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Abstract— We present a novel underactued humanoid five
finger soft hand, the KIT Finger-Vision Soft Hand, which is
equipped with cameras in the fingertips and integrates a
high performance embedded system for visual processing and
control. We describe the actuation mechanism of the hand
and the tendon-driven soft finger design with internally routed
high-bandwidth flat-flex cables. For efficient on-board parallel
processing of visual data from the cameras in each fingertip,
we present a hybrid embedded architecture consisting of a field
programmable logic array (FPGA) and a microcontroller that
allows the realization of visual object segmentation based on
convolutional neural networks. We evaluate the hand design by
conducting durability experiments with one finger and quantify
the grasp performance in terms of grasping force, speed and
grasp success. The results show that the hand exhibits a grasp
force of 31.8 £ 1.2 N and a mechanical durability of the finger
of more than 15.000 closing cycles. Finally, we evaluate the
accuracy of visual object segmentation during the different
phases of the grasping process using five different objects.
Hereby, an accuracy above 90 % can be achieved.

I. INTRODUCTION

The design of robotic hand comprises the challenges of
designing an actuation system as well as a sensor system
that can provide full-featured feedback for a controller that
generates actuation signals. Visual sensor systems are widely
used in robotics and provide, not only due to recent progress
in deep learning based vision methods, valuable information
about the scene in which a robot perform its tasks. Com-
pared to an external camera, an end-effector-mounted camera
allows to minimize the position error independently of the
limited accuracy of the robot kinematics [1].

In this work, we present the design of the KIT
Finger-Vision Soft Hand, as shown in Fig. |1} that includes
cameras directly inside the tips of soft fingers. The use of
such in-finger cameras is enabled by their miniaturization,
driven by the demand for smartphones and laptops. The
integration of cameras inside a robot fingertip provides
redundant visual information without inevitable occlusion by
the gripper itself before establishing contact with the objects
to be grasped, and provides the advantages of multi-camera
based perception. Further, pose recovery for the cameras
allows inferring finger poses without internal sensors, a
promising approach that can contribute to the estimation
of soft robotic structures such as the finger of the hand
described in this work.

The paper is structured as follows: In section [II] we give
an overview of related work regarding optical methods for
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Fig. 1.

The Finger-Vision Soft Hand with 2 Megapixel in-finger cameras.

in-finger perception and describe relevant soft fingers found
in literature. In section we present the design of the
Finger-Vision Soft Hand that includes the design of soft
fingers with in-finger cameras and data connection. Further
we present integrated actuation mechanic and a hybrid em-
bedded system for data processing and control. Subsequently
we propose a convolutional encoder-decoder network archi-
tecture for the extraction of semantic data from the visual
data. We evaluate the system performance in section
including grasp performance, mechanical durability of the
finger design and evaluation of the perception system during
a grasping experiment.

II. RELATED WORK

In the development of robotic hands, soft mechanisms
such as soft fingers with flexible joints receive an increasing
attention, as they facilitate a safe and compliant adaptation of
the hand towards the objects to be grasped, while providing
mechanical robustness and increasing grasp stability [2].
While soft robotic grippers are designed with a wide variety
of shapes and actuation principles [3], [4], an increasing
number of soft humanoid hands has been presented through-
out the recent decade.

Several humanoid hands have been presented including
pneumatically actuated soft fingers with rigid [5] and contin-



uous joints [6], [7]. Continuous designs exhibit a highly com-
pliant object interaction, while their grasping strategies differ
from the human hand due to their continuous joint structure.
Alternatively, rigid finger segments can be combined with
flexible joints, which can adapt to external influences. The
four-fingered iHY hand uses shape deposition modeling to
manufacture elastic joints [8]. Other design approaches for
flexible joints include compliant rolling contact joints [9]
and compliant spring joints integrated into the structure of a
monolithic finger [10].

Besides the design of soft flexible fingers, their sen-
sorization is an other key aspect for successful grasping
and manipulation and multiple sensor setups and modalities
have been applied in robotic hands [11]. Both, internal and
external information can be gathered by visual sensor setups.
Interoceptive visual sensor systems are used as tactile sensors
to detect forces and torques by perceiving the deforming
shape of an elastic surface. Discrete photoreceivers can
detect changing optical characteristics [12]. Also, camera
systems including optical lenses can be used to track internal
features on the finger surface ([13], [14], [15]) that allow
reconstruction of the outer shape of the fingers. A review of
camera-based methods can be found in Shimonomura et al.
[16].

Furthermore, optical sensor setups can also be applied to
directly detect exteroceptive information before establishing
contact. Active proximity sensors that emit and detect in-
frared light have been e.g. integrated in robotic grippers
([171, [18]) and a three-fingered hand [19].

The principle of using cameras inside the fingertips to
obtain visual pre-touch information is barely investigated
in existing literature. In [20], the authors attach a camera
based sensor to a fingertip of the NAIST Hand to measure
contact forces in a prototypical setup. Robotic grippers that
use cameras inside the fingers for exteroceptive sensing
can be found in [21] and [22]. Shimonomura et al. [22]
use a stereo camera system inside a parallel jaw gripper
to obtain depth/proximity information. Additionally touch
information is provided by an infrared vision system and
a light conductive plate in front of the camera. This enables
to execute tasks like searching, approaching and grasping an
object. Yamaguchi et al. presents a system that combines
vision and marker based tactile feedback [21]. Markers on a
translucent elastic surface are tracked by a finger-integrated
camera, that can provide forces and torques asserted on the
finger. To our best knowledge, no humanoid five-finger hand
with integrated exteroceptive visual perception in each finger
has been presented in the literature yet.

The advantage of visual feedback from an in-hand inte-
grated camera was investigated in our previous work [23]
and [24] with the objective of the development of a context-
aware prosthetic hand. Kinematic control strategies based
on gripper-mounted camera was shown in multiple visual
servoing based approaches [25], in learning based approaches
([26],) or in a combination of both ([27], [28].

III. THE FINGER-VISION SOFT HAND

The mechanical basic structure of the hand is based on
our previous work [23], from which we adopt the tendon
based underactuation scheme. The Finger-Vision Soft Hand
includes five soft fingers, equipped with visual sensors,
that are adaptively underactuated by three motors. For the
control of the hand, we present an embedded controller board
specifically designed for the requirements resulting from our
hardware and sensor setup. It includes a high performance
real-time data-processing system as well as motor control
circuits, power management and required communication
interfaces. We present a network architecture for visual
object segmentation designed for real-time inference. The
dimensions of the hand are designed to match the human size
while integrating all motors and gears, the underactuation
mechanism and the controller board. The shape of the hand
palm was derived from a CAD model [29] of a human hand
as a reference. The final prototype results in a total weight
of 580 g and 28.6 g per finger. All fingers have a length of
10cm and width of 1.7cm for the intermediate joint. The
total hand length is 21.5cm.

A. Mechanical design

The hand consists of a rigid palm which is FDM-printed
using ABS and five tendon actuated silicone-casted soft fin-
gers, which include the cameras and flat-flex-cables for elec-
trical interconnection. To allow the realization of a variety of
grasps including precision and power grasp types, we include
three motor gear units of type Faulhaber 2224U012SR 20/1R
with a planetary gear with a transmission factor of 23:1 inside
the palm. The motor’s angular velocity is measured using
relative encoders (Faulhaber IEH2-512), that are attached to
the motor-shaft and provide a resolution of 512 impulses per
revolution. The thumb and index fingers are directly driven
by tendons (Dyneema, 0.4 mm) reeled up on pulleys on the
gear shaft. The middle, ring and little finger are jointly actu-
ated using an adaptive underactuated mechanism that equally
distributes the force from one actor to multiple fingers. This
reduces the complexity of control and mechanical design.
The underactuation mechanism (see Fig. [2) is a modified
version of the 50" percentile Female KIT Prosthetic Hand
mechanism ([23]), which is based on the TUAT-Karlsruhe
mechanism [30]. Instead of using only two actuators, the
Finger-Vision Soft Hand presented in this paper contains an
additional third actuator.
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Fig. 2. Tendon-based actuation scheme of the hand: Two separate motors
are used for actuation of the index finger and thumb. A third motor actuates
middle, ring and little finger using an adaptive mechanism for equal force
distribution.



Fig. 3.

Cut view of the silicone-material (colored in beige) enclosing the
rigid bone segments (gray) and reinforcing PET-strip (red) which is glued to
the rigid segments on the bottom side. The tendon (green) is guided trough
PTFE-tubes (blue) in the rigid segments. Camera: colored dark gray

The tendon coming from the motor assigned to the coupled
little, middle and ring finger is routed over a roller of a
movable pulley block and ends at the third finger. The other
fingers are connected over the second roller of the pulley
block. The complete actuation scheme is depicted in Fig. 2]
If friction is neglected, the mechanism distributes the force
to all three fingers equally. For routing of the tendons in
between motors, the mechanism and the fingers, we use
a combination of two rollers and low-friction PTFE-tubes
embedded into the 3D-printed hand structure.

The finger kinematic consist of two flexible joint that
represent the metacarpophalangeal and proximal interpha-
langeal joint of the human finger. A cross section of the
finger structure is shown in Fig. 3] The joint structure is
adapted from the iHY-finger presented in [8]. However, our
setup includes two flexible joints instead of one. The fingers
rigid bone segments are interlinked by a flexible PET strip
and are enclosed in casted silicone (45 ShA). The monolithic
soft material functions as an elastic interconnection between
the finger segments. In addition it mimics the soft tissue of
the human finger and provides a deformable, high friction
material for interaction with objects.

The tendon routing channels are realized by PTFE-tube
segments glued into the rigid bone segments. The camera
cable (24 pin, 0.5 mm pitch) follows the back side of the
PET-strip that interconnects all rigid finger bone segments.
This interconnection prevents pulling forces on the cable and
acts as a neutral bending axis inside the elastic structure
that does not experience length changes during flexion. The
manufacturing process using a mold, in which the inner
finger structure is placed and casted with two components
silicone, is illustrated in Fig. 4

B. Embedded Electronic System

Since grasping requires real-time processing of the data,
the performance of the data-processing architecture is crucial
for responsiveness of the hand. To allow parallel receiving
and processing of image data from the multiple cameras,
that each provides a high data rate signal, we address the
challenge of efficient data transfer and processing hardware.
Compared to most available microcontrollers, which are
limited in number of high bandwidth camera interfaces,
reconfigurable logic such as FPGAs allows configuration of
parallel data processing structures and provides sufficient IO-
pins. This make FPGAs suitable for the underlying hand
with its multiple in-finger cameras. For tasks like motor
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Fig. 4. Manufacturing steps of the soft fingers: Rigid bone segments
connected by a PET-strip for reinforcement (a) are placed in a two part mold
(b). The camera is inserted into the distal bone segment and is connected
by a flat-flex cable that follows the PET-strip (c). The mold is closed and
a tube attached, through which the mold is filled with silicone. After the
silicone is cured, the mold is opened (e) and the finger is taken out. The
silicone from inside the tendon guiding tubes and from the filling channels
is removed and the tendon is inserted. Also, the silicone residues and the
protection film in front of the camera lens are removed (f).

control and lower data-rate interfaces, microcontrollers pro-
vide advantages of procedural programming methods, hence
we choose an additional microprocessor, that supplements
the FPGA. The resulting hybrid architecture consisting of
an FPGA and a microcontroller is depicted in Fig. f(a)] It
allows parallel data processing of visual data as well as pro-
cedural program control using the processor sub-system. The
embedded system further includes three DC-motor drivers,
an EtherCAT real-time bus interface, as well as a set of
voltage converters to provide the required supply voltages for
connected sensors and the data-processing components. The
system tolerates input voltages ranging from 24 V to 48 V
DC, intended for compatibility with typical robot supply
rails. The complete system was realized on a 90mm by
35mm PCB as shown in Fig. that allows integration
into human sized robotic hands. As an FPGA, a 52 k
logic cell and 330 kByte block RAM XILINX Artix 7 was
selected. The microcontroller is based on an Arm Cortex H7
processor with a clock frequency of 400 MHz that provides
2 MB of flash memory and 1 MB RAM (STMicroelectronics
STM32H7).

As shown in Fig. [5(a)] all cameras (OmniVision OV2640)
are connected by 8 bit wide DCMI buses (Digital Camera In-
terface) and additional control signals directly to the FPGA,
which allows to receive data of five parallel streams with
20 frames per second at a resolution of 176 x 144 RGB
(QCIF). The FPGA implements a receiver component that
transfers raw camera data into the block RAM (BRAM). The
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Fig. 5. Hand internal controller PCB. a) Block Diagram b) Photo of the
PCB used for experiments with relevant components labeled

buffered data stream can be further processed by the FPGA-
implemented processing units. For experiments conducted in
this work, the FPGA is used only for serialization of the
multiple in-finger camera data streams for combined for-
warding to the processor unit via a single parallel 100 Mbit
bandwidth bus following the DCMI protocol. The interface
for data transfer from processor to FPGA is realized as a
12.5 Mbit serial bus, provided for use in future work.

C. Low-Level Controller

The local low-level control of the motors is realized by
an embedded controller implemented on the microprocessor.
The motor angles are obtained by relative encoders connected
to microcontroller internal timer units that allow measure-
ment of the tendon pulley angle with a resolution of 47104
steps per revolution. Thus, the complete closing of a finger
results in 60.000 steps for the individually actuated fingers
and 180.000 steps for the fingers coupled by the underac-
tuated mechanism. The motor voltage is controlled using
pulse-width modulation (PWM) with a resolution of ﬁ that
is provided by the motor drivers of type Texas Instruments
DRV8844. The voltage is controlled by a cascaded velocity
and position PID-controller executed in a 1 kHz control loop.
For hand-guided grasping and manipulation by an operator,
a three button interface is provided for motor-wise control.

D. Visual Object Detection

To demonstrate the possibility of extraction of scene infor-
mation from the visual data during grasping , we investigate
a pixel-wise semantic segmentation of the camera images.

Therefore, we implement a convolutional neural network to
segment specific objects in the camera image and thereby
provide usable scene information for a higher level grasp
controller.

The neural network is realized in an encoder-decoder
architecture that includes residual connections and a sub-
sequent threshold function to provide a binary pixel-wise
classification of the target object in the camera image. The
network architecture is adopted from our previous work [24]
and is inspired by work presented in [31] and [32]. The net-
works hyperparameters were determined using the evaluation
set of our recorded and annotated dataset as described in [V
[Cl the final architecture consists of five convolutional layers
and one residual connection. All layer types and filter, output
and number of operations are listed in Tab. [} For training,
we use binary cross entropy as a loss function and carry out
optimization using the Adam method for 150 epochs.

TABLE I
NETWORK HYPERPARAMETERS

Layer Type Filter Shape Output Shape Operations
Input N.A. 88 x 72 x 3 (19.0 kB) N.A.
Convolution 3x3x3x16 (432 B) 88 x 72 x 16 (101 kB) 27M
Convolution 3Xx3x16x16 (2.30kB) | 8 x 72 x 16 (101 kB) * 146 M
MaxPooling N.A. 22 x 18 x 16 (6.34 kB) N.A.
Convolution 3 x 3 x 16 x 16 (2.30 kB) 22 x 18 x 16 (6.34 kB) 09 M
Upsampling N.A. 88 x 72 x 16 (101 kB) N.A.
Concat. with * N.A. 88 x 72 x 32 (203 kB) N.A.
Convolution 3x3x32x8(230k) 88 x 72 x 8 (50.7 kB) 146 M
Convolution 3x3x8x1(72B) 88 x 72 x 1 (6.34 kB) 0.5 M
[ Total I 7.4 kB weights I [ 333M ]

To analyze the performance of real-time inference of the
network, we evaluate the number of MAC operations. Layer-
wise numbers are included in Tab. |l the total number for
obtaining one output frame results in 33.3 M operations.
Regarding memory requirements, which is also a limited
resource for inference on embedded hardware, we obtain a
demand of 7.4 kB.

IV. EVALUATION

We evaluate our hand design in terms of grasp perfor-
mance, mechanical finger durability and visual perception
accuracy. The grasp performance is assessed as individual
finger forces, total hand force and grasp success on a set
of 60 objects. To evaluate the mechanical finger design
including electrical connections, we perform a long term
durability test with a finger mounted on a test bench setup.
We finally evaluate the performance regarding the extraction
of semantic information from the in-finger camera images
using the described convolutional network architecture.

A. Grasp performance

To measure grasp forces, we use a calibrated 6DoF force-
torque sensor (Mini 40, ATI Industrial Automation) with 15
repetitions per measurement. To assess individual fingertip
forces, the fingers of the open hand are positioned over
the sensor coated with high-friction material and the fingers
are closed with maximum possible supply voltage. The
resulting fingertip forces range from 6.3 N for the middle
finger to 11.6 N for the little finger. Two half cylinders



with a diameter of 31 mm are attached on both sides of
the force sensor to assess the cylindrical grasp force of
the Finger-Vision Soft Hand. By grasping the half cylinders
with a power grasp, the hand achieves a grasp force of
31.8 £ 1.2N. The finger closing speed is extracted from
video data in five repetitions. The hand closing time thereby
results to maximal 1.22 £ 0.03 s for the underactuated fingers
and 0.49 £+ 0.03 s respectively 0.44 £ 0.03s for thumb and
index finger.

To evaluate the grasp functionality of the
Finger-Vision Soft Hand, an adapted form of the gripper
assessment protocol [33] is applied. We follow the same
evaluation procedure as in our previous work [23]. Contrary
to the gripper assessment protocol designed for robot
operated hand, the hand is positioned by a human operator
and controlled via the three button interface. We enlarge the
used object subset to a total of 60 items from YCB Object
Set [33] that solely excludes the task items. The grasp
performance evaluation thereby includes household objects
like a mustard bottle, a pitcher or a key, as well as workshop
and leisure objects like bolts and screwdrivers. The objects
are lifted from a flat table surface and turned 90° within the
hand. Overall, 91.8% of the tested objects can be grasped
and lifted successfully, resulting in a grasp score of 201.5
out of 230.0 points. In a further experiment, the power drill
included in the YCB Object Set was successfully operated
by the hand to drill a hole into a wooden plank.

B. Mechanical finger durability test

Electrical connections in moving robotic segments are
prone to failures. This makes the wiring inside the fingers a
challenging and crucial task. To evaluate our finger design,
we conduct a long time reliability test of the mechanical
structure and electrical data connection passing the two soft
finger joints. The long term test is conducted on a newly
fabricated finger actuated and controlled similar to hand
internal setup on a test bench setup as shown in Fig. [6]
To detect whether the finger is completely closed, a push
button is contacted by the distal finger segment in a closed

Fig. 6.
bench. Opened and closed finger configurations are overlaid.

Setup for the longtime durability test with one finger on a test-
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Fig. 7. a) Setup and exemplary grasped object b) Camera stream and
segmentation during a grasp experiment with the bowl including the result
and ground truth data. The percentage values indicate temporal progress of
the grasp execution.

position. The finger is continuously opened and closed and
therefore controlled by a position controller. Two markers
are placed at the test bench and are captured by the camera
at minimum and maximum finger closing angle (. This
allows evaluation of the recorded images for failed image
data and positioning. Additional to the camera images, the
contact information from the push button is recorded. The
recorded data is visually checked for corrupted images as
well as mechanical finger function. The first corrupted image
was obtained after 4968 finger actuation, which indicates a
failure of an electrical connection of the camera inside the
soft finger structure. After this failure, still partially correct
image data was obtained, complete signal loss occurred after
5665 actuations. The mechanical system was fully functional,
when the test was terminated after more than 15.000 finger
actuations.

C. Visual Perception Experiment

To evaluate the performance in terms of visual object
segmentation throughout grasp execution, we conduct grasp-
ing experiments with a set of five different objects during
which we record the image data stream of all five in-finger
cameras. The object set includes the four objects bowl,
lemon, pitcher and strawberry from the YCB Object Set [33]
and additionally a green plastic cup. Each object is grasped
in eleven trials where the grasp is controlled by an operator
using an hand-attached shaft and the three button interface,
shown in Fig. [7]

D. Perception Evaluation

We start data recording with the frame in which the image
coverage of the object is minimal and stop at maximum
image coverage. Each individual grasp execution (run) is
recorded with 6.47 frames in average that each includes
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deviation.

five sub-images from the in-finger cameras. In total, a
dataset including 1780 sub-images is recorded and annotated
with binary ground-truth masks as shown in Fig. For
faster data-transfer, the sub-images are down-sampled (2 x 2
filter) to a resolution of 88 x 72 x 3 by the hand internal
microprocessor before being transmitted to a PC. We train
and evaluate a class specific encoder-decoder CNN in a 11-
fold cross validation where the data is divided into the 11
individual grasps trials. Captured and annotated data of one
of the objects (bowl) was used as training and validation data
set to optimize the hyperparameters. After hyperparameter
optimization of the network architecture the remaining four
objects are evaluated in an 11-fold cross validation.

We determine the accuracy of the segmentation which is
expected to change over the course of the grasp progress.
We evaluate the mean segmentation accuracy for all five
tested objects per finger and calculate a mean accuracy
value per object class depending on temporal progress of the
grasp. Finally, we calculate the mean segmentation accuracy
over all objects depending on temporal progress, note that
ground truth of distance between the fingers to the objects
are not available in this experiment. Plots of these results
can be found in Fig. [§] We obtain the mean accuracy
of the classification over all grasps and object classes as
0.98%, 0.96%, 0.89% and 0.74% in the 1% to 4™ quartile
of the temporal progress. While in the first quartiles, good
accuracies of more than 90 % can be obtained, the 4™
quartile shows a significant drop in accuracy. This can be
observed to varying degrees for all objects. As reasons for
these inaccuracies, the decreasing camera quality and false
image colors with smaller object distance can be named. An
example of altered colors can be seen in Fig. in the

Temporal Progress
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®

Evaluation of accuracy of the object segmentation during grasp experiments with five different test objects. The colored area indicates standard

bottom row image at 100 %. To solve this problem, internal
gain control or automatic color balance could be disabled.
Also additional proximity information could be helpful.

V. CONCLUSION

In this work, we presented a soft humanoid hand that
includes cameras for visual perception inside the fingertips.
We propose a design of soft fingers that allows the mecha-
tronic integration of cameras as the visual sensor system. The
3D-printed rigid palm includes three actuators in combina-
tion with an underactuated mechanism as well as a hybrid
embedded system. The system allows processing of the
multiple high data rate streams of visual information by using
reconfigurable logic in combination with a microprocessor.
We evaluate the performance of the hand in terms of forces,
grasp functionality as well as mechanical durability. The
hand can exert grasp forces of up to 11.6 N per finger and
31.8 N in a cylindrical grasp. For individual finger actuation,
we achieve nearly 5.000 closing cycles without any damage
of the electrical connection and more than 15.000 actuation
cycles before mechanical failure. The presented hand can be
used as a robotic hand but can also be used as a prosthetic
hand prototype.

We designed an encoder-decoder network for object seg-
mentation inside the camera images. The network provides
pixel-wise semantic segmentation of objects during grasp
process. At the beginning of the grasp process, mean ac-
curacies of more than 90 % can be achieved. Throughout
the temporal progress of the grasp, the accuracy drops
continuously. We see the reason in the camera internal image
correction in challenging lighting conditions. This could be
mitigated by a improved camera sensor or adding a sensor



for obtaining additional depth information. In future work
we intend to realize hand internal image processing and
scene interpretation using hardware acceleration. This will
allow local extraction of relevant scene information and
thereby significantly reduces the need for high bandwidth
data connection to external processing units.

Out of the scope of this paper is the question, why in
nature no living beings have eyes or visual sensory organs
in their extremities or what advantages this might come with.
Also, it might be interesting if and how these high bandwidth
connection to the visual cortex are feasible in biological
systems. However, for robotics, we see the new hand design
with a set of multiple cameras located at potential points
of contact as a chance to enable new kinematic control
strategies of reactive grasping which we intend to investigate
in future work. The evaluation of the new hardware design
proposed in this paper provides promising results and shows
the possibility for obtaining visual feedback from cameras
inside of fingertips for more robust vision-based grasping.
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