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Abstract— Successful and robust grasping for humanoid
robots is still an ongoing research topic in robotics. Applying
human-inspired grasping strategies does not only correspond
with more natural looking motions but can also yield good
results regarding task success when having to deal with un-
certainty. This study investigates human high-level grasping
strategies and how they tend to change for different objects
when the uncertainty of object location or orientation increases
in between two grasps. We are especially interested in potential
gains for humanoid robots in a common household setting. By
analyzing collected data from human subject grasp experiments
with a set of typical objects found in people’s homes, we get
better insight into how humans handle uncertainty, as well as
when and how they change their applied pre-grasp strategy. By
adapting the by far most often observed change from a direct
grasp attempt to a tapping strategy when dealing with high
uncertainty, we can demonstrate a substantial increase of grasp
success rate for our robot system with a Shadow Dexterous
Hand mounted on a Motoman SDA10 robot while using less
than two hand correction steps on average.

I. INTRODUCTION

Despite that more and more personal robots are being
developed in research, the transfer into people’s homes
has not happened yet. One of the reasons is that reliably
successful, dexterous manipulation is still an open challenge
of robotics. Partly due to the growing complexity of robots in
regard to increasing degrees of freedom (DOF) and handling
of more sensors, there are still a lot of open questions left
to be investigated. Thanks to a plethora of different sensor
types available, a robot system will usually have a lot of
information about its environment. However, when starting
to interact with their surroundings, every action will be based
on the obtained information and the quality thereof. In case
of inaccuracy, measuring errors or simply lag in updating the
data, problems will arise. Considering the superior grasping
experience of humans compared to robots, observing human
high-level grasping strategies and how those change based on
the amount of uncertainty seems to be a promising approach.

Inspired by the work of Chang et al. regarding human
pre-grasp interaction with different objects based on a video
survey of 38 participants performing manipulation tasks in
a typical home or work setting [1] and a related work about
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preparatory, pre-grasp object rotation [2], we conducted a
series of informal video surveys to explore the impact of
uncertainty on human grasping. Based upon our findings
we wanted to further investigate how human high-level
grasping strategies tend to change for different objects when
location or orientation uncertainty increases between two
grasp attempts. We conducted a set of experiments gathering
data from grasping trials by filming the process with two
cameras from different viewing angles. We also collected
contact data between the subjects’ hands and the table.
In addition subjective data was collected to evaluate the
participants’ thoughts on the grasping strategies they used.
As we are especially interested in a common household
setting, the considered objects were selected among a set
of typical kitchen items and work tools.

Analyzing the data obtained from the experiment provided
more details about typical pre-grasp strategies, when and
how they change with increasing object location uncertainty
and the impact on task completion times, amount of hand
corrections, and hand aperture. During the course of the
experiment, we observed that participants reused a lot of
their pre-grasp strategies, only changing them when forced
to by high object location uncertainty. Our findings from the
collected data were then evaluated with an anthropomorphic
robot hand comparing the two most prominently observed
pre-grasp strategies, namely a direct grasp approach and a
tapping strategy (Fig. 1).

II. RELATED WORK

When comparing our contributions to related research,
there are several aspects to be considered: choice of robotic
manipulator, use of sensors, and the general aspect of uncer-
tainty. There has also been work on studying human hand
movements and the applied grasp strategies.

Using mainly haptic feedback during grasping has been
proposed by [3] for a Shadow Dexterous Hand in simulation
and by [4] for a Barrett Hand using force sensors and human

Fig. 1. Evaluating two human pre-grasp strategies with an anthropomorphic
robot hand.



input. Solely relying on haptic information while searching
for good finger contact locations has also been applied to
grasping objects without a priori knowledge. This has been
done in simulation for a robot gripper [5], and in experiments
with a PR2 jaw gripper on a large set of 50 household items
comparing it to a standard grasping approach using only a
vision system [6].

Many more strategies have been proposed for dealing
with uncertainty in regard to object shape. Those include
a framework for getting volumetric object models through
haptic exploration using a contour-following strategy by
a human or robotic hand in [7] and [8], grasping based
on visual information using additional haptic feedback in
a cluttered environment with a robot gripper and a five-
finger anthropomorphic hand [9], and a recent experience-
based grasping approach by [10] which uses an initial blind
grasping attempt before querying a database with stable
grasps for adjustments.

Several related works have offered suggestions on how
to deal with additional uncertainty regarding object location
and orientation. Strategies include statistical techniques [11],
grasp selection using object shape and local features [12],
decision-theoretic approaches [13], and planning in belief-
space with additional information gain and replanning during
the reaching phase [14],[15]. An example of a complete
software architecture for reliably grasping household items
with a PR2 jaw gripper while dealing with uncertainty is
given in [16]. A very specific strategy for handling pose
uncertainty has been suggested by [17]. They developed a
push-grasp for objects in a cluttered scene with a control
scheme to widen the gripper aperture as needed.

Even though these approaches for dealing with uncertainty
work quite reliably for simple tasks with mostly lower
dimensional robotic hands, they can not simply be applied
to a fully anthropomorphic hand. Hence, several studies
have been conducted on how to incorporate some form of
human input into this process, including direct interaction
[18] and the introduction of a rating system for human
likeness based on observation through motion tracking [19].
Another approach transfers recorded human motion profiles
to a Shadow Hand to achieve movements looking more
natural [20]. In subsequent work, they propose a control
scheme for the Shadow Hand that autonomously modulates
applied contact forces, imitating human grasp behavior [21].

Over the years, there has been extensive work on human
grasps and their taxonomy in different fields of research,
such as robotics, biomechanics, and occupational therapy
[22], [23], [24], [25], [26], [27]. However, these mostly
concentrate on categorizing the final grip without taking the
preceding pre-grasp strategy into account.

There has also been closely related research investigating
through observation how much knowledge about the amount
of uncertainty humans tend to use when grasping objects to
improve their success rate [28]. They varied the uncertainty
by moving an object into peripheral view. However, only a
cylindrical object was regarded and only two-finger grasps.
The same two constraints were also applied in [29] and

[30], showing that humans compensate for object location
uncertainty while grasping. In a recent work, utilizing a
cylindrical object as well, it has been shown that humans
vary their reach-to-grasp behavior based on object orienta-
tion uncertainty, leading to an increased amount of sensing
prior to grasping [31]. Further research has investigated the
effects of peripheral vision on kinematic parameters and hand
trajectories [32], [33], [34].

As far as we know there has not been any related research
concentrating on human pre-grasp strategies and how they
change when dealing with object location or orientation
uncertainty for a general set of household items or tools and
regarding a natural use of the human hand.

III. EXPERIMENTAL METHODS

The goal of our grasp experiments with human subjects
was to get insight into the ways humans tend to use high-
level grasping strategies in a common home setting and to
evaluate the impact of uncertainty on different strategies for
a set of 10 typical household objects.

A. Setup

As we were especially interested in observing natural
hand movements, we used an unobtrusive experimental
setup, specifically avoiding the use of marker-based motion
capture or data gloves. As a result we came up with the
following overall layout as shown in Fig. 2. During the
whole experiment each participant was sitting in front of
a desk at a fixed position and was asked to keep looking
at a predetermined point at eye level in front of them.
Two HD video cameras were set up to film the scene from
different angles as occlusions were to be expected during the
experiment. Furthermore, we were using two tactile pressure
measurement mats, a CONFORMat model by Tekscan with
1,024 sensels each with a 0.5 cm2 sensel density, to collect all
contact data between the participants’ grasping hand and the
table. Purpose was mostly to try to measure the hand aperture
before the fingers start closing around objects lying flat on
the table. As only right-handed persons were participating,
the setup on the table was arranged accordingly.

The sequence during each of the experiments was as
follows: every participant was asked to execute a specific
task for one object placed at location 1 (either move it to

Fig. 2. Overview of the experimental setup.



a target location or use it there). This was repeated three
times, changing the object’s position from location 2 to 4.
Afterwards, a fifth trial was exectued, which was a blind
grasping attempt. The complete cycle was repeated for each
of the 10 objects with initial object rotation being randomly
selected at the beginning of the trials. We then chose a
subset of our objects and conducted four additional trials
for each one selected, placing them with varying orientation
at location 4. We observed early on that object rotation was
influencing the applied pre-grasp strategies, so we extended
the set of objects until using nearly all of them for rotational
trials. Due to symmetry reasons we did not include the plate
and used the bowl only twice per participant, totaling up
to a maximum of 34 rotational trials per subject. After the
experiment every participant was asked to complete an exit
questionnaire to gather impressions from their point of view.

To control the level of uncertainty, participants were asked
to briefly shut their eyes inbetween two trials while the
current object was moved to another location. The exact
placement spots for the objects were varied slightly during
the course of the experiment, so as to make their locations
less predictable. In general, the viewing angle changed
from a central one to an increasingly peripheral one, as
there has been extensive work in vision and neuroscience
research showing that this clearly corresponds to a degrading
performance in position and orientation judgment [35], [36],
[37], [38], [39]. Location 1, 2, and 3 were positioned on an
approximate quarter of a circle resulting in mid-peripheral
vision from moving into the lower visual field. Location 4
was set further away to the right using the second pressure
measurement mat and resulting in far peripheral vision. For
the blind grasping attempt, the object was placed somewhere
in front of the participant. Fig. 3 shows all different object
locations used throughout the trials.

The objects included in the experiments were selected
among usual kitchen items and common tools to make sure
that every participant would be familiar with them. The
choice of objects was also determined by the fact that all
of them should be big enough to be grasped by a robot hand
as well, and should not be fragile. Fig. 4 pictures the 10
household items used for the experiments, with the group in
the top row being the ones that the participants had to move
to a specific target location, and the bottom group being tools
which had to be used at the target location.

Fig. 3. All different locations used for object placement throughout the
trials.

Fig. 4. The set of 10 household items used for the experiments.

B. Hypotheses

Based on preliminary experiments, we formulated several
hypotheses for the selected set of objects. Possibly depending
on size, shape, and the applied grip, we should be able to
observe the following in case of increased object location
uncertainty:

• a tapping movement from the top to verify object
location,

• a midair sweeping motion on one or two axes,
• increasing task execution time due to slower hand

movement,
• a wider hand aperture while approaching the object, and
• less preliminary object rotation depending on initial

orientation.
The inclusion of a blind grasping trial should also be

helpful in making observable strategy changes more visible.
We expect the subjective results from the questionnaires to
support our hypotheses through the participants’ perception.

IV. RESULTS

In the following, we will present the results we obtained
by analyzing the data we gathered from the experiments with
15 participants. This includes both objective results from the
video data and subjective results from the questionnaires.

A. Objective Results

From analyzing the experiment data we created a database
where we indexed every valid grasp from the trials, consid-
ering several different variables for each grasp. We had to
exclude some of the trial data where participants were not
fully following the instructions. For the results we obtained
we have been using a total of 1130 grasps.

First of all we were interested in the different pre-grasp
strategies applied by participants throughout the trials. We
could observe the fact that people tend to reuse a lot of
grasps resulting in only a few distinctive approaches, which
worked well enough for our whole set of objects. Trying to
explicitly name them, we came up with the following list of
overall strategies:

• direct grasp (Fig. 5),
• tapping (Fig. 6),
• sensing (Fig. 7),
• sideways movement with flat hand,
• hit or miss (Fig. 8),
• approaching with preshaped hand (Fig. 9),
• left-right-sweeping, and
• forward movement with flat hand.



Fig. 5. Direct grasp strategy at location 2: 1.4s grasp completion time.

Fig. 6. Tapping strategy at location 4: 2.4s grasp completion time.

Fig. 7. Sensing strategy during blind grasping: 3.4s grasp completion time.

Fig. 8. Hit or miss strategy at location 4: 2.2s grasp completion time.

Fig. 9. Approaching the object with preshaped hand during blind grasping:
2.2s grasp completion time.

Analyzing the distribution of pre-grasp strategies per lo-
cation, we found that the most prominent strategy with
low object location uncertainty was by far a simple direct
grasp attempt (77.9 % of usage at location 1): moving the
hand straight to the object while changing the finger posture
into a pre-grasp state just before making contact. The most
used pre-grasp strategy when dealing with high uncertainty,
however, was a tapping movement with a flat hand (51.4 %
during blind grasping). The tapping strategy varied though
based on the amount of uncertainty, as it heavily relies on
the quality of the initial guess. For example at location 4 we
could observe a lot of participants executing only a single tap
to check an object’s exact position before directly grasping
the target. During blind grasping we could at times observe
this behavior as well, resulting in very fast grasp attempts, but
also the other extreme happened where the tapping strategy
yielded among the worst results in terms of time to grasp
due to many failed guesses trying to locate the object.

Notable other strategies we encountered were sensing,
where all fingers were used to follow the object’s contour be-
fore grasping, moving the flat hand sideways while having it
vertically oriented for trials at location 4, changing the hand
early on into a pre-grasp state and approaching the object
very slowly, and a hit or miss strategy trying a direct grasp
approach first, then either correcting the hand position or

TABLE I
DISTRIBUTION OF STRATEGIES APPLIED DURING BLIND GRASPING.

Pre-grasp strategy Count Percentage
Tapping 91 51.4
Sensing 31 17.5
Flat hand forwards 21 11.9
Left-right-sweeping 16 9.0
Preshaped hand approaching 12 6.8
Hit or miss 2 1.1
Other 4 2.3
Total 177 100.0

completely changing the strategy in case that failed. During
the blind grasping trials we could also observe a left-right-
sweeping motion in search of the object and people slowly
moving their flat hand forwards while having their palm
oriented towards the object. Table I shows the distribution
of strategies used for blind grasping. This includes 37 times
where two strategies were used during one trial, mostly
tapping in combination with sensing. Interestingly, we found
that sensing was barely used on its own (only 2.1 %).

After categorizing the more frequent pre-grasp strategies,
we investigated how they would change based on the level
of uncertainty. As some of the strategies were used more
often at specific locations (direct grasp at location 1 to 3,
tapping and sideways movement with flat hand at location 4
and after, sweeping and forward movement with flat hand for
blind grasping), we could mainly differentiate three cases of
changed pre-grasp strategy: at location 4, for blind grasping,
or both. Even though the uncertainty did already increase
from location 1 to 3 it was not enough to force people to
change their grasping strategy up to this point. Exceptions
were mostly due to some participants testing out several
grasps for a new object and the change of rotation connected
with the placement of the different locations.

To be able to measure the observable effects from chang-
ing pre-grasp strategies, we mainly used two variables: grasp
completion time and amount of hand corrections until fully
grasping an object. For both of these we were considering



the span between the first visible movement of the right
hand and the object being lifted up from the table in a
usable state, which could include additional object rotations
midair. For the amount of hand corrections we were only
counting very visible movement changes of the whole hand
or several fingers at once, and only relative to the object,
plus every occurence of accidentally hitting the object with
a following correction. We can show that, as expected, grasp
completion time goes up with increasing object location
uncertainty. This can be seen in Fig. 10, however, the trend
is not as visible as we hoped for. One reason for this is due
to our experimental setup, as we will discuss later on, and
another reason is that we could not clearly observe a reduced
hand movement speed until the uncertainty increased a lot.
Furthermore, we measured slightly higher values at location
1 compared to location 2 and 3, because the participants
often tried out several hand poses before finding a good
grip when given a new object. In line with our previous
finding Fig. 11 shows the same trend for the mean amount
of hand corrections to increase along with the object location
uncertainty. Additionally, the effect of uncertainty was a
lot more visible. Both variables highly correlate with each
other: the more corrections are needed, the longer it will
take to grasp an object resulting in a correlation coefficient
of 0.807. We also discovered that the trend of increasing
amount of hand corrections depending on the uncertainty
was observable seperately for each of the 10 objects and
also for each of the 15 participants.

We further analyzed the data with repeated measures
analysis of variance (ANOVA) tests using the software SAS,
to test our results for statistical significance. An ANOVA
test can be used to compare the levels of variance between
and within a factor under observation, with further post-hoc
tests needed in case of a significant difference. For all our
ANOVA tests we used a significance level of α = 0.05. To
conduct post-hoc tests we used Tukey’s Honestly Significant
Difference test (Tukey’s HSD). At first we tested grasp com-
pletion time and amount of hand corrections regarding the
different locations and both yielded a statistically significant
difference of means (p <0.0001, F = 76.17 and p <0.0001,
F = 114.96 respectively). Tukey’s HSD test showed that in
the first case there are three different groups: location 1 to
4, location 4 and rotation, and blind grasping, while in the
second case the outcome was more distinct with location
1 to 3 as one group, location 4 and rotation as another
one, and then blind grasping as a third group. We also
conducted further ANOVA tests for different combinations
of our two main variables with other factors regarding
the different locations, such as object, participant, object
orientation, gender of the participant, and using the handle of
an object, but neither of those yielded statistical significance
except for the two different groups of objects. The overall
trend of increasing grasp completion time and amount of
hand corrections was clearly visible for both groups, with
the means of the five tools being a lot higher than those of
the other five objects, possibly due to them being overall
more complicated to grasp.

Fig. 10. Mean grasp completion times and standard error of the mean for
all objects and participants.

Fig. 11. Mean amount of hand corrections and standard error of the mean
for all objects and participants.

As we already noticed during the experiments that due to
our setup the initial object orientation influenced the applied
pre-grasp strategy, we also had to analyze the impact on our
results. For the different trials we had mostly oriented the
objects to the diagonal directions, hence we had the most
accurate data for these four. As an example an object with a
handle, such as the pan, could have been oriented with the
handle to the right and forward relative to the participant.
Looking at the mean amount of hand corrections only for
those four main directions, we can still see that the amount
goes up along with the uncertainty (Fig. 12). However, the
effect is a lot less visible for objects oriented to the left as
that made objects harder to grasp at location 1 to 3 and on the
contrary easier at location 4. Conducting multiple ANOVA
tests on the impact of orientation on the amount of hand
corrections did not show a statistical significance though. It
should still be noted that overall the mean values from the
rotational trials yielded a lot more accurate results than the
ones from location 4, simply due to the greatly increased
amount of data.

According to our hypotheses, we also expected to see a
general increase in hand aperture. We could indeed con-
firm that, based on the video data, as it was quite visible
throughout most of the trials, partly due to changing pre-
grasp strategies though. Fig. 13 shows three examples of
how the hand typically opens up as the object location
uncertainty rises. Unfortunately, we could not measure this
general behavior with the data we gathered from the tactile
pressure measurement mats for the objects lying flat on the
table. The sensor resolution of the mats would have been
sufficient for this, but due to random noise and the mats



Fig. 12. Mean amount of hand corrections based on the four most used
initial object rotations, oriented to the left and forward (LF) or backward
(LB), or to the right and forward (RF) or backward (RB).

Fig. 13. General increase of hand aperture for three different participants.

not being very sensitive to low pressure the data was mostly
unusable.

B. Subjective Results

Having analyzed the experiment data, we were also inter-
ested in comparing our results to the subjective data we had
gathered from the questionnaires. We had mainly asked the
participants to rate the perceived amount of object location
uncertainty for location 1 to 4 with the numbers going up
from 1 (low uncertainty) to 10 (high uncertainty), state with
which objects they were not familiar with, and try to tell for
which objects they could notice a change in their grasping
strategy.

As some of the participants misunderstood how we asked
the rating question and obviously swapped low with high
uncertainty, we had to correct the answers of 5 partici-
pants by mirroring them. The mean ratings did confirm
our experimental setup to be working as intended, with the
amount of uncertainty increasing only slowly for the different
locations: the rating goes up from a 2.7 for location 1 to
a 6.4 for location 4 (Fig. 14). We also conducted multiple

ANOVA tests to see if being familiar with an object or the
perception of a change in pre-grasp strategy had a statistically
significant impact on grasp completion time or amount of
hand corrections, but without avail.

V. ROBOT EXPERIMENTS

The robot setup we used for our evaluation is a 15-DOF
dual-arm Motoman SDA10 industrial robot with a Shadow
Dexterous Hand mounted on the right arm, as to be seen in
Fig. 15. Hence, only 7 DOF of the SDA10 robot had to be
considered. The Shadow Hand is an anthropomorphic five-
finger robot hand resembling a typical human right hand in
size and is actuated by antagonistic pneumatic muscles in
the forearm offering 24 DOF. To move both robots together
we use a framework based on the Robot Operating System
(ROS), with the ROS master running on an Intel Pentium
4 processor at 3.60 GHz and having seperate controllers for
the Motoman arm and the Shadow Hand.

As a proof of concept we translated our findings from
human observation to this robot setup based on grasping a
simple object in cuboid form (10.16 cm x 5.08 cm x 2.79
cm). The two pre-grasp strategies most prominently observ-
able were a direct grasp approach when dealing with low
uncertainty and switching to tapping in case of increasing
uncertainty. To evaluate the effectiveness of that human-
inspired change in pre-grasp strategy based on the amount
of uncertainty, we compared overall grasp success, grasp
completion time, and amount of hand corrections for both
strategies. As our system does not have any visual sensors,
we had to artificially impact the object location uncertainty.
Low would relate to the object being at a fixed position,
which is known before grasp execution (center location). To
increase uncertainty to a medium level, we would move the
object one time its width, 5.08 cm, along one axis (left, right,
forward, backward) and increasing it even further to a high
level by moving the cuboid 5.08 cm on two axes (left and
forward or backward, right and forward or backward). As
a result we got nine different test cases for comparing both
strategies.

Implementation of the direct grasp strategy was done via
an open-loop control, sending explicit joint angles to arm
and hand controller for several key poses of the grasp. We
obtained the joint angles by manually grasping the object at
the center location using an Apple iPad and the multi-touch
interface for dexterous telemanipulation presented in [40],
which relies on a TUIO-based finger tracker application to

Fig. 14. Mean ratings of the participants’ perceived amount of object
location uncertainty and standard error of the mean.



map finger movement to the Shadow Hand. In the process
we got a quite natural arm and hand movement and could
identify important poses for the grasp: start position, moving
over the block, bending the fingers, moving down, closing
the fingers and lifting the object. We then used this series
of poses to repeatedly execute the exact same grasp for all
our nine test cases several times. Our simple, direct grasp
strategy was always successful at the center position, could
by chance grasp the object when it was moved backwards,
and failed in all seven other cases. Mean grasp completion
time was 11.0 s and amount of hand corrections was fixed
at 0 by design.

To implement the tapping strategy we used a closed-
loop control, relying solely on the hall effect sensors of
the Shadow Hand to accurately and constantly measure the
values of the finger joints with a resolution of 0.2 degrees
and the discrepancy to the current target value. Starting in
the same pose as the direct grasp with all fingers straight,
we moved the hand by only using the Motoman arm. We
then conducted several tapping movements while adjusting
the hand position based on the finger joint sensor readings.
In case no contact was made or only the middle finger,
ring finger, or the fingertips hit the object, the hand was
moved slightly forwards. If only one or two fingers on
one side of the hand made contact, the hand position was
corrected accordingly to the left or right. This strategy
for the corrections resembles approximately what we could
observe during our human subject experiment. The process
of adjusting the hand position was continually repeated until
an appropriate position was found to grasp the object. This
was determined by a distinct deviation of the wrist joint
values corresponding to a dorsiflexion of the hand caused
by the palm making full contact with the object. In this case
a grasp attempt was executed, similar to the one used for
the direct approach. We could show that the success rate
for our tapping strategy compared to the direct grasp was
significantly higher when dealing with increased uncertainty.
We could repeatedly execute successful grasps for eight out
of the nine test cases while maintaining an average of only
1.75 hand corrections per trial, which is comparable to the
ones of humans with 1.44 (location 4) or 1.63 (rotation).

Fig. 15. Overview of our robot experiment setup with the object being
placed on the table in front of the robot (in this case in the center position).

Mean grasp completion time increased with 48.8 s a lot more
compared to the direct grasp, which is about four times as
high, but that was partly due to slower hand movement and
security stops during the tapping to avoid any damage to the
hardware. Please also refer to the accompanying video for
a comparison between both strategies executed by a human
and by the robot.

It should be noted that during our experiments we had
some issues with the Shadow Hand, such as the overbent
first joint of the index finger as to be seen in Fig. 15, but
that did not impact our results any further.

VI. DISCUSSION AND FUTURE WORK

We have presented the insight we have gotten from our
experiments into human pre-grasp strategies and changes
applied to them when dealing with uncertainty. We observed
that people tend to reuse their same strategy as often as
possible, only changing it when being forced to by a high
amount of object location uncertainty. Through our analysis
we found that main task parameters, such as grasp com-
pletion time and amount of hand corrections, significantly
increase in case of high uncertainty, which relates to the
underlying change of pre-grasp strategy. We could already
show that applying our findings from human observation to
our robot setup substantially helped when considering object
location uncertainty for robotic grasping.

During the human subject experiments we could also
see that some pre-grasp strategies were used more often
for specific objects. Sensing played a considerably more
important role when participants were asked to grasp one
of the objects for which the initial orientation was not easily
visible, most notably the jug, the iron, and the hammer. We
believe that the choice of applied strategy relies on several
factors, with object location uncertainty being only one
among them. Further investigation of the additional impact of
object size, shape, or grasp history remains to be done. Even
though tapping seems to be the by far most used strategy
for high uncertainty due to working reliably well, getting
more information about the whole set of human pre-grasp
strategies and understanding the different factors involved in
choosing a specific one to apply, seems to be a valueable
direction of subsequent research.

Regarding future work we suggest several improvements
to the experimental setup we used. During our analysis we
found that the obtained values for grasp completion time
were not as distinctive as expected. We believe that having
a fixed hand start position for all participants could help
with making the overall trend more visible. Furthermore,
improving the setup to account for the changing relative
object rotation and varying distance to the start position
would surely be of help. An interesting idea is also to
find different ways of controlling the amount of uncertainty
other than moving the target objects into peripheral view.
Possible alternatives could be limiting stereoscopic vision or
varying the illumination. Additional improvements include
using high-speed cameras to ensure a better quality of the
visual data and finding a way to reliably measure hand



aperture while maintaining an unobtrusive setup. Overall we
could already show with our rather small grasp sample size
the usefulness of applying human pre-grasp strategies based
on the amount of uncertainty and getting even more data by
considering other objects and additional participants should
make this approach even more viable.
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D. Kragic, T. Asfour, and N. Krüger, “A strategy for grasping unknown
objects based on co-planarity and colour information,” Robot. Auton.
Syst., vol. 58, no. 5, pp. 551–565, 2010.

[10] H. Dang and P. K. Allen, “Tactile experience-based robotic grasping,”
in Proc. Human-Robot Interaction 2012 Workshop on Advances in
Tactile Sensing and Touch based Human-Robot Interaction, 2012.

[11] J. L. Fu, S. S. Srinivasa, N. S. Pollard, and B. C. Nabbe, “Planar
batting under shape, pose, and impact uncertainty,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 2007, pp. 336–342.

[12] K. Hsiao, S. Chitta, M. Ciocarlie, and E. G. Jones, “Contact-reactive
grasping of objects with partial shape information,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), 2010, pp. 1228–
1235.

[13] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Robust grasping
under object pose uncertainty,” Auton. Robots, vol. 31, no. 2-3, pp.
253–268, 2011.

[14] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Non-
gaussian belief space planning: correctness and complexity,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2012, pp. 4711–
4717.

[15] C. Zito, M. S. Kopicki, R. Stolkin, C. Borst, F. Schmidt, M. A. Roa,
and J. L. Wyatt, “Sequential trajectory re-planning with tactile in-
formation gain for dexterous grasping under object-pose uncertainty,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
2013, pp. 4013–4020.

[16] M. Ciocarlie, K. Hsiao, E. Jones, S. Chitta, R. Rusu, and I. Sucan, “To-
wards reliable grasping and manipulation in household environments,”
in Proc. Robotics: Science & Systems 2010 Workshop on Strategies
and Evaluation for Mobile Manipulation in Household Environments,
2010, pp. 1–12.

[17] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), 2010, pp. 2123–2130.

[18] E. L. Sauser, B. D. Argall, G. Metta, and A. G. Billard, “Iterative
learning of grasp adaptation through human corrections,” Robot.
Auton. Syst., vol. 60, no. 1, pp. 55–71, 2012.

[19] M. Przybylski, T. Asfour, R. Dillmann, R. Gilster, and H. Deubel,
“Human-inspired selection of grasp hypotheses for execution on a
humanoid robot,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots
(Humanoids), 2011, pp. 643–649.

[20] B. Kent and E. Engeberg, “Biologically inspired posture control for
a dexterous robotic hand,” in Proc. IEEE/ASME Int. Conf. Advanced
Intelligent Mechatronics (AIM), 2011, pp. 451–456.

[21] ——, “Biomimetic backstepping slip prevention for a dexterous hand
via wrist velocity feedback,” in Proc. IEEE-RAS Int. Conf. Humanoid
Robots (Humanoids), 2011, pp. 383–388.

[22] M. R. Cutkosky, “On grasp choice, grasp models, and the design of
hands for manufacturing tasks,” IEEE Trans. Robot. Autom., vol. 5,
no. 3, pp. 269–279, 1989.

[23] T. Feix, R. Pawlik, H. Schmiedmayer, J. Romero, and D. Kragic, “A
comprehensive grasp taxonomy,” in Proc. Robotics: Science & Systems
2009 Workshop on Understanding the Human Hand for Advancing
Robotic Manipulation, 2009, pp. 2–3.

[24] I. M. Bullock and A. M. Dollar, “Classifying human manipulation
behavior,” in Proc. IEEE Int. Conf. Rehabilitation Robotics (ICORR),
2011, pp. 1–6.

[25] J. R. Napier, “The prehensile movements of the human hand,” J. Bone
Joint Surg. Am., vol. 38, no. 4, pp. 902–913, 1956.

[26] N. Kamakura, M. Matsuo, H. Ishii, F. Mitsuboshi, and Y. Miura,
“Patterns of static prehension in normal hands,” Am. J. Occup. Ther.,
vol. 34, no. 7, pp. 437–445, 1980.

[27] S. J. Edwards, D. J. Buckland, and J. McCoy-Powlen, Developmental
& functional hand grasps, 1st ed. Slack Incorporated, 2002.

[28] E. Schlicht and P. Schrater, “Effects of visual uncertainty on grasping
movements,” Exp. Brain Res., vol. 182, no. 1, pp. 47–57, 2007.

[29] V. Christopoulos and P. Schrater, “Grasping objects with environmen-
tally induced position uncertainty,” PLoS Comput. Biol., vol. 5, no. 10,
p. e1000538, 2009.

[30] D. R. Melmoth and S. Grant, “Getting a grip: different actions and
visual guidance of the thumb and finger in precision grasping,” Exp.
Brain Res., vol. 222, no. 3, pp. 265–276, 2012.

[31] Q. Fu, A. Ushani, L. Jentoft, R. D. Howe, and M. Santello, “Human
reach-to-grasp compensation with object pose uncertainty,” in Proc.
IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBC), 2013.

[32] B. Sivak and C. L. MacKenzie, “Integration of visual information and
motor output in reaching and grasping: the contributions of peripheral
and central vision,” Neuropsychologia, vol. 28, no. 10, pp. 1095–1116,
1990.

[33] L. Brown, B. Halpert, and M. Goodale, “Peripheral vision for percep-
tion and action,” Exp. Brain Res., vol. 165, no. 1, pp. 97–106, 2005.
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