
setups. Controlling the hand by the user requires long training
and depends heavily on the robustness of the EMG signals.
In this paper, we present a visual perception system to ex-
tract scene information for semi-autonomous hand-control that
allows minimizing required command complexity and leads
to more intuitive and effortless control. We present methods
that are optimized towards minimal resource demand to derive
scene information from visual data from a camera inside the
hand. In particular, we show object classification and semantic
segmentation of image data realized by convolutional neural
networks (CNNs). We present a system architecture, that takes
user feedback into account and thereby improves results. In
addition, we present an evolutionary algorithm to optimize
CNN architecture regarding accuracy and hardware resource
demand. Our evaluation shows classification accuracy of 96.5%
and segmentation accuracy of up to 89.5% on an in-hand Arm
Cortex-H7 microcontroller running at only 400 MHz.

I. INTRODUCTION

Recent research in the area of prosthetic hands aims to
automate the grasping process using methods coming from
robotic grasping ([1], [2], [3], [4], [5]). The system pre-
dicts the users intended grasp by perceiving environmental
information as well as user-generated actions. Compared to
robotic systems, where complete autonomy can be required,
the use case of grasping in the context of prosthetics in-
cludes communication with the user, which leads to a semi-
autonomous control scheme. However, in a typically used 2-
channel electromyographic (EMG) interfaces, only primitive
commands can be conveyed. Thus, complex hand configu-
rations including control of multiple actuated DoF require
a series of consecutive commands which results in delays
of the grasping process. Setups with multiple electrodes for
higher resolution EMG-pattern were realized in experiments
but translating the results to activities of daily living poses
several problems [6]. In many cases the signals are not long-
time stable, special training is required and the generation of
these detailed control pattern increases the cognitive burden
for the user.

In this work, we address the problem of semi-autonomous
grasping with hand prosthesis, which should be controlled
by a few simple user commands instead of complete manual

This work has been supported by the German Federal Ministry of
Education and Research (BMBF) under the project INOPRO (16SV7665)
and by the German Research Foundation (DFG) within the the Transregional
Collaborative Research Centre Invasive Computing (SFB/TR 89).

The authors are with the Institute for Anthropomatics and
Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany.
{felix.hundhausen, asfour}@kit.edu

Camera

Fig. 1. Top: In-hand camera in the palm of the KIT Prosthetic Hand.
Bottom: Camera image, ground truth, predicted mask (8 bit) and binary
mask

control which could be complex and increases the cognitive
burden for the user, especially for control of multi-DoF
hands. Therefore, the in-hand embedded system captures
visual environmental information, that is intended to be
evaluated in real-time. The captured visual scene information
allows selecting a suitable offline design with possible online
parametrization. This result in autonomous finger trajectory
execution, adaptation of hand orientation and control of
forces to be applied without further user interaction, when
prior knowledge about object properties like size, shape as
well as weight is available. Feedback loops are then shifted
from the user to the prostheses. This allows to minimize the
focus of the user on grasp control, gives a chance to speed up
the grasping process and improving the reliability of grasps.

For scene interpretation often highly resource intensive al-
gorithms with demand for powerful processing hardware are
used. However, it is favorable to realize all data processing
device-embedded, known as edge computing in literature [7].
The advantage of embedded processing is the lack of depen-
dency on wireless network availability and uptime of external
services.

The limited resources in embedded hardware require ef-
ficient algorithms optimized towards low resource demand.
This includes a reduction of memory demand as well as a
minimized number of operations. Algorithm complexity and
resource-awareness are both important to guarantee real-time
performance, which is critical since reaction time plays an
important role in control of prosthesis.

The prototypical system presented in this work is realized



on the Embedded System of the second generation of the
KIT Prosthetic Hand (see Fig. 1 and [8]). The hand includes
an embedded Arm Cortex-H7 processor with a connected
miniature camera and a color display on the hand backside
for user feedback. For experiments, we emulate a 2-channel
EMG control.

In this paper, we present a resource-aware system for
classification and localization of objects based on visual
information obtained by an in-hand camera of an intelligent
prosthetic hand. The system combines an optimized object
classification network with an adaptable semantic segmenta-
tion network. In case of a user confirming correct classifi-
cation, segmentation can be performed class-aware using an
encoder-decoder network trained on a particular class. For
incorrectly classified and unknown objects the network uses
weights trained on the set of known objects. Highest accuracy
results are achieved for object-aware trained segmentation.
For unknown objects the accuracy drops but can still provide
good accuracies.

The major contribution of this work is the realization of
the related methods on a resource-limited embedded system.
We present methods for optimization of the network archi-
tecture and investigate resource-aware deployment enabling
execution on constrained systems. Our methods enable the
use of cost and energy-efficient hardware platforms, which
is an important step towards the realization of higher levels
of autonomy in prosthetic hands.

The paper is structured as follows: In section II we give
an overview of related work, in section III we describe
the design of our system including the classification and
segmentation network as well as the optimization of the
network architecture. We evaluate the system in section IV
where we analyze the system performance and describe its
limitations. Finally, we conclude our work in section V.

II. RELATED WORK

In research, different prosthetic hands using computer
vision systems can be found. In the following we discuss
different approaches addressing the design of visual percep-
tion systems for prosthetic hands and show state of the art in
the field of embedded implementation of image processing
algorithms especially in resource constrained environments.

One approach followed by [1], [2] and [3] is to directly
classify the object from visual data into different grasp
categories, each with a specifically assigned grasp type.
Došen et al. [1] use a simple threshold value to segment
objects from the background. The segmentation together with
a depth value measured by an ultrasonic sensor is used to
determine the longest and shortest object axis and select the
grasp type (pinch, lateral, palmar or spherical) by using if-
then rules. Ghazaei et al. [2] design a convolutional neural
network to classify images from an image library into 4 grasp
categories. They conclude that a 2 layer network leads to best
results, however, this is presumably the case since the 32×32
images from the dataset do not include background and are
captured in a controlled setup. In recent work DeGol et al. [3]

classify RGB images with a 640× 480 captured by a hand-
internal camera using a deep neural network. The inference
of this network is realized on a hand-external NVIDIA Tegra
GPU. For training of the network, the authors create their
own dataset but also use ImageNet dataset as training data
which leads to significantly higher classification accuracy.

The design of artificial neural networks for classification
and segmentation tasks is a highly active field of research.
Modern deep neural networks include billions of multiply-
accumulate (MAC) operations. For semantic segmentation
of images, neural networks as [9], [10], [11] and [12]
provide promising results. However, due to a large number of
operations these networks are not suitable for deployment on
resource-constrained embedded systems. Targeting mobile
platforms, networks are adapted for mobile devices like
smartphones [13], but still require over 1 M parameters and
over 100 million MAC operations. Microcontroller based
architectures as, for example, implemented in the KIT Pros-
thetic Hand only provide memory in the size about 1 MB and
can execute only a few million MAC operations per second.
The deployment of these types of platforms requires smaller,
task-specific application which can be realized using a lower
number of filters and layers.

To automatically create optimized network architectures,
often reinforcement learning methods or evolutionary al-
gorithms are used. [14] implements a learning agent and
experience replay for reinforcement learning of convolu-
tional neural networks, designing novel network structures.
[15] and [16] serialize networks as genome and apply
serialization-sensitive adapted evolutionary algorithms, both
showing that model architectures still leave tremendous room
for improvement.

State of the art deep networks are often optimized to-
wards maximal accuracy while ignoring resource demand.
However, when precision of filters and layer-data is reduced,
memory footprint can decrease and improve runtime while
having only a small impact on output accuracy. For example,
[17] proposed switching to integer-arithmetic only inference,
where near-identical accuracy levels are restorable after
quantization, decreasing the model size by a factor of 4.
Additionally, deep neural networks often contain redundant
or negligible structures. It is beneficial to evaluate connection
impact on the inference result to remove low impact weights
[18] what results in increased generalization and lower
runtime.

III. SYSTEM DESIGN

The system is designed to determine object class as
well as a segmentation of the object in the camera image,
which allows to obtain the object’s orientation and shape.
This information can then be used by a grasp control unit
to determine and execute a suitable grasp with optimized
hand orientation, finger trajectories and forces. We designed
the system to allow extracting the above information from
images captured by the in-hand camera only. The user shows
his intent to grasp an object using an initial command when
the object to be grasped is in view of the camera. The input



Classification

Class aware

segmentation

Object

position

Object 

information

Object 

orientation

Grasp 

planning and 

execution

Camera Image

confirm

reject
Class agnostic

segmentation

This Work

Fig. 2. Overview of the System-Architecture. The system consist out of a classification network followed by a segmentation network. In case of successful
classification (class-aware), the use of a class-particular parametrized network is possible. In case of unknown class, a fall-back network for class agnostic
segmentation is inferred.

image is first processed by an object classification block
that outputs a vector of object class probabilities. Object
classes are learned offline and include frequently used user-
selected objects. The object class assigned with the highest
probability is suggested to the user who can confirm the
result by binary EMG-signal as feedback. Based on the
result, an object-specific grasp can be executed. The second
part of the system performs a semantic segmentation of
the object in the camera image. This provides information
about the orientation of known objects (class aware), in
case of unidentified object class, the segmentation output
(class agnostic) can be used for shape based grasp selection
as well as hand orientation. When inferring class aware
segmentation, object-specific trained parameters can be used,
when the object class is unknown and incorrectly classified
class agnostic segmentation uses parameters trained on the
complete training data set. Since unknown objects can be
segmented using class agnostic segmentation, there is no
need to include all objects from daily life in the system,
but only a subset of relevant ones. For those objects, a finer
segmentation and object class, which allows object specific
grasp parametrization, are provided. An overview of the
system architecture is given in Fig. 2.

A. Classification

Classification is realized by a deep convolutional network
optimized towards inference on the embedded processor.
For our application of object classification two aspects are
relevant: A set of known objects must be recognized with
high accuracy within given real-time constraints. Taking
considerations from [19] into account, we see a maximum
of ≈ 150 ms as an acceptable value for recognition.

1) Network Architecture Synthesis: To achieve real-time
network inference, the classification network architecture is
synthesized by using an evolutionary algorithm inspired by
the algorithm proposed in [15]. The algorithm uses multiple
evolution steps in which the algorithms evaluated the fitness
of all networks, breeds offspring networks with crossover
characteristics from two parent networks of high fitness and
randomly mutates segment parameters.

Since real-time constraints and given hardware resources
allow a maximum number of operations at which the highest
accuracy can be expected, we modify the fitness function to
target a given number of operations. Since the convolution

layers are responsible for most of the resulting operations as
stated in [20], only the operations resulting from convolution
are regarded. The number of MAC operations per convolu-
tion layer can be calculated as

βconv =
IH × IW × IC ×KH ×KW ×OC

S2
(1)

with input I , kernel K, output O as well as height, width
and channels H,W,C. S is the filter stride. We derive the
fitness of a network combining number of operations and
accuracy by designing a fitness function using a generalised
logistic function, in detail

F(αfinal, βconv) = αfinal + (1 + eβconv−(1+ν))−
1

2+ν (2)

where αfinal is the converged network accuracy and ν the tar-
get amount of MAC operations in millions, in our case, ν =
2.0. The function is designed so that 0.0 < F(αfinal, βconv) <
2.0 and strictly monotonously increases for smaller βconv and
ν. Fitness strongly decreases for for βconv > ν to penalise
higher number of operations than the preferred ν.

For mutation and crossover, CNN architectures are seri-
alized into segments depicted in Fig. 4(a). Each segment
consists of a convolutional, batch normalization, pooling and
ReLu layer. This implementation proved to be extensible as
well as easy to modify. The crossover process of two CNNs is
depicted in 4(b). Two parents networks create two offspring
networks, carrying on favorable traits of their parents. Muta-
tion is implemented as random change in hyperparameters,
including the adjustment of filters, kernels, strides, pooling
types in a predefined range and even the complete removal
of segments. The initial pool consists out of 20 randomly
initialize network architectures.

As for training, a dataset of 13 classes, 300 samples per
class annotated with class labels is used. This dataset is
split 70/30 for training and testing. The training data set
is augmented by segmenting the background and replacing
it with random pixel values. Additionally, we use flipping,
cropping, affine translation and random Gaussian noise to
further augment training images. The performance of each
network is evaluated by training upon convergence until
accuracy delta is smaller then 1% for 3 epochs. To select
the final network architecture, once the generations do not
improve, the highest fitness architecture with an accuracy
higher than a threshold (98.5 %) was taken from the pool.



input

72×72×3

Filter: 4×3×3×3

Convolution

Filter: 8×3×3×4

Convolution

72×72×4

Pooling

Filter: 2×2

Dense

13

out

Filter: 16×3×3×8

Convolution

Pooling

Filter: 2×2

36×36×4

36×36×8

18×18×8

18×18×16

Filter: 32×5×5×16

Convolution

Pooling

Filter: 2×2

9×9×16

9×9×32

Filter: 32×5×5×16

Convolution

Pooling

Filter: 2×2

4×4×32

4×4×64

(a)

Scaling and 

offset

input

128×72×3

Filter: 8×3×3×3

Convolution

128×72×3

Filter: 16×3×3×8

Convolution

128×72×8

Pooling

Filter: 2×2

Filter: 8×3×3×16

Convolution

32×18×16

Upsampling

Filter: 2×2

128×72×8

32×18×8

Filter: 8×3×3×24

Convolution

128×72×3

Filter: 1×1×1×8

Convolution

128×72×8

Concatenation

Offset

128×72×1

128×72×1

out

128×72×16

128×72×16

(b)

Fig. 3. Classification (a) and segmentation (b) network architecture

2) Deployment Optimization: For deployment of the clas-
sification network, we use the CMSIS:NN library[21] which
offers Cortex-H7 optimized network kernels, especially ex-
ploiting SIMD instructions and includes a quantization
framework. For efficient inference, convolution and pooling
filter and kernel sizes are adapted to the next suitable
dimension supported by the library. The resulting and finally
deployed architecture is depicted in Fig. 3(a).

The model obtained by the evolutionary algorithm is
further trained using a decaying learning rate starting at 0.01
until convergence. After training of the network, we fuse
batch normalization into preceding convolutions, to avoid op-
erations needed for training in inference. Iterative pruning is
employed to further enhance performance until the accuracy
decreases by 0.1 %. Then, we find the optimal quantization
range with 8 bit precision by applying quantization sweeps
as described in [21].

in
p

u
t

B
a

tc
h

N
o

rm

C
o

n
v
o

lu
ti
o

n

P
o

o
lin

g

R
e

L
u

B
a

tc
h

N
o

rm

C
o

n
v
o

lu
ti
o

n

P
o

o
lin

g

R
e

L
u

D
e

n
s
e

o
u

tp
u

t

… 

(a) Serialization of CNNs for evolution, the input passes an arbitrary amount
of segments, each segment is defined as Convolution-BatchNorm-Pool-ReLu
block. After feature extraction, a final fully connected layer serves as a
classifier.

⇒

21 3

21 3 4

21 3

21 3 4

1

21 2 3

3

4

(b) Breeding two child CNNs from two parent CNNs. Each block represents
a whole segment. Random cut locations are determined (red arrows) and
according to these, the networks are intertwined.

Fig. 4. Serialization and crossover for the evolutionary algorithm.

B. Segmentation

For semantic segmentation, the captured camera image
as well as the user evaluated result of the classification
network is used as input. The output is a binary pixel-wise
segmentation of the object in the input image. The layers
of the network are shown in Fig. 3(b). The network follows
the structure of an encoder-decoder network. Encoder and
decoder are connected by a residual connection. This con-
nection short-cuts a down-sampling layer and a convolution-
layer with reduced layer sizes. The decoder network is using
deconvolution layers realized by an up-sampling layer which
is concatenated by the layer before down-sampling. The con-
catenated layers are merged by using depth-wise convolution.
The final pixel-wise result is generated by applying a binary
threshold to the output image.

As a dataset for the training of the network, we captured a
set of 100 images per object class. The labels were generated
manually by creating a ground truth mask for every image.
This results in a set of 1.300 available images for the training
and test dataset which was split in a relation of 1/3 to 2/3.

The network is trained using a loss function to min-
imize binary cross-entropy for the predicted pixel class

Fig. 5. For offline training of the system, RGB-images were captured by the
in-hand miniature camera and transferred to a PC. For training 1.300 images
of 13 object-classes from the YCB and KIT object model database were
recorded. The images are annotated with binary labels, providing ground
truth for the training of the segmentation network. Bottom right: Example
from the afterwards captured holdout dataset (YCB mustard bottle)



probability and ground truth. To take later quantization of
weights and layers into account, the network is trained
using fake quantization layers that allow quantization aware
training. During training the network weights are stored as
floating points and allow high resolution for the backward
propagation algorithm, while for evaluation, quantization is
simulated [17]. Training is stopped when the filtered loss
improvement falls under a certain threshold. For quantized
deployment, the network is converted using a converter
provided by Tensorflow Lite. This reduces all weights to
8-bit resolution taking into account minimum and maximum
values. The converted weights are exported as constants to
be flashed to microcontroller static memory.

The network structure is common for segmentation of
different objects but parametrized by weights trained on
different training sets. For known object classes the network
parameters are learned exclusively from the corresponding
object class. In case of unknown objects, the network weights
trained on all other object classes. In case of a rejected
segmentation of a known object class, also the class agnostic
network is inferred.

IV. EVALUATION

To evaluate our system we discuss results for the clas-
sification network architecture obtained using the proposed
evolutionary algorithm. Further, we evaluate the accuracy
of the segmentation network on the test dataset and an
additionally generated holdback dataset consisting out of 5
additional object classes.

A. Classification Results

Results of the evolutionary algorithm used for the de-
sign of the optimized classification network architecture, as
average accuracy and MAC per generation, are depicted
in Fig. 6. The results show, that evolution as expected
decreases the operation count while increasing accuracy. The
operation count, according to the target count defined in
equation 2, converges towards ν. Since accuracy and amount
of operations improved evenly, the fitness function does not
overrate either one and is therefore beneficial. On a GTX970
GPU the training per generation takes approximately 2 hours.
We observe that with increasing number of generations the

Fig. 6. Average accuracy and MAC operations in millions per generation.
The evolutionary algorithm successfully generates networks that have in-
creased accuracy and lower operation count. The convergence of operations
to 2 is a result of the chosen fitness function.

Fig. 7. Confusion matrix of the classification network. All objects are from
the YCB object set.

variance in the models is decreasing, network architectures
tend to converge and share similar layer setups. After 10
generations progress significantly slows down and first gen-
erations do not increase the best fitness. This suggests that a
local extremum is reached after a short evolution time. We
believe that hyperparameters of the evolutionary algorithm,
especially the mutation rate, need to be further adjusted to
ensure higher variance. More importantly though, the results
indicate that the chosen breeding function in fact carries
on favorable characteristics. Results show that evolutionary
architecture synthesis does not reach an optimal architecture,
but provides a good result without manual hyperparameter
optimization. The algorithm allows reducing execution time
of networks which can be created automatically, allowing the
creation of user specific network architectures for individual
requirements.

The resulting architecture with the highest test accuracy on
our dataset consists of 4 convolutional layers, subsampling
the 72×72×3 input image after each convolution and uses
a combination of maximum and average pooling. Subse-
quently, a fully connected layer yields the classification
output.

The synthesized network architecture, after fusing the
batch normalization, achieves an accuracy of 96.75 % on
a separately captured evaluation set including 100 samples
per class. With weights, bias and activations quantized to 8
bit, we achieve an accuracy of 96.51 %. The classification
results and the confusion matrix is provided in Fig. 7.

Over the course of quantization, accuracy only dropped
0.4 % reducing the weight and activation footprint by a factor
of 4.

An overview of run-time and data usage per layer is
provided in table I. In total, the network achieves a real-
time satisfying inference in 115 ms, classifying 13 objects.



Layer Type Filter Shape Output Shape Ops

Runtime -O1
quantized

kernel
(not) optimized

Input N.A. 72× 72× 3 (15.6 kB) N.A. N.A.
Convolution 3× 3× 3× 4 (0.1 kB) 72× 72× 4 (20.3 kB) 0.6 M (110 ms) 40 ms
MaxPooling N.A. 36× 36× 4 (5.1 kB) 23.3 k (8 ms) 3 ms
Convolution 3× 3× 4× 8 (0.3 kB) 36× 36× 8 (10.2 kB) 0.4 M (76 ms) 13 ms
MaxPooling N.A. 18× 18× 8 (2.5 kB) 11.7 k (4 ms) 1 ms
Convolution 3× 3× 8× 16 (1.1 kB) 18× 18× 16 (5.1 kB) 0.4 M (60 ms) 10 ms
MaxPooling N.A. 9× 9× 16 (1.3 kB) 11.7 k (2 ms) <1 ms
Convolution 5× 5× 16× 32 (12.8 kB) 9× 9× 32 (2.5 kB) 1.1 M (135 ms) 24 ms
AvgPooling N.A. 4× 4× 32 (0.5 kB) 2.3 k (1 ms) 1 ms
Convolution 5× 5× 32× 64 (51.2 kB) 4× 4× 64 (1 kB) 0.8 M (96 ms) 23 ms
AvgPooling N.A. 2× 2× 64 (0.3 kB) 1.2 k (<1 ms) <1 ms

Dense 2× 2× 64× 13 (3.3 kB) 13 (13 B) 1.2 K (<1 ms) <1 ms
Total 68.9 kB weights 48.8 kB activations 3.2 M (492.7 ms) 115 ms

TABLE I
CLASSIFICATION NETWORK RUNTIME AND MEMORY BREAKDOWN

Thereforee, it uses 69 k parameters, accounting for 69 kB of
memory and 44 kB RAM usage.

B. Segmentation Results

To show the benefits of our approach in combining object
classification and selecting weight parameters based on the
classification result, we compare the accuracy of segmenta-
tion results on the test data set for class aware and class
agnostic segmentation.

The average accuracy of the resulting object mask is com-
pared to ground what gives true/false positive and negative
pixel-wise classification. The mean accuracy is calculated
over all image-pixels:

accmean =

∑IH
h=1

∑IW
w=1

tph,w+tnh,w
tph,w+fnh,w+fph,w+tnh,w

IH × IW
(3)

For object class agnostic segmentation the accuracy ranges
from 78.0 % to 86.4 % with a mean of 82.8 %. With
awareness about class, results improve for all objects. Class
aware segmentation results from 81.3 % to 95.2 %, the
mean is at 89.5 %, this exceeds results for class agnostic
segmentation by 8.1 %. Detailed results can be found in
table II

The effects of quantization on the network accuracy are
measured by first evaluating the direct network output before
applying the threshold for obtaining the binary output mask.
The error is obtained by averaging the pixel-wise error which
is calculated as

errormean =

IH∑
h=1

IW∑
w=1

outh,w − out quantizedh,w
outh,w

(4)

For the segmentation test set we obtain an average error of
errormean as 2.33 %. Since small changes do not directly
influence the output segmentation mask due to the applied
threshold, we separately calculate the accuracy of the quan-
tized result on the un-quantized network. Here an accuracy
of 94.7 % is obtained. The number of MAC operations is 29
million, showing the need for further optimization, since it
exceeds the time budget enforced by real-time requirements.

Following the design of the system, we evaluate the
accuracy on additionally recorded data which we use as

Object class
Class agnostic
segmentation
accmean

Class aware
segmentation
accmean

Improvement
by using
classification
result

Banana 0.864 0.928 7.4 %
Ball 0.799 0.813 1.8 %
Cup 0.849 0.952 11.7 %
Pitcher 0.801 0.913 15 %
Chips 0.83 0.883 6.7 %
Bowl 0.839 0.936 11.6 %
Lemon 0.821 0.942 13.8 %
Shampoo 0.831 0.908 9.6 %
Bandaids 0.82 0.854 4.1 %
Fizzies 0.829 0.897 8.5 %
Spam 0.869 0.917 5.6 %
Cola 0.78 0.823 5.4 %
Hammer 0.834 0.865 3.7 %
Mean 0.828 0.895 8.1 %
Holdout:
Baseball 0.882 - -
Green cup 0.934 - -
Mustard Bottle 0.839 - -
Salt Box 0.906 - -
Sugar Box 0.893 - -

TABLE II
ACCURACY ON TEST DATASET

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Outputs from original (c) and quantized (d) segmentation network
for an exemplary input image of the ball (a). The pixel wise quantization
induced error is shown in (b). In (e) and (f) the output mask obtained by
applying a binary threshold is shown with and without network quantization.

our holdout dataset. To this end, we recorded image data
from 5 unknown objects using a handheld prosthesis, with
5 images and manually annotated ground truth masks per
evaluation object. All unknown objects are not included in
training and test dataset. The output is predicted by the class
agnostic segmentation network trained on all 13 objects from
the training data set. The resulting class-wise mean accuracy
(see 3) is included in table II.

C. Limitations and Future Work

The number of recognizable object classes is restricted by
the network size. We proofed good classification results on a



set of 13 objects which satisfies real-time constraints on our
current hardware platform. An increase of the number of ob-
ject classes with currently implemented architecture, would
lead to a decreasing accuracy. The increase of network-size,
namely number of filters, can counteract this problem. Since
real-time constraints do not allow increasing the number of
operations for the algorithm, this does not provide a valid
solution. Especially for semantic segmentation, a high need
for computational power was identified, which cannot satisfy
real-time requirements with current hardware. However, the
designed system can be expected to scale well in the case of
upgraded hardware resources.

A limitation of our currently implemented system is that
only tabletop scenarios are regarded. We do not train or test
on cluttered scenes since this is not focus of our work at
this stage. However, this will be investigated in the future to
allow robust real-world application. In addition, we will work
on including multiple object instances per object class. This
will allow us e. g. defining the category of bottles instead of
one specific type of bottle.

V. CONCLUSION

In this paper, we presented a system for scene information
extraction from visual data captured by a camera integrated
into a prosthetic hand. To this end, we designed, implemented
and tested a system combining object classification and
semantic segmentation. The system includes user feedback
after an initial classification by which the user can confirm
or reject the classification result. In the case of a confirmed
classification a class aware segmentation is inferred. Seg-
mentation is realized by a convolutional encoder-decoder
network. The output of the system includes multiple compo-
nents: Object information can be derived from the identified
class while the segmentation mask allows estimation of
object orientation and position. We describe the methods
used to implement our system in a resource-constrained
computing environment. Therefore we propose an adaptation
of an evolutionary algorithm for optimizing the classification
network architecture taking limited hardware-resources into
account. We apply methods for optimized implementation
including quantization, pruning and use of optimized kernels
for network deployment on an embedded Arm processor.

To evaluate the designed system, we test the performance
after training with a dataset generated by using the in-
hand camera. We include evaluation of required hardware
resources and evaluate the accuracy of classification. Seg-
mentation is evaluated by analyzing the classification result
on an unseen test dataset. We further compare the results of
the un-quantized trained network with the quantized version
for deployment and observe only minor deviation.

To conclude, we presented a resource-aware system that
allows gathering relevant scene information required for the
automatic generation of grasp candidates by the KIT Pros-
thetic Hand. Our system design allows in-device implemen-
tation which we consider important for realizing integrated
prosthetic hands with semi-autonomous grasping abilities.

REFERENCES

[1] S. Došen, C. Cipriani, M. Kostić, M. Controzzi, M. C. Carrozza, and
D. B. Popović, “Cognitive vision system for control of dexterous pros-
thetic hands: experimental evaluation,” Journal of neuroengineering
and rehabilitation, vol. 7, no. 1, p. 42, 2010.

[2] G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour,
“An exploratory study on the use of convolutional neural networks for
object grasp classification,” 2015.

[3] J. DeGol, A. Akhtar, B. Manja, and T. Bretl, “Automatic grasp
selection using a camera in a hand prosthesis,” in 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 431–434, IEEE, 2016.

[4] M. Markovic, S. Došen, D. Popovic, B. Graimann, and D. Farina,
“Sensor fusion and computer vision for context-aware control of a
multi degree-of-freedom prosthesis,” Journal of neural engineering,
vol. 12, no. 6, p. 066022, 2015.

[5] M. Esponda and T. M. Howard, “Adaptive grasp control through multi-
modal interactions for assistive prosthetic devices,” arXiv preprint
arXiv:1810.07899, 2018.

[6] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl,
and O. C. Aszmann, “The extraction of neural information from
the surface emg for the control of upper-limb prostheses: emerging
avenues and challenges,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 22, no. 4, pp. 797–809, 2014.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[8] P. Weiner, J. Starke, F. Hundhausen, J. Beil, and T. Asfour, “The
KIT Prosthetic Hand: Design and Control,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2018.

[9] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision, pp. 818–
833, Springer, 2014.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention,
pp. 234–241, Springer, 2015.

[11] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[14] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

[15] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Automatically designing
cnn architectures using genetic algorithm for image classification,”
arXiv preprint arXiv:1808.03818, 2018.

[16] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 497–504, ACM, 2017.

[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

[18] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
in Advances in neural information processing systems, pp. 598–605,
1990.

[19] T. R. Farrell and R. F. Weir, “The optimal controller delay for
myoelectric prostheses,” IEEE Transactions on neural systems and
rehabilitation engineering, vol. 15, no. 1, pp. 111–118, 2007.

[20] L. Lai, N. Suda, and V. Chandra, “Not all ops are created equal!,”
arXiv preprint arXiv:1801.04326, 2018.

[21] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601,
2018.


	Introduction
	Related Work
	System Design
	Classification
	Network Architecture Synthesis
	Deployment Optimization

	Segmentation

	Evaluation
	Classification Results
	Segmentation Results
	Limitations and Future Work

	Conclusion
	References

