
Grasping with Humanoid Hands based on
In-Hand Vision and Hardware-accelerated CNNs

Felix Hundhausen, Simon Hubschneider and Tamim Asfour

Abstract— We present a vision-based grasping system for
humanoid and prosthetic hands using hardware-accelerated
CNNs for real-time object classification and class-aware pixel-
wise segmentation. The system is implemented on the hand
internal processing hardware of a humanoid hand using a
System-on-Chip (SoC) comprising a Processor System (PS)
and an FPGA. As a sensor system, the hand provides an
integrated RGB camera, a multi-region Time-of-Flight (ToF)
depth sensor, and an Inertial Measurement Unit (IMU). We
propose an algorithm for 3D object shape estimation based
on sensory information provided by the hand internal sensor
system. The 3D object mesh in combination with the object
relative pose of the hand is used as input for a reactive grasp
controller. For the design of the CNN-based object recognition
and segmentation networks, we use a resource-aware algorithm
for Network-Architecture-Synthesis (NAS). We evaluate the
visual perception accuracy and 3D model estimation accuracy
in grasping experiments with six objects. We obtain a mean
object segmentation accuracy of 84.4 % and a mean error for
object diameter estimation of 44 mm.

I. INTRODUCTION

The development of highly integrated humanoid and pros-
thetic hands that are versatile in terms of their grasping
abilities remains a challenging problem. In our research, we
aim at developing anthropomorphic hands that are equipped
with intelligent functionalities to improve autonomous grasp-
ing in humanoid robotics and semi-autonomous grasping in
prosthetics [1], [2]. To achieve this, we combine under-
actuation mechanisms for the mechanical design with in-
hand integrated multimodal sensor systems and embedded
systems to improve sensory-based grasping. In particular,
we developed resource-aware CNN-based solutions for the
processing of visual information obtained from in-hand in-
tegrated cameras [3], [4]. In this paper, we present a novel
3D aware grasping system for humanoid and prosthetic hands
that should support intelligent control of such hands in grasp-
ing. The advantages of in-hand vision over hand external
cameras are a better view of the object without occlusion by
the hand or other objects, further precise grasping is possible
without a precise estimation of the hand pose. To not rely on
hand external computing systems and a high bandwidth data-
interface it is beneficial to realize the complete computation
hand internal, however this comes with the challenge to
design algorithms, that are suitable for resource-constraint
processing system but still can fulfill reactive grasping as

This work has been supported by the Carl Zeiss Foundation through the
JuBot project.

The authors are with the Institute for Anthropomatics
and Robotics, Karlsruhe Institute of Technology, Karlsruhe,
Germany. {felix.hundhausen, simon.hubschneider,
asfour}@kit.edu

RGB camera image

depth map

orientation

 θ

ê
q

88x72

KIT Prosthetic Hand
Version 2 with
integrated SoC

In-Hand sensor data Multi-view estimated
object geometry: Mesh

and diameter (heatmap)

 d(φ,θ) [mm]

Fig. 1: Overview of the proposed system: The in-hand sensor
data of the KIT Prosthetic Hand is used for in-hand multi-
view object mesh estimation to allow estimation of the
orientation-specific object diameter (heatmap)

expected by the users. Recent machine learning methods that
are well suited for visual scene perception require a large
number of compute operations. To overcome this challenge,
hardware-accelerated processing can be used, here FPGAs
allow the flexible implementation of highly task-optimized
processing architectures.

In this work, we present a system for real-time in-hand 3D
visual scene perception for grasping with humanoid hands.
Hereby, we focus on combining multiple views and multi-
modal sensory information to generate an object mesh and
estimate the object diameter which is then used as the input
for a grasping controller.

Contributions: (i) An FPGA-accelerated in-hand pro-
cessing system for real-time visual object classification and
segmentation using CNNs. We design the network archi-
tectures using resource-aware Network Architecture Search
(NAS) as described in Sec. V-A. (ii) A multi-view object
shape estimation using the obtained binary object mask,
inertial sensor data from an IMU and depth information from
a Time-of-Flight (ToF) sensor (Sec. V-B). To this end, we
adapt the CNN hardware implementation from our previous
work [5] for layer-wise CNN acceleration that allows flexible
inference of different CNN architectures as required for
classification and pixel-wise image segmentation tasks. As
a result, we present a completely hand-integrated system for
3D scene-aware grasping without the need for any external
high-power computing resources. The system can estimate
3D object shape based only on object classification and
segmentation, without the need for 3D object models. (iii)
We evaluate the perception system in terms of performance
and accuracy on recorded data and evaluate the complete
system by grasping a set of objects based on the obtained
3D object mesh.

II. RELATED WORK

Reliable grasping and manipulation of objects with hu-
manoid hands is still a challenging task. For successful
grasping, information about the object is needed to plan and
execute a grasp. This includes information about the object
geometry, the pose of the object relative to the hand and
suitable preshapes of the hand, i. e., the configuration of the
fingers. When using hand internal vision, small errors in the
estimated object pose or the hand pose lead to significant
pose errors of the object in relation to the hand. A solution
to this problem is the use of in-hand cameras that can
directly estimate the object pose in relation to the hand.
Numerous approaches from the field of robotics use camera-
in hand approaches, where a camera is attached to a gripper
that is interfaced with an external computer via a high
bandwidth data connection. This leads to complex and bulky
hardware setups, which should be avoided in a humanoid
robot. This problem could be solved by grippers or humanoid
hands with a real-time capable embedded sensor-processing
system. In addition to the use case of robotics, these hands
would also provide helpful functions for the development
of prostheses with semi-autonomous grasping abilities, since
many recently published systems rely on external perception
and data processing hardware. In our previous work, we have
evaluated the use of microcontroller-based hand internal pro-
cessing for visual object classification[6]. Further, we have
designed hardware and implemented methods for in-hand
hardware-accelerated object perception that allows image-
based reactive grasping [5].

To achieve the best possible network accuracy with con-
strained hardware, Network Architecture Synthesis allows to
obtain optimized network architectures. Here three major
aspects need to be considered: Description of the search
space, search strategy, and the selected performance estima-
tion method [7]. In the case of neural networks, the search
space is described by a graph of elementary blocks, which
are either single network layers or more complex units such
as skip-connections [8]. Based on the search space, a network
architecture can be obtained by using different optimization
methods. However, all these methods require the evaluation
of multiple different solution candidates, which in some cases
necessitate training only a subset of the available data or
for fewer epochs to speed up the accuracy estimation. In
resource-aware approaches, the objective function is more
complex and may also include parameters like the energy
needed for execution [9], inference latency [9], [10] and
the number of multiply-accumulation (MAC) operations [8],
[6]. These parameters can be treated both as optimization
goals [9] or constraints [10], [8], [6] and are highly problem-
specific.

For obtaining 3D object models from annotated visual
input that can be used for grasp control, the model can
be reconstructed from multiple views with additional depth
information from a Time-of-Flight (ToF) depth sensor and
orientation information. 3D reconstruction is a topic of high
interest in computer vision and graphics [11] and is also

very relevant for mobile robotics in general. However, our
focus is not primarily on a high quality of the reconstructed
geometric models, but the pose of the robot in combination
with a more sparse scene model generated in real-time.

In literature, a large set of distinguishing methods for
3D reconstruction methods can be found, these also differ
depending on the types of input data like single RGB image,
RGB-D image, multi-view images or video data[12]. When
using multi-view data, machine learning methods or 3D
scene reasoning can be used to obtain the 3D model. For
mobile robotics, SLAM can provide a scene model while
also giving an estimation of the robot’s pose. If the pose is
known from non visual sensors (odometry, kinematic chain,
IMU or others), the problem reduces to obtaining the scene
model.

An overview of methods for obtaining occupancy-based
object descriptions using voxels by shape-from-silhouette
techniques is given in [13]. These methods take segmented
RGB-images or depth images as input. Other approaches
do not rely on the volumetric grid and aim at fitting the
estimated object-volume by low-parameter models like el-
lipsoids or quadrics [14] [15] [16].

In this work, we use RGB data in combination with
low-resolution depth data from a ToF-depth sensor to find
object coordinate points and to obtain a low-resolution object
mesh. This allows including higher uncertainty points and
allows simple fusion of multiple perspectives using mesh
optimization.

III. SYSTEM OVERVIEW

In this work, we present methods for semi-autonomous
grasping using multi-modal sensory input from a hand-
integrated sensor setup inside the humanoid hand. Our goal
is to endow humanoid robot hands and hand prostheses with
more autonomous grasping abilities.

Our system initially performs object classification on the
RGB camera input data stream. The RGB image is down-
sampled and slightly cropped to match the dimensions of
(88×72 pixels). The hand internal processing system controls
the inference of the classification architecture. The result is
shown on the display. As soon as the robot or user starts
the grasp by accepting the detected object class, the object
model generation in triggered. In our prototype, the start can
be triggered by a push-button. For the model generation,
the camera image is segmented by an encoder-decoder CNN
which outputs a pixel-wise binary object segmentation mask.
From the binary mask, the object principle axes are calcu-
lated and back-projected to 3D based on the IMU and depth
information. When multiple views from different orientations
are collected, the model generation and grasp controller can
be triggered. Thereby the grasp aperture is selected according
to the current hand orientation in relation to the object. A
graphical overview is is given in Fig. 2.

IV. HARDWARE PLATFORM

For the experiments in this work, we use the second
version of the KIT Prosthetic Hand (50th percentile female)

RGB camera image

depth map

orientation

 θ

ê
q

motors

object classification

HW accel.

object segmentation

HW accel.

PCA/
axis length

start grasp

object class

object mask

3D projection of
object-coordinates

Mesh
generation
and
optimization

object model
d(φ, θ)

Grasp controller
multiple views

88x72

hand-internal processing system

Fig. 2: The proposed system: The recognized object is segmented pixel-wise in multiple camera views from different poses,
and the obtained object mask is used to estimate the object axis dimensions. Object coordinate points from the image plane
are back-projected to 3D using the hand pose relative to the object. After mesh generation and optimization, the object
diameter d(φ, θ) can be estimated and used for grasp control.

Fig. 3: KIT Prosthetic Hand V2 with our control hardware
based on a Xilinx Zynq System-on-Chip (SoC) including a
dual-core processing system (PS) and programmable logic
(PL)

([17]) with an internal Xilinx Zynq Z7010 SoC-based control
hardware as introduced in [18]. The hand has two DC gear
motors for tendon-based actuation, which include relative
encoders for position control of the thumb and the other
four coupled fingers. The mechanism for underactuation is
described in [17]. The complete control and data processing
hardware is realized on a hand internal PCB, the data
processing system consists of a dual-core processor and
reconfigurable hardware (FPGA) on a Xilinx Zynq-7 SoC
(XC7Z010-1CLG225C). Further, the hand includes a minia-
turized and completely integrated sensor system consisting
of a miniature camera (OmniVision OV5640), a multi-zone
time-of-flight distance sensor (ST VL53L5CX), as well as
an IMU (Bosch Sensortec BNO055) that allows the hand
internal estimation of the orientation. The set of sensors is
shown in Fig. 4. The user can obtain feedback from a display
on the back side of the hand.

V. APPROACH

In the following, we describe the two subsystems of CNN-
based object perception and object shape estimation.

A. CNN-based Object perception

For the realization of the object perception system, we
record training data that we use to optimize the network

Fig. 4: Hand integrated miniature sensor-setup: 5 MP RGB-
camera (left) and 11.6mm × 8.2mm sensor PCB with ToF
depth sensor on the front and IMU chip on the back side of
the PCB (right).

architecture and train the final architecture that can be
executed on the hardware accelerator.

1) Dataset: The dataset for the training of the CNNs
for object classification and segmentation was recorded with
the hand internal RGB camera. The data set is recorded
with 6 different objects from YCB1[19] and KIT2[20] ob-
ject dataset. (banana1, spam1, showergel2, pitcher1, bowl1,
hammer1). We recorded the images in a slightly cluttered
office/desktop environment with different illumination con-
ditions and varying object poses. In total ≈1500 images were
recorded and annotated with a pixel-wise ground-truth mask.
An exemplary image (showergel) is shown in Fig. 6. As a
test set, we separately record RGB data during the grasping
experiments (see Sec. VII) and annotate these images with
ground-truth object masks.

2) CNN architecture synthesis: The goal of the Network-
Architecture-Synthesis (NAS) is to achieve the highest pos-
sible classification and segmentation accuracy while still
taking real-time requirements and the constraints of hand
internal data processing hardware and the accelerator into
account. We employ a genetic evolutionary approach that
co-optimizes accuracy, inference latency, and the number
of feature maps, which are the primary driver for FPGA
resource utilization. The network architectures are encoded
as a sequence of basic layers: convolution, max-pooling, and
upsampling with parameters as supported by the hardware
implementation. To ensure proper output formats, dense
layers for object classification are added independent of this

encoding, and the segmentation masks are created by two
convolution layers with prior upsampling to the input resolu-
tion if needed. We reject any solution candidate that violates
a maximum inference time of 100ms, the upper feature map
size limit of 88×72 and the lower limit of 11×9 pixels.
Our approach uses tournament selection to select the best
individuals from a given population of solution candidates,
which then serve as parents to new solutions created by one-
point crossover of their layer sequence. Lastly, the combined
population is reduced back to the original size by tournament
selection in a process called environmental selection. From a
randomly sampled initial population, this evolutionary cycle
is repeated for a fixed number of generations.

Since we formulate the NAS as a multi-objective opti-
mization problem, the solution is a set of pareto-optimal
candidates. Figure 5 exemplary shows the 12 members of this
pareto-front (✖) of a search for classification architectures,
annotated by color with the number of feature maps they
require. The plot includes also investigated solutions that are
not part of the pareto front (•).

0 10 20 30 40 50 60

execution time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e
rr

o
r

[-
]

3

14

#
 f
e
a
tu

re
 m

a
p
s

Fig. 5: Resulting pareto front of a classification network ar-
chitecture search next to the sub-optimal solution candidates
evaluated during search.

3) FPGA based hardware accelerator: For inference of
the perception CNNs we use a CNN hardware-accelerator
implemented on the Programmable Logic (PL) of the hand-
integrated FPGA. The accelerator hardware supports con-
volution, max-pooling (2×2) and upsampling (2×2) layers.
Especially convolution layers require a large number of
multiply-accumulate (MAC) operations and benefit from
parallel computation on the FPGA. The number of the hand
internal FPGA’s provided DSP-blocks allows the implemen-
tation of 14 parallel convolution units with a 3×3 kernel size
that enables parallel processing of 14 output feature maps.
Dense layers that are typically used to obtain the output
vector do not allow such a speedup and are executed by
the processing core.

In our previous work [5] we have used the CNN acceler-
ator only for real-time image segmentation. In this work, we
implemented a control interface to the processing system that

allows flexible inference of different network architectures
controlled by accelerator code, including segmentation and
classification network architectures. The network weights are
trained offline and accelerator code and quantized weights
are generated and included in firmware to be executed by
the processing system with the use of the FPGAs accelerator
hardware. The accelerator configuration is transmitted by a
serial interface from PS to PL and the input data is transferred
via the AXI bus into the BRAM of the PL. The accelerator
output data can be read out in the same way. The output
of the segmentation network consists of two feature maps,
one indicating the object and the other one indicating the
background. The binary output image is obtained using a
greater-than operation.

B. Object shape estimation

0 50

0

20

40

60

0 50

0

20

40

60

0 50

0

20

40

60

Fig. 6: Example image from the hand internal camera (left)
and binary object mask obtained from the segmentation CNN
(center). We use morphological operations to reduce noise
and PCA to determine the orientation of the principle axes
(right) and measure the length of these axes to obtain four
object coordinate points.

To reduce noise in the binary output image, we apply two
erosion and two dilation operations to the raw output image
and estimate the object center by calculating the centroid
of all positively segmented pixels. To exclude views where
the object is only partially visible, we detect object pixels at
the image border and reject these images during processing.
In the following step, eigenvalues and eigenvectors of the
segmentation mask are calculated to estimate the object’s
principal axis. The length of the object axis is detected by
pixel-wise sampling along the two axes. These steps are
shown in Fig. 6. For each view, we use the 4 axis endpoints as
object coordinate points (•). Two further points are estimated
normal to the image plane, the length of this axis is estimated
with high uncertainty (◦) as the mean value of the other
two axis lengths. If the object is only partially visible, a
high uncertainty point at the corresponding axis endpoint is
registered.

The distance between hand camera and object is deter-
mined using depth information from the ToF sensor. The
distance value is selected from the 8×8 depth image accord-
ing to the object center coordinate. It is then used to estimate
the object dimensions in millimeter from the length measured
in the image plane. The hand orientation is obtained from
the integrated IMU. We define the object’s center as the
coordinate system’s origin and assume that the scene is
static and the object is not moving. The camera/hand pose is
obtained using the distance value, the hand orientation and

the position of the object in the image. This allows projecting
the object’s coordinate points to 3D space. To avoid highly
redundant data, we only record object coordinate points in
case the hand’s angular position from the previous pose is
larger than π

8 .
To fuse geometric information from multiple views, we

aim to find a convex polygon mesh with maximum volume
where mesh vertices can be • -points and ◦ -points. • -points
are not allowed to lie inside the mesh volume (since these
points are detected as object surface points), while ◦ -points
are allowed to lie inside the mesh volume. We use a heuristic
to find such a set of points and triangle surfaces. We generate
an initial object mesh by connecting all coordinate points (◦
and •) into a triangle mesh with minimal edge length. To
find a mesh that only consists of • -points, for each point we
calculate

1) By how many faces is the point excluded from a
convex volume.

2) How often does a face adjacent to this point exclude
another point.

If the constraints are not met, the following steps are exe-
cuted:

• Flip edges if this reduces the total excluded point score.
• If any ◦ point does exclude other points (2)), these

points are excluded from the mesh.
• Remove • -points that are excluded the most often (1).
Fig. 7 visualizes the result of the algorithms with two

initial views and the corresponding coordinate points. Further
the mesh before and after optimization including the scores
(1)) and (2)) are annotated in red and magenta.

Fig. 7: Example of mesh generation and optimization from
two views. (showergel-object)

VI. GRASP CONTROLLER

The grasp controller controls finger joint angles depending
on hand-object orientation specific object diameter. The
controller obtains the generated object mesh and uses IMU
orientation data to calculate the diameter depending on
hand-object orientation. (d(φ, θ)). Depending on hand-object
distance that is obtained from the depth data, the controller
either sets the position controlled finger joint angles for a
pre-grasp pose or executes the actual grasp. For the pre-
grasp the finger aperture is set 30% larger than the actual
object diameter. The actual grasp is started when hand and

object are in close proximity. (D < Dth(grasp)) The finger
position is here set to the actual object diameter. As soon as
the finger position is reached, the motors are set to constant
voltage to apply force to the object. For Dth(grasp) we
have evaluated 60mm as an optimal value for fluid grasp
execution.

VII. EXPERIMENTAL EVALUATION

To evaluate the methods for object detection and shape
estimation, we conduct an experiment where we use the hand
to grasp a set of 6 objects. We attach a handle for handheld
use of the hand. For power supply, a 12V DC voltage source
is connected and the data from sensors and the obtained
results are saved to the hand internal micro SD-card. The
command to start the grasping process is given by the user
by pressing a push-button integrated into the handle.

In the experiment, the user grasps 6 objects from the
YCB1[19] and KIT2[20] object dataset: banana1, spam1,
showergel2, pitcher1, bowl1, hammer1. The ground-truth data
is obtained from 3D models included in the databases.
During the experiments, the objects are placed in a random
orientation on a table in a typical office/desktop environment,
with the typical orientation of the object (pitcher standing
on bottom side, e.g.). During the grasp, the user points the
hand camera in direction of the object, so that one up to three
(but mostly two) object views from different perspectives are
recorded.

We evaluate the accuracy of the perception subsystem
including the classification and segmentation network’s ac-
curacy and evaluate results of the object shape estimation
based on hand internal sensor data.

A. Evaluation of CNN based object perception

The architecture for the classification CNN consists of 6
convolution layers with and 2× 2 pooling after the first two
convolution layers and twice after the third. The number of
convolution output feature maps is 9, 14, 6, 14, 9, 6. The
last two layers are dense layers with 32 and 6 output units.

For the classification network we obtain an accuracy of
94.89% on the test set consisting of image data recorded dur-
ing the grasping experiments. The total number of Multiply-
Accumulate-Operations are 10.1 MOP. The run-time of the
classification network on the hardware accelerator was mea-
sured as 29.2ms resulting in 346 MOPS and 34.2fps. The
obtained run-time is well above the frame rate of the camera
(10.4fps) and allows online classification of camera images
which enables a reactive grasping process and allows e. g..,
the user to online observe the detected object class.

To evaluate the accuracy of the object segmentation during
the experiments, we record the camera RGB images during
the grasping experiments and evaluate the segmentation
accuracy by comparing the result to hand annotated ground
truth object masks. We calculate the value for the Intersection
over Union (IoU) using the number of true positive (TP),
false positive (FP) and false negative (FN) segmented pixels
as follows:

IoU =
TP

TP + FP + FN
(1)

The weights for the object segmentation network are trained
class-wise. Here, we evaluate the mean value for IoU for
each object as shown in Fig. 8.

20 40 60 80 100 120
emean[mm]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

Banana

Spam

Showergel

Pitcher

Bowl

Hammer

Fig. 8: Boxplot of obtained segmentation accuracy (IoU)
and emean of the obtained mesh from the combined views.
10 grasping trials per object class with mostly 2 views (±1)
per class were recorded and compared to ground truth object
segmentation and ground truth object models.

As mean values for each object for pixel-wise segmenta-
tion we obtain the following values: Banana: 0.85, Spam:
0.89, Showergel: 0.88, Pitcher:0.89, Bowl: 0.96, Hammer:
0.58.

The selected architecture for segmentation has the follow-
ing number of feature maps: 8, 8, 8, 8, 1, 1. One 2×2-pooling
layer is executed after the first convolution layer. The total
number of MAC-operations for the segmentation architecture
are 7.08 MOP. The run-time of the segmentation network on
the hardware-accelerator was measured as 16.8ms, resulting
in 421 MOPS. The achieved run-time can satisfy real-time
requirements since every camera frame can be segmented in a
very fast way, leaving sufficient time (79.4ms per frame) for
detection of object dimensions and registration of coordinate
points.

B. Evaluation of object shape estimation

During the grasp experiments we record the estimated
object meshes and manually compare these to ground truth
data for the 6 object classes. The ground truth data point
clouds are manually positioned with help of the captured
RGB images and the recorded hand poses. Like for the grasp
controller, we calculate the object specific diameter d(φ, θ)
based on the estimated object mesh and the ground truth
point cloud. The error between estimated model and ground
truth e(φ, θ) is calculated according to equation 2.

e(φ, θ) = |d(φ, θ)− dGT (φ, θ)| (2)

To obtain the mean error emean, we integrate e(φ, θ) over
the unit sphere and divide it by the sphere’s surface area S

according to equation 3.

emean =
{

s

e(φ, θ)dφdθ/S (3)

The results for emean obtained in 10 trails for the 6 objects
are shown in Fig. 8. As mean values for all grasp trial, we ob-
tain an emean as: Banana: 24.14mm; Showergel: 51.61mm;
Spam: 37.15mm; Pitcher: 69.74mm; Bowl: 21.10mm;
Hammer: 58.91mm. One exemplary mesh estimation result
for each object and the obtained value for emean is visualized
in Fig. 9. Best accuracies are obtained for the bowl and
banana object, here the objects are lying on a flat table which
allows for a more accurate measurment of the object distance.
If the background is further away from the object, in some
cases depth estimation is not accurate due to noisy and faulty
matching of depth values . This results in a wrong estimation
of object size and we see this as a reason for higher errors
for the pitcher and the showergel object.

The algorithm for mesh generation and optimization is
executed on the embedded ARM Cortex-A9 processor run-
ning at fCPU = 400MHz. We evaluate the run-time of the
algorithm for up to 5 views recorded while approaching the
YCB-bowl for grasping. The results are shown in Tab. I. It
can be seen that for an increasing number of views, the run-
time drastically increases, while the generated mesh does not
provide a significantly better resolution. We see two or three
views as a suitable number since also in practical use each
recording of a new view would take additional time.

Views Points Mesh triangles (after optimization) Run-time

1 6 8 0.3ms
2 12 20 4.4ms
3 18 18 134ms
4 24 20 224ms
5 30 24 588ms

TABLE I: Run-time of the mesh generation and optimization
algorithm

VIII. DISCUSSION AND CONCLUSION

In this paper we have presented methods for visual scene
perception and generation of 3D object models that enable
grasping with a humanoid hand. We presented a hardware
system for accelerated CNN processing in combination with
an algorithm for resource-aware network architecture synthe-
sis. The combination of real-time-capable classification and
segmentation CNNs allows the implementation of reactive
grasping behaviors. We presented a real-time capable algo-
rithm for obtaining the mesh from multiple object coordinate
points obtained in 3D space using the hand internal IMU
and depth information. In our evaluation we investigate
classification, segmentation and mesh generation accuracy
and in the conducted experiment we can reliably grasp all
of the 6 objects.

Up to now, we have only evaluated our methods on a
limited number of objects with a handheld humanoid hand.
In this work we have used methods to approximate the object
shape by a convex mesh, which allows good approximation
of many objects in our test set. However, for more complex

Fig. 9: Visualization of ground-truth point cloud in blue and the estimated object model mesh in black. The heatmap-sphere
shows the orientation specific error e(φ, θ) in mm as given by equation (2). The mean error emean is calculated according
to equation (3).

object shapes the proposed method is not well suited. In
future work we aim at more detailed model generation to
reduce the shape estimation error rates.

For training of new objects a relatively high effort is
required to annotate the visual data. However, for offline
training of the CNN, larger pre-trained models could be used
to reduce the effort of manual labeling. In our current set
of objects, especially objects with a non uniform color are
segmented with higher error rates and thus the accuracy of
the obtained mesh is lower. Thus, a more powerful process-
ing hardware compared to the currently used Zynq 7010
can provide higher accuracy but would also require larger
datasets for training the network’s weights. In addition, we
have used object coordinate points obtained at principal
axis in combination with mesh generation and optimization.
However, other methods for object pose estimation based
on models that can handle perception uncertainty and video
data could probably provide higher accuracy, especially for
objects with a non-trivial geometry. However, the system
investigated in this work allows reliable grasping of all
evaluated objects in a reactive way.

REFERENCES

[1] P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, “Design-
ing prosthetic hands with embodied intelligence: The kit prosthetic
hands,” Frontiers in Neurorobotics, vol. 16, pp. 1–14, 2022.

[2] T. Asfour, M. Wächter, L. Kaul, S. Rader, P. Weiner, S. Ottenhaus,
R. Grimm, Y. Zhou, M. Grotz, and F. Paus, “Armar-6: A high-
performance humanoid for human-robot collaboration in real world
scenarios,” IEEE Robotics & Automation Magazine, vol. 26, no. 4,
pp. 108–121, 2019.

[3] F. Hundhausen, R. Grimm, L. Stieber, and T. Asfour, “Fast reactive
grasping with in-finger vision and in-hand fpga-accelerated cnns,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 0–0, 2021.

[4] F. Hundhausen, J. Starke, and T. Asfour, “A soft humanoid hand with
in-finger visual perception,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 8722–8728, 2020.

[5] F. Hundhausen, R. Grimm, L. Stieber, and T. Asfour, “Fast reactive
grasping with in-finger vision and in-hand fpga-accelerated cnns,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6825–6832, IEEE, 2021.

[6] F. Hundhausen, D. Megerle, and T. Asfour, “Resource-aware object
classification and segmentation for semi-autonomous grasping with
prosthetic hands,” in 2019 IEEE-RAS 19th International Conference
on Humanoid Robots (Humanoids), pp. 215–221, IEEE, 2019.

[7] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search:
A Survey,” Apr. 2019. arXiv:1808.05377 [cs, stat].

[8] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
Designing CNN Architectures Using the Genetic Algorithm for Image
Classification,” IEEE Transactions on Cybernetics, vol. 50, pp. 3840–
3854, Sept. 2020. Conference Name: IEEE Transactions on Cyber-
netics.

[9] L. Cai, A.-M. Barneche, A. Herbout, C. S. Foo, J. Lin, V. R.
Chandrasekhar, and M. M. Sabry Aly, “TEA-DNN: the Quest for
Time-Energy-Accuracy Co-optimized Deep Neural Networks,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6, July 2019.

[10] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-Aware Neural Architecture Search for
Mobile,” May 2019. arXiv:1807.11626 [cs].

[11] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,
and A. Kolb, “State of the art on 3d reconstruction with rgb-d
cameras,” in Computer graphics forum, vol. 37, pp. 625–652, Wiley
Online Library, 2018.

[12] H. Ham, J. Wesley, and H. Hendra, “Computer vision based 3d
reconstruction: A review,” International Journal of Electrical and
Computer Engineering, vol. 9, no. 4, p. 2394, 2019.

[13] C. R. Dyer, “Volumetric scene reconstruction from multiple views,”
Foundations of image understanding, pp. 469–489, 2001.

[14] V. Gaudillière, L. Pauly, A. Rathinam, A. G. Sanchez, M. A. Musal-
lam, and D. Aouada, “3d-aware object localization using gaussian
implicit occupancy function,” arXiv preprint arXiv:2303.02058, 2023.

[15] C. Dune, E. Marchand, C. Collowet, and C. Leroux, “Active rough
shape estimation of unknown objects,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3622–3627, IEEE,
2008.

[16] C. Rubino, M. Crocco, and A. Del Bue, “3d object localisation from
multi-view image detections,” IEEE transactions on pattern analysis
and machine intelligence, vol. 40, no. 6, pp. 1281–1294, 2017.

[17] P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, “Design-
ing prosthetic hands with embodied intelligence: The kit prosthetic
hands,” Frontiers in Neurorobotics, vol. 16, 2022.

[18] N. Fasfous, M.-R. Vemparala, A. Frickenstein, M. Badawy, F. Hund-
hausen, J. Höfer, N.-S. Nagaraja, C. Unger, H.-J. Vögel, J. Becker,
et al., “Binary-lorax: Low-latency runtime adaptable xnor classifier for
semi-autonomous grasping with prosthetic hands,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 13430–
13437, IEEE, 2021.

[19] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: Using the yale-
cmu-berkeley object and model set,” IEEE Robotics & Automation
Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[20] A. Kasper, Z. Xue, and R. Dillmann, “The kit object models database:
An object model database for object recognition, localization and ma-
nipulation in service robotics,” The International Journal of Robotics
Research, vol. 31, no. 8, pp. 927–934, 2012.

	Introduction
	Related Work
	System overview
	Hardware platform
	Approach
	CNN-based Object perception
	Dataset
	CNN architecture synthesis
	FPGA based hardware accelerator

	Object shape estimation

	Grasp Controller
	Experimental Evaluation
	Evaluation of CNN based object perception
	Evaluation of object shape estimation

	Discussion and Conclusion
	References

