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Abstract— We present a soft humanoid hand with in-finger
integrated cameras and in-hand real-time image processing
system for fast reactive grasping. Specifically, we describe
an FPGA-based, in-hand integrated, embedded system for
processing visual data captured by the five in-finger cameras
while avoiding high bandwidth raw data streaming via the
robots real-time data bus. The hardware acceleration allows
fast detection and localization of objects based on finger-camera
images and provides input for a grasping controller. To this end,
we implement a resource-aware encoder-decoder Convolutional
Neural Network (CNN) for pixel-wise object segmentation and
run inference on the in-hand embedded system at 3.58 GOPS.
We evaluate the system, consisting of the soft hand with in-
finger vision and the in-hand FPGA-accelerated CNN in several
experiments on the humanoid robot ARMAR-6. Specifically,
we evaluate the overall system response time, the ability to
perform precision grasps and test reactivity and reliability that
are required for handover actions. We obtain an overall system
response time of 154 ms for catching a falling object and obtain
a success rate of 90 % reliability for the power drill handover
tasks. Further, we successfully demonstrate ability of dexterous
grasping and manipulation of a pencil from a cup.

I. INTRODUCTION

Visual perception is an important sensing modality for
autonomous systems ranging from self driving cars to assis-
tance household robots. In robotic grasping, fast and reliable
object perception is crucial for successful grasp execution.
The problem of vision based grasping includes the three key
tasks of object localization, object pose estimation, grasp
planning and execution [1]. In case of a closed-loop system,
visually detected features should be continuously estimated
and updated during the robot and/or object motion [2], thus
the latency of feature tracking constrains the maximum con-
trol frequency and thus the overall response time of the sys-
tem. Aiming at robot systems that can compete with human
performance regarding manipulation tasks, high demands and
constraints on the real-time processing hardware and applied
methods are the consequence. In particular, image processing
tasks are challenging and demanding because of the high
workload of the methods used to process large amounts of
raw visual sensor data and extract relevant scene information
including object positions.

To address vision-based grasping, numerous approaches
and systems have been proposed in the literature. Eye-in-
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Fig. 1. Catching a falling ruler based on in-finger vision and in-hand
hardware-accelerated CNN inference for object segmentation. An exemplary
segmentation result (=CNN output + threshold) and RGB image obtained
from an in-finger camera (thumb) are shown on the left.

hand systems have been used for image-based visual servoing
[3] to provide a direct view on the object of interest in the
scene. The miniaturization of cameras allows integration of
one [4] or multiple cameras [5] into robotic hands. Moreover,
in recent years also the design and control of grippers and
robotic hands with finger-integrated cameras is an active
research area [6], [7], [8], [9].

However, real-time processing of data of multiple high
resolution visual sensors in robotics, or more specifically
a humanoid hand equipped with several high resolution
cameras, such as our in-finger vision soft humanoid hand
[9], is challenging. The reasons for this are the limited
communication bandwidth as well as constrained computing
and energy resources. The limitation of bandwidth is mainly
due to the mechanical complexity and kinematic structure
that e. g. makes it difficult to use multiple busses across
multiple robot and hand joints due to intricate cable inte-
gration. Further, the computer architecture usually used in
today’s robots provides a certain number of processing units
such as CPUs and GPUs for perception, planning, interaction
and control tasks. While the use of multiple GPUs might
be sufficient to process visual data generated by multiple
high resolution cameras, this would lead to high energy
consumption that is still difficult to ensure given the limited
energy resources of a mobile robot. A promising solution
for such problems in robotics is the use of decentralized data
processing in dedicated processing hardware such as FPGAs,
where sensor data can be pre-processed locally in an energy
efficient and task specialized hardware while guaranteeing
real-time execution.

In this work, we present a soft humanoid hand with
in-finger integrated cameras and an FPGA-based, in-hand



integrated embedded system for real-time image processing
needed for fast reactive grasping. To this end, we develop a
resource-aware encoder-decoder Convolutional Neural Net-
work (CNN) for visual object detection and localization that
is running on the hand internal FPGA to provide segmenta-
tion masks needed for vision-based grasping tasks running
on the main robot control PC. We evaluate the hardware-
accelerated data processing algorithm as well as the system
as a whole by a set of experiments on the humanoid robot
ARMAR-6 [10] in the context of the tasks of fast grasping,
human-robot handover and dexterous grasping. An example
task of catching a falling ruler is shown in Fig. 1.

The paper is structured as follows: In section II we give
an overview of related work and in section III we describe
the design of the system including the soft humanoid hand
developed and used in this work, the network architecture
and its implementation. Section IV describes the perfor-
mance evaluation of visual data processing and the conducted
experiments on the humanoid robot ARMAR-6.

II. RELATED WORK

To achieve the abilities of the human hand in robotic
grasping and manipulation, it is important to equip artificial
hands with sensors enabling environment perception. But
replicating the entire multimodal somatosensory sensor sys-
tem of the human hand in robotic hands is still out of reach.
A large body of work address the problem of contact based
tactile sensing and proprioception using sensors with dif-
ferent measurement principles such as capacitive [11], pres-
sure [12], strain gauge [13], optical based [14] and acoustic
[15] based sensing. In addition, contact-less methods based
on proximity sensors (e. g. [16]) or, as in our work presented
in this paper, vision using in-finger integrated visual sensors,
are considered promising and hence investigated by a number
of researchers and thus are discussed in the following.

The authors in [17] use finger-vision for a two finger
gripper and obtain tactile as well as visual information of
the scene. In [7], cameras integrated into the fingers of a
parallel gripper are used to acquire proximity and contact
information as well as visual feedback. In [8], additionally to
finger and hand palm integrated cameras, external high speed
cameras are used. The system is evaluated in the context of
a ball catching task, where image processing is realized on
a dedicated vision PC. In [18], a dual mode, vision based
tactile sensor is presented, which allows identifying objects
based on their surface appearance. In our previous work, we
have presented the KIT Finger Vision Soft Hand [9] with
an integrated miniature camera in each finger and a hybrid
embedded processing system consisting out of an FPGA and
a microcontroller. We showed that pixel-wise semantic object
segmentation based on image data captured by the cameras
during the different phases of the grasping process can be
performed with a mean classification accuracy of more than
90% for an object set consisting of five objects.

As stated in [19], eye-in-hand setups allow, compared to
static camera setups, a more precise control without a need

for camera calibration. Examples of robotic grasping ap-
proaches that use in hand cameras can be found e. g. in [19],
[20], [21], and [22]. These approaches use neural networks
to either detect object position from visual input data ([19],
[20]) or directly learn features from visual data ([21] and
[22]). In [22], the authors report a runtime of 19ms of
the grasp detection pipeline of the reactive grasping system
implemented using a GPU-equipped desktop computer.

When high execution speed is important for successful
task execution as in the task of catching a ball in mid-flight,
careful design of the vision and processing architecture is
required. As presented in [23], [24] and [8], these task can
be achieved using dedicated computers for purpose of image
processing and motion control.

The use of FPGAs in robotics comes with the advantage of
a possibly better performance and higher energy efficiency,
that can exceed CPU and GPU based systems by a factor of
10 [25]. This makes FPGAs suitable for space constrained
systems where power consumption and thus heat generation
is often a critical design aspect. Thereby, FPGAs provide
promising possibilities for various robotic tasks related to
sensing, perception, localization, planning and control [25].
Recently, several robot hands that use FPGA-based process-
ing architectures to pre-process sensor-data and provide high-
bandwidth data output have been presented, e. g. in [26], [27],
and [5].

This work focuses on CNNs for image processing. CNNs
are widely used and have been proven to be very well suited
for a variety of image processing tasks including image
classification and segmentation. Further, CNNs can be easily
adapted to new object classes or tasks and can scale in
complexity concerning number of recognized features. The
inference of CNNs under resource- and real-time-constraints,
especially by using accelerators like FPGAs, is an active field
of research. A survey of FPGA-based neural network (NN)
acceleration is given in [28]. Here, the most important param-
eter to describe a NN accelerator design is the throughput
IPS, that describes the number of network-inferences per
second given by

IPS =
OPSpeak × η

W
,

where OPSpeak is maximum number of operations that
can be processed per second, η is the utilization ratio of
the processing units and W is workload for each inference,
measured by the number of operations in the network. State-
of-the-art hardware accelerated CNNs reach up to 3000
GOPS at 16 bit accuracy [29] and an energy efficiency of
more than 100 GOP/J.

Fixed-point data representations for quantization of net-
work weights and activations can significantly reduce pro-
cessing and memory resource demands while maintaining the
accuracy at almost similar level, see [30], [31] and [32]. In
Xilinx logic implementation, 8 bit fixed-point representations
compared to 32 bit floating-point multiplication reduces the
need for number of Look-Up Tables (LUTs) by factor 9.44
and 10.73 for Flip-Flops (FF) [28], while reducing memory
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Fig. 2. The KIT Finger-Vision Soft Hand (2nd revision). The hand includes
a miniature camera in each fingertip and an in-hand hybrid data processing
system.

demand by a factor of four.

III. SYSTEM DESIGN

The system presented in this paper comprises several
aspects: As robotic hardware platform we use the Finger-
Vision Soft Hand [9] with minor changes. This work pro-
poses a CNN design as well as a task specific hardware
accelerator implemented on the hand internal FPGA that
allows perception in real-time. The presented design is used
with the humanoid robot ARMAR-6 [10] to control the hand
and conduct several experiments for evaluation.

A. In-Finger-Vision Soft Hand

Soft robotic hands have the advantage of being able to
safely handle objects by exploiting the natural dynamics of
interaction with the objects. However, a precise control of
such hands is a difficult problem due to the limited and often
unavailable information about the state of the hand that can
only be achieved by suitable sensorization of the hand.

The KIT Finger-Vision Soft Hand as shown in Fig. 2 is
equipped with miniature cameras in each finger tip. As a
humanoid hand it includes five fingers that are actuated by 3
DC motor gear units. Thumb and index fingers are actuated
by a motor each and middle, ring and little finger are coupled
by an under-actuation mechanism. The fingers are manufac-
tured using soft material (RTV silicone, Shore hardness A45,
green colored) and rigid bone segments. Each finger includes
a miniature low cost camera with a maximum resolution of 2
megapixels (OmniVision OV2640). In our setting, the output
of the camera is configured to an output image size of 88×72
pixels in RGB888 format. All 5 cameras are synchronized
and new frames are received at equal time intervals. The
frame rate of each camera is 10.4Hz resulting in a total
image rate of 52 images per second when all five cameras are
considered. This gives a maximum timing budget for image
processing of 19.2ms that is available as CNN inference time
including IO-overhead. Parallelization of frame processing is
not intended to obtain a minimum processing delay.

The hand internal hybrid data processing system con-
sists of a processor and an FPGA. The processor is an

Arm Cortex M7 based microcontroller (ST Microelectronics,
STM32H753VIH6, 11.07 C) running a clock frequency of
400MHz. The used FPGA from the Artix 7 series (Xilinx,
XC7A75T-1CSG324C, 84.43 C) provides 75k logic cells and
3780 kBit of block RAM. Compared to available FPGAs, the
XC7A75T is at the lower-end of the performance spectrum.
All five camera data interfaces are directly connected to IO-
pins of the FPGA, which shares a parallel interface to the
processor. Further, a 100Mbit real-time EtherCAT connected
to the processor allows communication with the robots
main control PC at a control frequency of 1000Hz. For
capturing training data, the hand is operated manually and
obtained data is forwarded to a PC for training. During the
experiments conducted for evaluation, the hand is mounted
at the right arm of the humanoid robot ARMAR-6.

B. Convolutional Neural Network Design

For the binary pixel-wise segmentation of objects in the
in-finger camera images, a convolutional neural network in
encoder-decoder architecture as shown in Fig. 3 is used.
The network consists of five convolutional layers with zero
padding to preserve the original input size. Two consecutive
2 × 2 max pooling layers perform the down-sampling in
the encoder-path, while two 2 × 2 up-sampling layers with
nearest-neighbour interpolation are utilized in the decoder-
path. The final binary pixel-wise segmentation mask is
generated by applying a threshold to the output. Training
the network was performed class-aware, resulting in separate
weight configurations for each object class. We captured be-
tween 230 and 310 images per object and split these datasets
in a ratio of 9/10 and 1/10 for training and testing. Recording
of training and test data set as well as the experiments was
conducted in a typical lab-environment, with a white photo-
background only on one side behind the robot, see Fig. 6 c).
For data augmentation of training images we use horizontal
and vertical flipping but no further augmentation was used
to keep the data close to the real use case. The labels were
generated manually by creating a binary ground truth mask
for every image. To account for a high imbalance in the
amount of background and object pixels, we trained the
network with the Dice loss function. The resulting mean
accuracy on the test dataset for the included objects show
variations due to the different appearance of the objects.
We obtain the following accuracies of 83.7% for the ruler,
94.3% for the power drill and 96.0% for the pencil.

Initially, the weights and activations of the segmentation
network are represented as 32 bit floating-point numbers.
However, using quantization, the representation is changed
to 8 bit fixed-point numbers leading to significant reduction
of required processing and memory resource demand of
the network while maintaining the accuracy at a similar
level. To achieve this, we apply the method described in
[32]. We iteratively identify a proper fixed-point format
for weights, activations and biases in each layer based on
the respective minimum and maximum values and induced
accuracy drop on the training dataset. To convert between
different fixed-point formats in consecutive layers, we utilize



bit-shifts, avoiding time-consuming de- and re-quantization
of activations during inference. The resulting accuracy drop
caused by quantization noise for the used objects is 0.2% for
the pencil and 0.8% for the powerdrill. For the segmentation
of the ruler, the accuracy was increased by 1.1%, which
could come from additional regularization caused by the
quantization.
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Fig. 3. Encoder-decoder network architecture

C. CNN Hardware implementation

The accelerator design implemented in FPGA-hardware
as depicted in Fig. 4 is specifically optimized for inference
of a convolutional neural network in encoder-decoder ar-
chitecture. Our implementation includes a program control
component that enables and parametrizes the processing
units and manages memory and interface accesses. Using
a communication interface to the microcontroller object
specific weight parameters, stored in the microcontrollers
flash memory are obtained. The detected object type and
thereby specific weight set are selected by the main robot
control unit via the bus interface of the hand.

1) Processing units: The convolution filter kernel and
bias values received from the microcontroller are stored in a
double buffered shift register. This allows to receive weights
for the next layer without any delay resulting from IO-
overhead in best case. The total memory size of all kernel,
bias and output shifts are 112 byte for a 3×3 kernel for one
output feature and 12 input features.

The convolution unit is implemented using the FPGA
integrated DSP units to reduce the demand for general
purpose FPGA fabric. The convolution unit is designed to
process one output pixel for every clock cycle, implying
for each processing step data from every input feature maps
is required. Therefore, we use the common implementation
scheme of buffering 3 lines of the input feature maps and
shift the data through the shift register as shown in Fig. 5.
This avoids multiple reading of input data and reduces
memory interface bandwidth. In total, our convolution unit
includes 108 DSP units that allow to process up to 12 input
feature maps using 3 × 3 kernels. The CNN was designed
to meet these constraints. The implemented convolution unit
design can be used with a clock rate of 50MHz that results in
OPSpeak = 5.4 GOPS at continuous and complete resource
utilization.

The pooling and up-sampling units are implemented using
2×2 filters. We used max pooling for the pooling layers and
nearest-neighbour interpolation for the up-sampling layers.

2) Memory management: For storing camera image data
and processed feature output maps, our design makes use of
the FPGA internal block ram, where in total 1247 kByte are
required. The memory is partitioned in 7 separate banks, one
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Fig. 4. System diagram of the CNN implementation in the FPGA.

for each camera input stream consisting of 3×6336 byte that
can contain the R, G and B channels of the 88 × 72 pixel
input image. Two larger banks consisting of 12× 6336 byte
blocks are used as working memory for output feature maps,
where one bank functions as read-memory with 12 parallel
read busses and the other as write-memory interfaced by
one parallel bus. The read and write block are swapped after
every completely processed layer.

D. CNN Processor Implementation

As a reference for the FPGA design, we implement the
CNN inference on the in-hand available Arm Cortex M7
based high-performance microcontroller. In our previous
work, we used this controller for CNN based classification
with an acceptable processing time, while the CNN used for
segmentation could not satisfy real-time requirements [33].
For inference on the processor, the network is implemented
in C-code and compiled with the optimization level -Ofast
(optimize for speed). The implementation for the processor
uses the same activation-shifts and 8 bit fixed-point weights
and biases like the FPGA hardware implementation.

IV. EXPERIMENTAL EVALUATION

To evaluate and test the applicability for real world tasks of
the proposed system and processing architecture, we evaluate
the performance of the processing system and conduct a set
of experiments. This includes fast reactive grasping of a ruler,
handover of a power drill and dexterous grasping of a pencil
with the hand attached to the right arm of the humanoid
robot ARMAR-6.

A. Image Processing Performance

We evaluate the performance of the in hardware imple-
mented image processing system, i. e. the inference of the
network architecture described in Section III-B. The total
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workload of the network is 16.77 MOPS regarding only
the multiplication operations required for convolution. As a
total inference time of the accelerator implemented in FPGA-
hardware, we obtain an inference run-time of 5.46ms. The
convolution layers proportion of the run-time is at 77.9%,
IO-overhead for obtaining weight data from the microcon-
troller accounts for 16% of the run-time and could be further
reduced by an optimized implementation if needed. The
resource utilization of the DSP units during convolution
correlates with the number of input feature maps, in case of
less than 12 input features, the memory interface limits the
design performance. At maximum usage of the DSP units,
5.132 GOPS are achieved in the 2nd and 4th convolution
layers. The mean number of operations during complete
inference of the network is obtained as 3.58 GOPS. The
power consumption P of the implemented design amounts
0.244W as total estimated chip power. The static power is
0.101W (41%) and the dynamic power is 0.143W. RAM
and DSPs account for 29% respectively 31% of the dy-
namic power. The on-chip energy efficiency of the hardware
accelerator (OPSFPGA

P ) is reached as 14.7GOP/J. The total
required energy per inference Etotal is obtained as 1.33mJ.
The reference implementation of the microcontroller reaches
an inference run-time of 1358ms with a proportion of
99.7% convolution layer. The total speedup factor during
convolution of the hardware implementation compared to
processor-based implementation is 318 and 247 during the
whole network inference. The highest speedups (> 400) can
be achieved for the maximum size convolution layer that
have highest FPGA resource utilization. For pooling layer,
the speedup is only insignificant, however it does not make
up a large portion of microprocessor run-time. Results in
detail are summarized in Table I. When comparing speedup
to cost ratio, the almost 8 times more expensive FPGA part
has still a 32× higher performance to cost ratio.

B. Robot experiments

For the robot experiments, the Finger-Vision Soft Hand is
attached to the right arm of ARMAR-6 and three experiments
are performed: fast reactive grasping of a falling ruler,
handover of a power drill from a human to the robot and
dexterous grasping of a pencil. The robot is controlled by
the robot software framework ArmarX [34].

1) Catching a falling ruler: To estimate the total response
time of the system, we conducted an experiment, where a
ruler is dropped between the thumb and index finger of the
hand and the task is to detect and catch the ruler during
falling under gravitational acceleration. The fallen distance
d is used to calculate system response time tresponse. Assum-
ing gravitational acceleration g = 9.81m/s2 for the falling
ruler and neglecting air resistance, the response time is given
by tresponse =

√
2d/g.

The overall system response time comprises camera ex-
posure time, image processing time, bus transmission delays
and time required for the execution of finger motion. As
described in Section III-B, object specific CNN weight
parameters are used for visual segmentation of the ruler.

Fig. 6. Conducted experiments using only in-finger visual data: a)
Test of system response time in catching a falling ruler b) reliability in
executing a human-robot handover task c) ability of dexterous grasping and
manipulation. The experiment setup includes a white paper-sheet behind the
robot. Apart from that, the environment is a typical lab-environment.

For detection, positive classified pixels in all finger cameras
are counted and an experimentally determined detection
threshold is applied to detect the ruler in-between the fingers.
The ruler is held and dropped from above a few millimeters
between thumb and index finger so that the ruler is not visible
in the finger camera-images before the drop. Photos of the
experiment are shown in Fig. 6 a).

13 consecutive trials were conducted to achieve 10 suc-
cessful catches, in the remaining 3 cases the ruler was not
caught by the robot. Failed attempts are caused by unsuitable
finger position or data transmission errors. To compare this
with human performance, we conducted the experiment in a
similar setup with 4 humans as test persons that were granted
3 test trails before collecting their response time data for 10
trials.

The results of the experiment are shown in Fig. 7. The
robot’s median response time amounts 154ms (± 30.1 ms).
At our test setup, the human test persons reach a response
time of 168ms to 180ms. In literature, measurement of
reaction time for grasping a falling ruler can be found for
a slightly varied setup. In [35] a repeated assessment of
reaction times is performed where the obtained times range
from 252ms to 265ms for persons at age 21.8 ±2.6 years
(n=43). As it can be seen, the robot outperforms reaction
time of humans in our test by 14ms to 26ms (median).
However, standard deviation for the robot is larger than
for the test persons, probably resulting from the not event
triggered perception and additional sensor noise.

2) Human-Robot Handover: We test the reliability of the
overall system during a human-robot handover task, which is
important for human-robot collaboration. The robot should
detect and successfully grasp the object that is passed to it
by the human as shown in Fig. 6 b). Dropping the object
or not being able to detect it are considered failure of the



Layer
Workload W
(Multiplications)

Runtime
Processor

OPSProcessor

Runtime FPGA
(including IO-
overhead)

FPGA
resource
utilization

OPSFPGA
FPGA
speedup

Convolution 1 2.05 MOP 282 ms 7.279 MOPS 1.600 ms (+0.076 ms) 25 % 1.283 GOPS × 176
Convolution 2 8.21 MOP 660 ms 12.44 MOPS 1.600 ms (+0 ms) 100 % 5.132 GOPS × 413
Pooling 1 Pool to 36 × 44 2.25 ms 0.127 ms (+0 ms) × 18
Pooling 2 Pool to 18 × 22 0.58 ms 0,032 ms (+0 ms) × 18
Convolution 3 2.05 MOP 41 ms 12.51 MOPS 0.120 ms (+0.810 ms) 100 % 4.276 GOPS × 342
Upsampling 1 Up to 36 × 44 0.14 ms 0.032 ms (+0 ms) × 4
Upsampling 2 Up to 72 × 88 0.55 ms 0.127 ms (+0 ms) × 4
Convolution 4 4.11 MOP 338 ms 12.15 MOPS 0.800 ms (+0 ms) 100 % 5.132 GOPS × 423
Convolution 5 0.34 MOP 33 ms 10.37 MOPS 0.133 ms (+0 ms) 50 % 2.572 GOPS × 248

Total 16.77 MOP
1358 ms
1354 ms
(only Conv.)

11.24 MOPS
(mean)

5.46 ms (incl. IO-Ov.)
4.25 ms (only Conv.)

3.580 GOPS
× 247
× 318
(only Conv.)

TABLE I
PERFORMANCE RESULTS OBTAINED FOR INFERENCE OF THE CNN WHEN EXECUTED BY THE FPGA COMPARED TO MICROPROCESSOR.
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Fig. 7. System response time calculated based on the fall distance and
gravitational acceleration of a ruler that is caught by the hand as soon as
detected. The resulting time for the robot and four test persons performing
the same task are shown.

system. We use the power drill from the YCB object set
and conduct a series of 10 repetitive human-robot handover
tasks. During the experiments, our system reaches a success-
rate of 90%, one out of 10 trials failed due to the object not
being detected. All remaining handovers were successfully
executed, i. e. without dropping the power drill.

3) Dexterous Grasping: To test the ability of dexterous
grasping and manipulation of small objects, we implement a
controller to execute a precision grasp using the thumb and
index finger, while the remaining fingers are kept in open
position. The experimental setup includes a cup with four
different types of pencils as shown in Fig. 6 c). The position
of the cup is known to the robot while the position of the
pencils is not known in advance. However, all pencils are
reachable with a linear motion of the tool center point of the
hand of 20 cm across the cup position. Before starting the
motion, an index-thumb pre-shape of the hand is selected.
As soon as the target pencil is visually detected, a suitable
grasp is executed and the pencil is lifted out of the cup. The
detection is based on number of positive segmented pixels
in the in-finger camera images. If a threshold determined in
advance is exceeded, movement of the arm is halted and the
pencil is grasped and lifted. In Fig. 8, the number of positive
segmented pixels as well as the detection threshold is plotted.
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Fig. 8. Number of positive segmented pixels during grasping of a pencil.
Note: Not all images were transferred correctly, however the pencil was
successfully detected and grasped.

Despite significant sensor noise, such as blurred images,
the pencil can be grasped successfully when parameters
like finger pose and arm movement speed are adjusted
accordingly. As we describe in our previous work [9], when
the fingers approach and touch the object, the segmentation
accuracy decreases and prediction become less reliable.

V. LIMITATIONS AND FUTURE WORK

In this paper, we only use information obtained in camera
coordinates on which we base the decision to start the
execution of a grasp. In future work, we aim at using
2D image information and combining it with 3D scene
information to obtain a 3D scene model. Thereby, we see the
chance to use more sophisticated controllers for closed-loop
control or online grasp planning. The segmentation network
used in this work requires only a relatively small number
of operations compared to state-of-the-art networks and the
selected FPGA compared to other devices is [28] is rather
at the low-end spectrum of performance due to design effort
and space constraints. Another limitation of this work is the
fact that the training of the network requires hand crafted
label data and we only conduct experiments on a set of



three objects. To train the segmentation network for a larger
set of objects, a more automated approach is needed, where
annotation of training data could be performed offline by a
larger network. In this work, we have investigated in-finger
vision for the purpose of processing of visually obtained
scene information. However, camera-based tactile sensors
produce similar output data and we see chances of beneficial
use of the methods presented in this work also in combination
with tactile sensing.

In our future work, we aim at integrating additional sensor
modalities in the hand including depth sensors and further
refine and implement more sophisticated grasp control.

VI. CONCLUSION

In this paper, we have presented how visual data obtained
from in-finger cameras of a soft humanoid hand can be
processed in-hand and thereby provide control input for
visually-guided task controllers: We show ability of fast re-
active grasping, human-robot object handover and dexterous
grasping of small objects.

We present the design of an in-hand hardware-accelerated
convolutional neural network for object segmentation im-
plemented on the internal FPGA of the KIT Finger-Vision
Soft Hand. We present a custom energy efficient and task
specialized image processing hardware design that allows
inference of the encoder-decoder CNN accounting for 16.77
MOP in 5.46ms and thereby satisfies real-time constraints.

We evaluate our system on a set of real-world experiments
where we use the hand attached to the humanoid robot
ARMAR-6 and achieve encouraging results. Comparing the
response time during the ruler catching task to human
performance, the median system response time outperforms
all 4 test persons. We test reliability during a handover task,
where 9 out of 10 repetitions proceeded successfully and
demonstrate the ability of dexterous grasping using a two
finger pinch grasp to lift a pencil out of a cup.

We show, that our presented design can be an alternative
to widely used static or head-mounted camera setups for
scene perception and show chances of reactive manipulation
relying only on visual data from inside the fingers. In our
opinion, the use of in-finger visual data shows promising
future potential and opportunities to contribute to more ver-
satile and improved methods for fast, reliable and dexterous
robotic grasping and manipulation.
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