
Learning to Sequence and Blend Robot Skills
via Differentiable Optimization

Noémie Jaquier, You Zhou, Julia Starke, and Tamim Asfour

Abstract— In contrast to humans and animals who naturally
execute seamless motions, learning and smoothly executing
sequences of actions remains a challenge in robotics. This
paper introduces a novel skill-agnostic framework that learns to
sequence and blend skills based on differentiable optimization.
Our approach encodes sequences of previously-defined skills
as quadratic programs (QP), whose parameters determine the
relative importance of skills along the task. Seamless skill
sequences are then learned from demonstrations by exploiting
differentiable optimization layers and a tailored loss formulated
from the QP optimality conditions. Via the use of differentiable
optimization, our work offers novel perspectives on multitask
control. We validate our approach in a pick-and-place scenario
with planar robots, a pouring experiment with a real humanoid
robot, and a bimanual sweeping task with a human model.

I. INTRODUCTION

Humans and animals generally achieve seamless se-
quences of actions, featuring smooth and natural transitions.
Indeed, there are biological evidences that motor actions are
composed of fundamental building blocks, which are then
smoothly sequenced and combined to realize complex mo-
tions [1], [2]. This particularly applies to manipulation tasks,
which can be broken down into several smoothly-linked
action phases for which the brain selects and executes ap-
propriate controllers [3]. In contrast, learning and executing
seamless sequences of actions is still a challenge in robotics.
Indeed, skills are usually learned for a specific task and are
thus difficult to re-use in a different sequence of actions.
Moreover, robot motions are characterized by obvious jerky
transitions, which are so typical that people imitate robots by
introducing abrupt pauses between subsequent movements.

In this paper, we propose a novel skill-agnostic approach
to sequence and blend skills. To do so, we encode sequences
of skills as quadratic programs (QP) [4] and leverage differ-
entiable optimization (Optnet) layers [5], [6] to determine the
relative importance of each skill throughout the task (see § III
for a background). Our approach is skill-agnostic by acting
on a set of control values, thus considering skills as a-priori
given black-box solutions. Given a set of previously-defined
(i.e., learned or programmed) skills and few demonstrations
of a task, our formulation not only learns a suitable sequence
of possibly-concurrent skills, but also blends transitions ”for
free”, i.e., requiring no additional operations (see § IV).

The contributions of this paper are: (i) We propose a
novel QP-based approach to learn seamless sequences of

This work was supported by the Helmholtz AI project LearnGrasp-
Phases and the Carl Zeiss Foundation through the JuBot project. The
authors are with the Institute for Anthropomatics and Robotics, Karl-
sruhe Institute of Technology, Karlsruhe, Germany. Correspondence to:
{noemie.jaquier, asfour}@kit.edu

skills from demonstrations; (ii) We formulate a tailored loss
function from the optimality of the QP; (iii) We present two
types of QP parameters to encode the importance of skills;
(iv) We bring a novel perspective on multitask control via the
use of differentiable optimization. We showcase our approach
in various experiments with simulated and real robots (§ V).

II. RELATED WORK

Given a set of individual robotic skills, the challenge is
to order and combine them to successfully execute complex
manipulation tasks. Sequencing approaches presented in the
literature are mainly based on learning from demonstra-
tions (LfD) [7], [8], [9], [10] or on reinforcement learning
(RL) [10], [11]. Manschitz et al. [7] learn both a sequence
graph of skills from demonstrations, and a classifier to select
the transitions. The authors extend their approach to handle
concurrent skill activations [8]. As opposed to our work,
the transitions between skills are explicitly labeled for the
demonstrations. Rozo et al. [9] introduce an object-centered
skill sequencing formulation, which builds a complete model
of the task by cascading several skill models, and adapting
their task parameters. In contrast to our approach, the desired
skill sequence is assumed to be given. In [10], demonstrated
trajectories are segmented into sequences of skills, where
skill policies are represented by linear value function approx-
imations. Sequences from several demonstrations are then
combined into skill trees. Stulp et al. [11] extend the PI2

algorithm to optimize sequences of dynamical movement
primitives (DMP) by simultaneously learning their shape and
goal parameters. Overall, the aforementioned approaches are
specifically tailored to a single skill type, e.g., dynamical
systems [7], [8], task-parametrized Gaussian mixture model
(TP-GMM) [9], or DMP [11]. Moreover, transitions are
usually handled by matching the end- and start-points of
subsequent skills, and are thus characterized by obvious
pauses. In contrast, our approach is skill-agnostic and learns
sequences featuring seamless and natural transitions.

Other works focus on designing smooth transitions be-
tween skills. For instance, several approaches were presented
in [12] to blend DMPs, and probabilistic movement primi-
tives (ProMP) can naturally be blended [13]. However, these
methods require a known sequence of specific skills and
a manual tuning of transition parameters. In [14], motions
are generated from a hierarchy of motion primitives, which
are activated based on a neural-like dynamics. Therefore,
sequencing and blending is achieved by choosing suitable
weights and connections. This approach was then combined
with optimal control for continuous motion adaptation [15].

Although it generates seamless motions, its applicability is
limited due to the necessity of defining the model by hand.

Sequencing and blending of tasks has also been explored
in the context of robot multitask control. Salini et al. [16]
combine different controllers in a QP formulation by defining
a soft hierarchy of tasks. This corresponds to defining
a sequence of skills with concurrent activations. Smooth
transitions are achieved by smoothly-varying the relative
importance of skills (priorities) with manually-tuned weights.
In [17], the skills priorities are instead optimized using
covariance matrix adaptation evolution strategy (CMA-ES) in
order to superpose several controllers for motion generation.
Modugno et al. [18] extended this idea to learn time-varying
skill priorities given as a weighted sum of basis functions
equally spaced in time. The corresponding weights can then
be optimized using black-box optimization techniques such
as CMA-ES [18] or Bayesian optimization (BO) [19], [20].
Our work distinguishes in that we directly learn the relative
importance of skills along the task by differentiating through
the optimization problem. In contrast to [18], [19], [20], we
leverage LfD to learn sequences of previously-defined skills
with seamless transitions. Therefore, our approach requires
only few initial demonstrations and no additional trials dur-
ing the learning phase, thus improving on data-efficiency and
training cost compared to black-box optimization techniques.

III. BACKGROUND

A. Multitask control with quadratic programming

Quadratic programs (QP) [4, Chap. 16] are extensively
used to formulate multitask control of humanoid robots as a
constrained optimization problem. Indeed, QP can be solved
very efficiently, while explicitly incorporating a wide variety
of objectives and accounting for diverse constraints (see
e.g., [21], [22]). A QP solves a problem of the form

min
z

1
2z

TQz + cTz s. t. Az = b and Gz ≤ h, (1)

where z ∈ Rn is the optimization variable, Q ∈ Sn+ ,
c ∈ Rn are the parameters of the quadratic cost function with
Sn+ denoting the manifold of positive-semidefinite (PSD)
matrices, and A ∈ Rm×n, b ∈ Rm, G ∈ Rp×n, h ∈ Rp are
the constraints parameters. For robot multitask control, QP
are typically used to minimize the weighted sum of a set of K
tasks, i.e., minξ1...ξK

∑K
k=1 wk‖ξ̂k−ξk‖2, where ξ̂k and ξk

are the desired and current value of the task k, respectively,
and wk is a weight setting the relative importance of the task
k with respect to the other tasks. Moreover, the constraints
typically include the equations of motion (kinematics, or
dynamics), the technological limits of the system (e.g., joint
limits), and interaction constraints (e.g., grasp or frictional
contacts). In this paper, we use a QP to encode a sequence
of skills, along which the weights scaling the importance of
each skill vary, leading to smooth trajectories and transitions.

B. Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions [23] are first
order necessary conditions for z∗ to be a local solu-
tion of a constrained optimization problem. In particular,

the KKT conditions corresponding to the QP (1) are (i)
∇zL(z,µ,ν) = 0 with L(z,µ,ν) the Lagrangian function
of the problem (1), and µ,ν the Lagrangian multipliers
corresponding to its equality and inequality constraints, re-
spectively, (ii) Az = b, (iii) Gz ≤ h, (iv) µi ≥ 0 ∀i ∈
{1 . . .m}, and (v) νj ≥ 0 ∀j ∈ {1 . . . p}.

In addition to being used throughout the solving process
of constrained optimization problems, the KKT conditions
were exploited in inverse optimal control (IOC). In IOC,
trajectories are viewed as the solution of an optimization
problem, which aims at minimizing an unknown (parametric)
cost. In this context, Englert et al. [24] used the fact that
demonstrations of such trajectories — under the assumption
that they are optimal — fulfill the KKT conditions, to
determine the optimal parameters of the underlying cost.1

We follow a similar reasoning and leverage the QP KKT
conditions to define the loss of our sequencing approach.

C. Differentiable optimization layers

Recent works [5], [6] proposed to integrate optimization
layers into neural architectures by differentiating through the
corresponding optimization problems. In particular, Amos
and Kolter [5] introduced Optnet, a neural architecture em-
bedding QP as individual layers. Namely, Optnet defines the
output zi+1 of the current layer as the solution of a QP
whose parameters depend on the previous layer zi, i.e.,

zi+1 = min
z

1
2z

TQ(zi)z + c(zi)
Tz

s. t. A(zi)z = b(zi) and G(zi)z ≤ h(zi). (2)

In order to train Optnet using backpropagation, the layer (2)
must be differentiable, i.e., the derivatives of the solu-
tion zi+1 of the QP with respect to its input parameters
{Q, c,A, b,G,h}(zi) must be computed. This is achieved
by differentiating the KKT conditions of the problem at a
given solution (see [5]). In this paper, we leverage Optnet to
learn the importance of individual skills throughout the task.

IV. LEARNING TO SEQUENCE AND BLEND SKILLS

In this section, we present our approach to sequence and
blend manipulation skills. In the following, we assume a set
of previously-defined individual robot skills {Ck}Kk=1 (e.g.,
a skill library). The skills are considered as given black-box
solutions, implying that their representations are unknown
and may differ across the skills. At each instant, each skill
outputs a desired control value ξ̂k(ψ), depending on a
current state ψ, to be given to the robot in order to execute
the skill. For example, dynamical-systems-based skills [26]
provide a desired end-effector velocity depending on the
current end-effector position, and time-dependent skills such
as [27] may output, e.g., a time-varying desired joint or
end-effector position. The control values are specific to and
may differ across skills. We then consider a manipulation
task consisting of an unknown sequence of (some of) the

1Similar ideas have also been explored in the context of inverse rein-
forcement learning (IRL), where the parameters of a reward function were
selected by minimizing the norm of the expert’s policy gradient [25].

(a) Cpick,Cplace (b) Diag. W (s) (c) Full W (s) (d) Baseline W (e) Generalization (f) Evolution of diag(W (s))

Fig. 1: Pick()-and-place() task with planar robots. (a) Pick (top) and place (bottom) DS skills (). (b)-(f) Demonstration (),
reproduction with the 4-DoF robot using diagonal (), full () and baseline () weights, and generalization with the 10-DoF robot.

aforementioned skills, possibly concurrently activated. We
observe one or several optimal demonstrations {τ̃ (d)}Dd=1

of the task consisting of the observed control values, i.e.,
τ̃ (d) = [{ξ̃(d)k (ψs)}Kk=1]

1
s=0, where the phase variable s ∈

[0, 1] encodes the task progress2. In other words, s = 0 and
s = 1 represent the beginning and the end of the task.

A. Illustrative example: pick-and-place with planar robots

For the sake of clarity of this section, the different concepts
underlying our approach are introduced generally before
being illustrated for a pick-and-place task executed by planar
robots with grippers. In this example, we observe a single
manually-designed demonstration τ̃ (1) provided by a 4-DoF
teacher robot that picks an object, transports it, and places
it at a given location (see Fig. 1). The demonstration steps
were achieved with proportional controllers activated using
the weights of Fig. 1f. We then consider a set of four
skills {Cpick,Cplace,Copen,Cclose}, where the pick/place and
open/close skills control the arm and gripper motion, respec-
tively. Although we next disclose the skills types, remember
that they are considered as given black-box solutions in our
approach. Indeed, each skill only provides a desired control
value ξ̂k(ψs) depending on the state ψs at each task instant.

The arm skills are encoded as dynamical systems
(DS) [26] trained with the control Lyapunov function scheme
of [28]. The obtained DS, illustrated by Fig. 1a, can then be
adapted to new situations via translations and rotations. The
desired control values of the DS-based skills correspond to
the end-effector velocity ṗ and depend on the current end-
effector position ps, such that ξ̂pick(ψs) ≡ ˆ̇ppick(ps) and
ξ̂place(ψs) ≡ ˆ̇pplace(ps). The desired control values of the
gripper skills correspond to the velocity of the gripper joints
γ̇. The velocities ˆ̇γopen and ˆ̇γclose are zero when the gripper
is completely opened or closed, and constant otherwise, i.e.,
ξ̂open(ψs) ≡ ˆ̇γopen(γs) and ξ̂close(ψs) ≡ ˆ̇γclose(γs). In this
example, the phase variable s is defined as s = t/T with t
the elapsed time, and T the total duration of the task.

B. Sequencing and blending of skills with QPs

Similarly to multitask control, we propose to encode
sequences of skills as QPs. Namely, given the desired control

2In the remainder we drop dependencies on ψs to simplify the notation.

values {ξ̂k}Kk=1 output by the K individual skills and the
current control values {ξk}Kk=1, a sequence of skills can be
generated by solving the following optimization problem

min
{ξk}Kk=1

1

2

 ξ̂1−ξ1
...

ξ̂K−ξK

T

W (s)

 ξ̂1−ξ1
...

ξ̂K−ξK

 , (3)

at each s ∈ [0, 1], where W (s) is a varying weight matrix
setting the relative importance of the skills throughout the
sequence in function of the phase variable s encoding the
task progress. The problem (3) is usually augmented with
linear constraints related to the robotic system (see § III-A).
In our case, we also include equality constraints for control
values of the same type, i.e., ξi = ξj if the skills i and j
have the same type of outputs (e.g., both return end-effector
pose values). For instance, following (3), the optimization
problem of our illustrative example is formulated as

min
{ṗpick,ṗplace,γ̇open,γ̇close}

1

2

 ˆ̇ppick−ṗpick

ˆ̇pplace−ṗplace

ˆ̇γopen−γ̇open

ˆ̇γclose−γ̇close

T

W (s)

 ˆ̇ppick−ṗpick

ˆ̇pplace−ṗplace

ˆ̇γopen−γ̇open

ˆ̇γclose−γ̇close

 ,

s.t. ṗpick = ṗplace and γ̇open = γ̇close.

The constraints come from the shared control values across
skills, i.e., the end-effector velocity ṗ, and the gripper
joints velocity γ̇ for the pick/place and open/close skills,
respectively. These constraints can directly be integrated into
the optimization problem, which is equivalently written as

min
{ṗ,γ̇}

1

2

 ˆ̇ppick−ṗ
ˆ̇pplace−ṗ
ˆ̇γopen−γ̇
ˆ̇γclose−γ̇

T

W (s)

 ˆ̇ppick−ṗ
ˆ̇pplace−ṗ
ˆ̇γopen−γ̇
ˆ̇γclose−γ̇

 . (4)

Note that (3) can be equivalently formulated as (1) with the
optimization variable z = (ξT1 ... ξTK)

T, and cost parameters
Q = W , c = −Wẑ with ẑ = (ξ̂T1 ... ξ̂TK)

T. Importantly,
the skill ordering in (3) is arbitrary. Indeed, the sequence is
defined by the weight matrix, that is learned from demon-
strations, as explained next. Skills can be added by extending
ẑ with their control values and expanding W accordingly.

Given one or several D demonstrations {τ̃ (d)}Dd=1 of
a manipulation task, we aim at learning the skill weight
function s 7→ W (s) : R → Sn+ , so that the repro-
duction τ = [{ξ∗k,s}Kk=1]

1
s=0, i.e., the sequence of skills

Fig. 2: Illustration of the proposed learning approach. The relative
importance of the skills is encoded by W as a function of s. An
Optnet layer, solving a QP whose parameters depend on W , is
then used to determine the control command z∗. W is either a
block-diagonal (top), or a full (bottom) matrix. The dashed arrows
are only activated in the latter to learn the off-diagonal elements.

obtained by solving (3) for s ∈ [0, 1], replicates the demon-
strated task. This corresponds to minimizing a loss function
`(τ , {τ̃ (d)}Dd=1) measuring the quality of the reproduction.
To do so, we need to solve a nested optimization: For each
time instance of the task, we solve (3), and the whole set
of solutions [{ξ∗k,s}Kk=1]

1
s=0 is then used to minimize the

loss `(τ , {τ̃ (d)}Dd=1). To solve this problem, we leverage
Optnet [5] to integrate the QP (3) into a neural network.
Optnet allows us (i) to represent the QP parameters as
functions, and (ii) to differentiate ` with respect to the QP
parameters to solve the outer optimization of our nested
problem using gradient-based approaches. In other words,
Optnet backpropagates the loss ` to optimize both the phase-
dependent skills weights W (s) and the control outputs z.
Thus, we can learn the relative importance of the skills
throughout the task execution via the matrix W (s). Our
proposed neural network takes the phase variable s as input,
and consists of (i) a fully-connected layer coupled with
a softmax activation function, whose outputs are the QP
parameters {Q, c,A, b,G,h}(s) (see § IV-D for details),
and (ii) of an Optnet layer (2), where zi = s, and zi+1 = z∗
is the control command transmitted to the robot to execute
the task. Our approach is illustrated by Fig. 2.

It is important to emphasize that the proposed formulation
not only learns sequences of skills, but also blends the transi-
tion between individual skills ”for free”. Indeed, the coupling
of the fully-connected layer with a softmax activation in-
duces smooth non-binary weight functions W (s), therefore
leading to smooth variations of the relative importance of
the skills, i.e., to smooth transitions. This allows our neural
architecture to learn and reproduce seamless transitions, as
usually observed in human demonstrations. This also implies
that skills are not necessarily executed in a strict sequence,
but may be activated concurrently if required by the task.

The individual skills outputs ξ̂k may be defined either in
task space (e.g., end-effector pose, or velocity), or in joint
space (e.g., joint position, or velocity). In the former case, it
may be desirable to directly solve the optimization (3) with

respect to joint variables when executing the reproduction on
the robot. To do so, the current control values {ξk}Kk=1 can
be expressed in function of the joint values by exploiting
the kinematic or dynamic relationship between the task-
and joint-space variables. In our illustrative example, this
corresponds to solving, during the reproduction,

min
{α̇,γ̇}

1

2

 ˆ̇ppick−Jα̇
ˆ̇pplace−Jα̇
ˆ̇γopen−γ̇
ˆ̇γclose−γ̇

T

W (s)

 ˆ̇ppick−Jα̇
ˆ̇pplace−Jα̇
ˆ̇γopen−γ̇
ˆ̇γclose−γ̇

 , (5)

where the arm skills outputs are expressed as ṗ = Jα̇ with
α̇ and γ̇ the arm and gripper joint velocities, respectively,
and J the manipulator Jacobian. Finally, note that nonlinear
relationships must be linearized for the QP formulation.

C. Definition of the loss function

In this section, we take inspiration from the IOC approach
of [24] to define the loss function ` used to train the neural
network previously introduced. Namely, we assume that the
demonstrations {τ̃ (d)}Dd=1 are optimal, i.e., they are optimal
solutions to the QP problem (3) and thus satisfy its KKT
conditions. As the QP constraints are satisfied during optimal
demonstrations, the KKT conditions (ii)-(v) are automatically
fulfilled. Therefore, determining the optimal parameters θ∗

of our neural network can be understood as searching for
the parameters θ fulfilling the first KKT condition for all
the demonstrations. This corresponds to minimizing the loss

`(τ (θ), {τ̃ (d)}Dd=1) =

D∑
d=1

`(d)(θ) (6)

with `(d)(θ) =
∑
s

‖∇zL(s,θ, z, z̃(d),λ(d))‖2,

where we sum over the demonstrations and the progress of
the task via the phase variable s. The Lagrangian of the
problem (3) and its derivative for the d-th demonstration are

L(s,θ, z, z̃(d),λ(d)) =
1

2

(
z̃(d)s − zs

)T
Ws(θ)

(
z̃(d)s − zs

)
+ λ(d)T

s (Pszs − rs) ,

∇zL(s, z,θ, z̃(d),λ(d)) =Ws(θ)
(
z̃(d)s − zs

)
+ P T

s λ
(d)
s ,

where zs ≡ z(s), z̃(d) = (ξ̃(d)T1 ... ξ̃
(d)T
K)

T is the vector
of demonstrated skills outputs, P = (AG) and r =

(
b
h

)
are the stacked constraints parameters, and λ = (µν) is
the vector of Lagrangian multipliers. Moreover, we can
express λ(d) in function of θ for each demonstration d by
minimizing the loss `(d) subject to the KKT complementary
condition, i.e., ∇λ(d)`(d)(θ,λ(d)) = 0. Therefore, by setting
the optimization variable zs to the output z∗s (θ) of our
network, the loss of each demonstration is 3

`(d)(θ) =
∑
s

‖
(
I −P T

s

(
PsP

T
s

)−1
Ps

)
Ws(θ)

(
z̃(d)
s −z∗

s (θ)
)
‖2.

The loss (6) inherently includes the task specifications via
the demonstrations and the QP KKT conditions, and does not
require additional task-specific design. To avoid the singular

3Equivalently, `(d)(θ)=
∑

s ‖Ws(θ)(z̃
(d)
s −z∗s (θ))‖2 for constant Ps.

solution Ws(θ) = 0 ∀s, we leverage the softmax activation
function, as explained next. Thus, at least one skill is given
a high relative importance at each instant of the task.

D. Skills weights as positive-semidefinite matrices
As mentioned previously, the QP parameters are deter-

mined by the first part of our neural network. Specifically, the
cost parameters are Qs(θ) = Ws(θ), cs(θ) = −Ws(θ)ẑs
where the weight matrix Ws(θ) is learned by the network.
The constraints parameters relate to skills outputs and to the
robot physical characteristics. To obtain valid QPs, or equiv-
alently to prevent skills to have negative relative importance
weights, the weight matrices must be PSD, i.e.,W ∈ Sn+ . We
here describe two approaches to learn PSD weight matrices.

a) Diagonal weight matrices: In this case, we define

W (θ) = diag
(
w1(θ)I1, . . . , wK(θ)IK

)
, (7)

where each block wk(θ)Ik weights the output of the k-th
skill, and the scalars {wk(θ)}Kk=1 are obtained from the fully-
connected layer followed by a softmax activation function.
The latter ensures that the scalar weights are positive and
sum to 1, thus guaranteeing that W is PSD, and that at least
one skill is activated at any instant of the task. Notice that
we defined the different blocks as proportional to identity
matrices to avoid altering the outputs of individual skills.

b) Full weight matrices: Such matrices allow us to
express correlations between different skills, i.e, between
their control values ξ̂, throughout the task. This naturally
occurs in various tasks. For example, when approaching and
grasping an object, the hand closure is correlated with the
velocity at which the object is approached. We learn matrices

W (θ) =

w1(θ)I1 W12(θ) ... W1K(θ)

W T
12(θ) w2(θ)I2 ... W2K(θ)

...
...

. . .
...

W T
1K(θ) W T

2K(θ) ... wK(θ)IK

 , (8)

where the off-diagonal blocks Wjk encode the correlations
between the outputs of the skills j and k. To guarantee the
positive semidefiniteness of the matrices W , we propose to
learn the diagonal and off-diagonal blocks separately. Firstly,
the scalar terms {wk(θ)}Kk=1 are obtained as described in
the previous paragraph. Secondly, the off-diagonal matrices
{Wjk(θ)}Kj,k=1 are obtained by leveraging the properties of
matrices with positive block-diagonal elements [29], namely(

Y X
XT Z

)
∈ Sn+ ⇐⇒ X = Y 1/2KZ1/2, (9)

where K is a contraction matrix, i.e., ‖K‖ ≤ 1.Therefore,
we use a second fully-connected layer to learn the contraction
matrices as Kk = vk(θ)

Uk(θ)
‖Uk(θ)‖ , with a tanh and a sigmoid

activation function applied to Uk and vk, respectively, so that
vk ∈ [0, 1]. The off-diagonal elements {Wjk(θ)}Kj,k=1 are
then computed recursively using the right-hand side of (9).
For instance, in the case of a matrix composed of 3 skills, we
first compute X = W12 with Y = w1I1 and Z = w2I2,
and then X = (W T

13 W
T
23)

T with Y =
(

w1I1 W12

W T
12 w2I2

)
and

Z = w3I3. Note that, to facilitate the training of full weight
matrices, we initialize the parameters θ of the scalar terms
{wk(θ)}Kk=1 with a previously-trained diagonal model.

V. EXPERIMENTS

In this section, we evaluate our approach with different
robotic platforms and manipulation tasks. All computations
were performed on a laptop with 2.60GHz ×12 CPU and
31 GiB RAM. A video of the experiments accompanies
the paper (https://youtu.be/00NXvTpL-YU), and
source codes are available at https://github.com/
NoemieJaquier/sequencing-blending/.

A. Illustrative example: pick-and-place with planar robots

We first consider the pick-and-place task introduced in
§ IV-A and train our approach using diagonal and full
weight matrices on the provided single manually-designed
demonstration. In order to guarantee that one arm and one
hand skill are activated at each instant of the task, we use one
softmax activation function for each of the arm and gripper
pairs of skills, namely pick/place and open/close. The task
is then reproduced by the 4-DoF robot. As a baseline, we
consider the case where the QP (4) with diagonal weights
does not require additional constraints, so that its solution is
ṗ∗ = wpick

ˆ̇ppick+wplace
ˆ̇pplace, γ̇∗ = wopen

ˆ̇γopen+wclose
ˆ̇γclose.

In this case, as the QP solution is readily available, we do
not need to solve a nested optimization to minimize a given
loss. Instead, the loss (6) can be minimized independently for
each value of s with classical optimization methods. Finally,
a 10-DoF student robot is requested to reproduce the learned
sequence of skills with different pick and place positions. To
do so, the pick and place DS skills are adapted to the new
target points. For all reproductions, the QP is solved with
respect to the arm and gripper joint velocities using (5).

Fig. 1b depicts the demonstrated trajectory, as well as
the reproduction of the task by the 4-DoF robot with a
diagonal weight matrix. Our approach successfully sequences
the available skills and reproduces the task by picking and
placing the object at the required locations. The differences
of trajectory between the demonstration and the reproduction
are due to the fact that the DS arm skills naturally follow
a different trajectory than the demonstration between the
target points (remember that the demonstration was gen-
erated independently from the given skills). For the same
reason, the learned weights slightly differ from the manually-
designed ones used to generate the demonstration (Fig. 1f).
The differences of trajectory are attenuated when using a
full weight matrix (see Fig. 1c), where correlations between
skills are exploited to better match the demonstration. Note
that only the diagonal weights are represented in Fig. 1f.
As expected, the baseline looks similar to our approach with
diagonal weight matrix (see Fig. 1d). Slight differences may
be due to the different optimizations and to local minima in
the loss. However, notice that the baseline applies only to
very simple QPs, which are unrealistic for most applications
(incl. for the experiments of § V-B- V-C). Also, in contrast
to our approach, the baseline does not learn the weight
matrix as a parametric function of the phase variable. Fig. 1e
depicts the reproduction of the learned sequence by the 10-
DoF robot using a diagonal weight matrix, showing that our
approach successfully generalizes to different pick and place

https://youtu.be/00NXvTpL-YU
https://github.com/NoemieJaquier/sequencing-blending/
https://github.com/NoemieJaquier/sequencing-blending/

locations. As the full weight matrix naturally overfits a single
demonstration, it is not well suited to generalize in this case.

B. Pouring task with a humanoid robot

Here, we apply our approach in a real-world scenario to
learn a complex sequence of skills on the humanoid robot
ARMAR-6 [30]. The robot is positioned in front of a table,
on which are placed an empty glass and a 1-liter plastic bottle
partially filled with orange juice. The scenario consists of a
pouring task, where the robot grasps the bottle, pours juice
into the glass, and places the bottle back on the table. The
positions of the objects are assumed a priori known by the
robot, but could equally be inferred by a perception system.

As for the previous experiment, a set of skills is provided
as black-box solutions. Specifically, four skills are defined for
the arm, namely approach the bottle, pour, place the bottle
back, and retreat the arm. Moreover, two joint-velocity-
based skills are provided for the five-fingered hand, namely
open and close in a power cylindrical grasp. The four
arm skills {Capproach,Cpour,Cplace,Cretreat} are defined by
DS with radial vector fields pointing toward a fixed point
attractor. Their desired control values correspond to the end-
effector linear and angular velocities ˆ̇p and ˆ̇q, which depend
on the current end-effector position ps ∈ R3 and orientation
qs ∈ S3, i.e., ξ̂(ψs) ≡

(
ˆ̇p(ps)
ˆ̇q(qs)

)
. The fixed point attractors of

the four arm skills are the robot hand grasp pose on the bottle
for the approach skill, a tilted hand pose above the glass for
the pour skill, the hand pose at the position of the bottle on
the table for the place skill, and the hand resting pose for
the retreat skill. The hand skills {Copen,Cclose} are defined
similar to the gripper skills of the pick-and-place example,
and thus open and close all finger joints by controlling their
velocity. We train our approach on seven manually-designed
demonstrations for which an operator defined the arm and
hand trajectories. The bottle and glass positions were varied
of ±10 and ±20 cm along the x and y axes, respectively.
As previously, we use two softmax activation functions for
the arm and hand skills, and the phase variable is s = t/T .

After the learning phase, the robot successfully reproduced
the pouring task using both diagonal and full weight matrices
(see Fig. 3 (top-left)). Moreover, our approach not only
succeeded at learning the desired sequence of skills, but also
resulted in seamless transitions as indicated by the absence
of pauses and by the smoothness of the trajectories depicted
in Fig. 3 (bottom-left). The learned weight matrices are
represented in Fig. 3 (right) for the diagonal and full cases.
Although the resulting trajectories look similar, the matrices
still differ in the relative importance attributed to each skill.
Notably, the model with full weight matrices exploits the cor-
relation between the skills to shape the reproduced trajectory,
thus featuring lower diagonal values than the diagonal model.
Therefore, full weight matrices have better representation
capabilities than their diagonal counterpart. However, this
comes at the expense of generalization abilities. Indeed, as
shown in Fig. 3, the diagonal model was able to generalize to
bottle and glass locations that were outside the demonstrated
range (here, the bottle and glass positions were swapped

along the x axis), which the full model could only achieve for
locations close to the demonstrations. Finally, we compared
our approach to a baseline obtained by manually sequencing
the given skills without any learning or blending. As shown
in Fig. 3 (bottom-left), the baseline trajectory is characterized
by obvious jerky transitions. The resulting timing would
cause the robot to overfill the glass, thus failing the repro-
duction. Importantly, our approach is well-suited for learning
and executing the sequence of skills on a real robot. Indeed,
the pouring task training lasted a couple of minutes, and the
testing time was ∼ 3-4 ms per timestamp, which allowed us
to execute our approach at a control frequency of 200 Hz.

C. Bimanual sweeping task learned from human data

We aim at evaluating our approach to sequence and blend
skills based on human demonstrations, i.e., on data for
which no ground truth is easily available. To do so, we
consider a bimanual sweeping task from the KIT motion
database [31], [32], in which a human transfers cucumber
slices from a cutting board to a bowl. At the beginning
of the demonstrations, a subject stands in front of a table.
A cutting board on which cucumber slices are placed, is
positioned along the edge of the table in front of the human.
The human first grasps a plastic bowl with the left hand and
a knife with the right hand using cylindrical power grasps.
Then, s/he holds the bowl below the table next to the cutting
board, and pushes the cucumber slices into the bowl with the
knife. Finally, the human places both knife and bowl back.

For the bimanual sweeping task, we consider the mo-
tion of each arm separately. Moreover, we use demon-
strations of the aforementioned sweeping task performed
by two different subjects. First, three naturally-varying
demonstrations of the first subject are used to obtain a
skill library. Here, we consider a set of four low-level
skills per arm, namely {Cl

approach,Chold,C
l
place,C

l
retreat} and

{Cr
approach,Csweep,C

r
place,C

r
retreat} for the left and right arm,

respectively. Each human demonstration is manually seg-
mented into four parts corresponding to the approach,
sweep/hold, place, and retreat skills. In this experiment, we
use via-points movement primitives (VMP) [27], which offer
powerful skill representations that are easily adaptable to
new starts, goals and via-points after training. Therefore,
each skill is then represented by a time-dependent VMP
trained on the corresponding segments of the demonstrations.
The desired control values are the end-effector position and
unit-quaternion-based orientation (pq) given by the mean
trajectory retrieved by the VMPs. The desired control values
depend on the time ts, i.e., ξ̂(ψs) ≡

(
p̂(ts)
q̂(ts)

)
. All VMPs

are executed with the start and goal poses defined by the
desired task. The timing of the VMP skills is defined by
the duration of the entire task T . Within our model, every
skill trajectory is then evaluated at the evolving time t = sT
based on the overall phase variable s. The resulting skills
are illustrated by Fig. 4a. As for the previous experiments,
these skills are considered as black-box solutions, meaning
that their representation is not directly known by our model.
We then use three demonstrations provided by a second

Fig. 3: Pouring task with a humanoid robot. The top row shows snapshots of the robot in the resting position (1) and executing the approach
(2), pour (3), place (4) and retreat (5) skills during the task. The bottom-left graphs depict the demonstrated () and reproduced hand
position, orientation, and closure trajectories. Reproductions are obtained with our approach using diagonal () and full () weight
matrices. A generalized motion obtained with diagonal weight matrices (), as well as a baseline where skills are manually sequenced
without blending (), are also displayed. The right column depicts the learned diagonal and full weight matrices at different task instants.

(a) Capproach,Csweep (b) Position (left arm) (c) Orientation (right arm) (d) Diag. W (s) (e) Full W (s)

Fig. 4: Bimanual sweeping task with a human model. (a) Approach and sweep VMP skills. (b)-(c) Demonstrations () and reproductions
of the task using diagonal () and full () weight matrices. (d)-(e) Snapshots of the reproduction at s = 0.25 (top) and s = 0.5 (bottom).

different subject to train two models of our approach (left and
right arm separately) with diagonal and full weight matrices.
Note that these demonstrations include variations, as humans
motions naturally vary across executions of the same task.

A simulated kinematic human model, as well as models of
the bowl, knife and table, are used for the reproduction phase.
In this case, the model with diagonal weight matrices could
not reproduce the task as it was not able to closely fit the
demonstrations (see Fig. 4b- 4e). This is due to the significant
differences between the low-level skill trajectories (trained
on the first subject) and the demonstrations (provided by the
second subject). Notice that such differences also appeared
in the pick-and-place experiment. However, as opposed to
the sweeping task, the arm trajectories between the pick and

place locations did not influence the task success, allowing
both diagonal and full weight matrices to be used. For the
bimanual sweeping task, only full weight matrices lead to
a successful reproduction by learning correlations between
skills. Notice that, although two separated models were
trained for the left and right arms, the learned full weight
functions conserved the timing of the motions, allowing both
arms to be synchronized during the reproduction. Also, the
training and testing times were similar to the pouring task.

VI. CONCLUSION

We proposed a skill-agnostic formulation to learn to
sequence and blend skills using QP-based differentiable
optimization layers. This allows us to represent the relative
importance of skills as a function of the task progress and to

optimize it for a given loss with gradient-based approaches.
Our experiments showed that, provided a set of black-box
skills and one or few demonstrations of a task, our approach
not only learns unknown sequences composed of various
types of skills, but also generates smooth motions with
seamless, blended transitions. Overall, our diagonal model is
advantageous for generalization, while full weight matrices
are beneficial when demonstrations must be closely followed.

It is worth noticing that the considered pouring and
sweeping tasks are generally difficult to learn with a single
model. Instead, our approach decomposes a task by combin-
ing several skills, which are easy to train and potentially
re-usable across tasks. Moreover, it requires only one or
few demonstrations of the complete task, making it less
cumbersome to train than trial-and-error-based models. This
is a major advantage compared to black-box optimization
techniques used in multitask control, although detailed per-
formance comparisons are deferred to future work. Finally, in
contrast to end-to-end methods, our formulation is modular,
fast to train, and interpretable as the relative importance of
skills is directly embedded in the weight matrices.

Importantly, the performance of our approach highly de-
pends on the capabilities of the given individual skills.
Namely, a given task can be reproduced only if the provided
skill library contains a set of skills that can be sequenced and
combined to do so. Also, our approach generalizes to new
object locations under the condition that the corresponding
skills successfully adapt to these locations. The dependency
of the model parameters to a time-driven phase variable also
limits the generalization. This can be overcome by defining
the phase variable as a time-independent, perception-based
measure of task progress, which we will explore in the future.

One drawback of our approach is that the dimensionality
of the optimization variable increases rapidly with the num-
ber of different types of skills, i.e., which provide different
control variables. To be applied to cases featuring a complex
library with many different types of skills, we will extend our
approach to handle hierarchies of skills. For instance, high-
level skills, e.g., sweeping cucumber slices to a bowl, may
first be learned with our approach as sequences of low-level
skills, and then combined in a complex task, e.g., preparing a
salad, with an additional QP-based formulation. We will then
evaluate our approach in more complex scenarios including,
e.g., hierarchies, and soft prioritization of skills.

REFERENCES

[1] F. Mussa-Ivaldi and E. Bizzi, “Motor learning through the combination
of primitives,” Philos. Trans. R. Soc. Lond., B, Biol. Sci., vol. 355, pp.
1755–1769, 2000.

[2] T. Flash and B. Hochner, “Motor primitives in vertebrates and inver-
tebrates,” Curr. Opin. Neurobiol., vol. 15, no. 6, pp. 660–666, 2005.

[3] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals
from the fingertips in object manipulation tasks,” Nat. Rev. Neurosci.,
vol. 10, no. 5, pp. 345–359, 2009.

[4] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

[5] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a
layer in neural networks,” in ICML, 2017.

[6] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” in NeurIPS, 2019.

[7] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning move-
ment primitive attractor goals and sequential skills from kinesthetic
demonstrations,” Rob. Auton. Syst., vol. 74, pp. 97–107, 2015.

[8] ——, “Probabilistic progress prediction and sequencing of concurrent
movement primitives,” in IEEE/RSJ IROS, 2015, pp. 449–455.

[9] L. Rozo, M. Guo, A. G. Kupcsik, M. Todescato, P. Schillinger, M. Gift-
thaler, M. Ochs, M. Spies, N. Waniek, P. Kesper, and M. Bürger,
“Learning and sequencing of object-centric manipulation skills for
industrial tasks,” in IEEE/RSJ IROS, 2020, pp. 9072–9079.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot
learning from demonstration by constructing skill trees,” IJRR, vol. 31,
no. 3, pp. 360–375, 2012.

[11] F. Stulp, E. A. Theodorou, and S. Schaal, “Reinforcement Learning
with Sequences of Motion Primitives for Robust Manipulation,” IEEE
T-RO, vol. 28, no. 6, pp. 1360–1370, 2012.

[12] M. Saveriano, F. Franzel, and D. Lee, “Merging position and orienta-
tion motion primitives,” in IEEE ICRA, 2019, pp. 7041–7047.

[13] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Auton. Robot., vol. 42, no. 3,
pp. 529–551, 2018.

[14] T. Luksch, M. Gienger, M. Mühlig, and T. Yoshiike, “Adaptive
movement sequences and predictive decisions based on hierarchical
dynamical systems,” in IEEE/RSJ IROS, 2012, pp. 2082–2088.

[15] M. Mühlig, A. Hayashi, M. Gienger, S. Iba, and T. Yoshiike, “Reced-
ing horizon optimization of robot motions generated by hierarchical
movement primitives,” in IEEE/RSJ IROS, 2014, pp. 129–135.

[16] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in
IEEE ICRA, 2011, pp. 1283–1290.

[17] N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization
with a mixture of controllers for motion generation,” in IEEE/RSJ
IROS, 2015, pp. 6416–6421.

[18] V. Modugno, U. Chervet, G. Oriolo, and S. Ivaldi, “Learning soft
task priorities for safe control of humanoid robots with constrained
stochastic optimization,” in IEEE/RAS Humanoids, 2016, pp. 101–108.

[19] Y. Su, Y. Wang, and A. Kheddar, “Sample-efficient learning of soft task
priorities through Bayesian optimization,” in IEEE/RAS Humanoids,
2018, pp. 1–6.

[20] J. Li, Y. Zhu, L. Huo, and Y. Chen, “Sample-efficient learning of soft
priorities for safe control with constrained Bayesian optimization,” in
IEEE IRC, 2020, pp. 406–407.

[21] K. Bouyarmane and A. Kheddar, “On weight-prioritized multitask
control of humanoid robots,” IEEE Trans. Autom. Control, vol. 63,
no. 6, pp. 1542–1557, 2016.

[22] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle, “Robust balance
optimization control of humanoid robots with multiple non coplanar
grasps and frictional contacts,” in IEEE ICRA, 2008, pp. 3187–3193.

[23] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Berkeley
Symp. on Mathematical Statistics and Probability, 1951, pp. 481–492.

[24] P. Englert, N. A. Vien, and M. Toussaint, “Inverse KKT: Learning cost
functions of manipulation tasks from demonstrations,” IJRR, vol. 36,
no. 13-14, pp. 1474–1488, 2017.

[25] M. Pirotta and M. Restelli, “Inverse reinforcement learning through
policy gradient minimization,” in AAAI, 2016, pp. 1993–1999.

[26] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard, “Learning non-
linear multivariate dynamics of motion in robotic manipulators,” IJRR,
vol. 30, no. 1, pp. 80–117, 2011.

[27] Y. Zhou, J. Gao, and T. Asfour, “Learning via-point movement
primitives with inter- and extrapolation capabilities,” in IEEE/RSJ
IROS, 2019, pp. 4301–4308.

[28] S. M. Khansari-Zadeh and A. Billard, “Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Rob. Auton. Syst., vol. 62, no. 6, pp. 752–765, 2014.

[29] R. Bhatia, Positive Definite Matrices. Princeton University Press,
2007.

[30] T. Asfour, M. Wächter, L. Kaul, S. Rader, P. Weiner, S. Ottenhaus,
R. Grimm, Y. Zhou, M. Grotz, and F. Paus, “ARMAR-6: A high-
performance humanoid for human-robot collaboration in real world
scenarios,” IEEE RAM, vol. 26, no. 4, pp. 108–121, 2019.

[31] C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, and T. As-
four, “Unifying representations and large-scale whole-body motion
databases for studying human motion,” IEEE T-RO, vol. 32, no. 4,
pp. 796–809, 2016.

[32] F. Krebs, A. Meixner, I. Patzer, and T. Asfour, “The KIT bimanual
manipulation dataset,” in IEEE/RAS Humanoids, 2020-2021.

	Introduction
	Related Work
	Background
	Multitask control with quadratic programming
	Karush-Kuhn-Tucker conditions
	Differentiable optimization layers

	Learning to Sequence and Blend Skills
	Illustrative example: pick-and-place with planar robots
	Sequencing and blending of skills with QPs
	Definition of the loss function
	Skills weights as positive-semidefinite matrices

	Experiments
	Illustrative example: pick-and-place with planar robots
	Pouring task with a humanoid robot
	Bimanual sweeping task learned from human data

	Conclusion
	References

