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Abstract. Riemannian geometry is a mathematical field which has been
the cornerstone of revolutionary scientific discoveries such as the theory
of general relativity. Despite early uses in robot design and recent ap-
plications for exploiting data with specific geometries, it mostly remains
overlooked in robotics. With this blue sky paper, we argue that Rieman-
nian geometry provides the most suitable tools to analyze and generate
well-coordinated, energy-efficient motions of robots with many degrees
of freedom. Via preliminary solutions and novel research directions, we
discuss how Riemannian geometry may be leveraged to design and com-
bine physically-meaningful synergies for robotics, and how this theory
also opens the door to coupling motion synergies with perceptual inputs.
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1 Motivation

The last years have seen the emergence of various, complex robotics systems
with increased number of degrees-of-freedom (DoF). These include humanoid
and quadrupedal robots, exoskeletons and robotic hands, among others. Despite
recent progress, these robots remain to be actively deployed in our everyday life.
Among the challenges that remain unsolved is the generation of well-coordinated,
energy-efficient, and reliable robot motions under any circumstances. This prob-
lem is further exacerbated by high number of DoF.

As opposed to robots, humans are naturally able to generate skillful motions.
For instance, they efficiently plan optimal trajectories while coping with the re-
dundancy of their high-dimensional configuration space. Moreover, these dex-
terous motions usually adapt to the perceived environment. Following insights
from neurosciences, roboticists have designed biologically-inspired solutions to
cope with the redundancy of robotic systems. In particular, the notion of mus-
cle or movement synergies — coherent co-activation of motor signals [7] — has
been widely used to generate motions of highly-redundant robots such as robotic
hands [9,22] and humanoid robots [10,11]. Synergies offer an elegant and power-
ful alternative to classical control schemes, as a wide range of motions is simply
generated by combining few well-selected canonical synergies. However, syner-
gies have often been extracted using linear methods, e.g., principal component
analysis (PCA), which disregard the nonlinear nature of human and robot config-
uration spaces. Latent variable models (LVMs) based on Gaussian processes [21]
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or auto-encoders [25] have recently been used to cope with this nonlinearity.
However, the resulting synergy spaces are physically meaningless and hard to
interpret, thus limiting the applicability of these methods. Moreover, although
synergies have been recently adapted to object properties in robot grasping [25],
linking synergies with perceptual inputs still remains an open problem.

Instead, the nonlinear nature of mechanical systems such as humans and
robots is suitably described by Riemannian geometry. Indeed, the configuration
space of any multi-linked mechanical system can be identified with a Rieman-
nian manifold, i.e., a smooth curved geometric space incorporating the structural
and inertial characteristics of the system [4]. On this basis, Riemannian com-
putational models of human motion planning were recently proposed [3,14,16].
These models aim at uncovering the optimization principles underlying human
motion generation, and thus the key mechanisms coping with the redundancy of
the human body. They suggest that human motions are planned as geodesics, i.e.,
minimum-muscular-effort (or shortest) paths, in the configuration space mani-
fold. As shown by Neilson et al. [16], each geodesic constitutes a coherent coor-
dination of joint angles with minimum energy demand, and thus corresponds to
a geodesic synergy. In that sense, human point-to-point motions follow a single
geodesic synergy [3], while complex movements may result from sequences [14]
or compositions [16] of these. Despite the soundness of Riemannian geometry to
describe configuration spaces and the attractive properties of geodesic synergies,
it remains overlooked by the robotics community.

In this paper, we contend that Riemannian geometry offers the most suitable
mathematical tools to (i) extract interpretable nonlinear movement synergies
for robotics, (ii) combine them to generate dexterous robot motions, and (iii)
intertwine them with various perceptual inputs. Inspired by insights from hu-
man motion analysis [3,14,16], we propose preliminary solutions that exploit
Riemannian geometry for the design of meaningful synergies which account for
the structural and inertial properties of high-DoF robots. We then describe our
envisioned line of research, as well as the important challenges to be tackled.
Finally, we discuss how geodesic synergies have the potential to contribute to
the deployment of robots in our everyday life not only by reducing their en-
ergy requirements, but also by generating natural and interpretable motions of
humanoid and wearable robots, which adapt to perceptual inputs.

It is worth noticing that geometric methods have been successfully applied
to robotics from early on, e.g., for robot design [18], or for formulating robot
kinematics and dynamics models [23]. Additionally, Riemannian methods re-
cently gained interest in robot learning and control to handle data with partic-
ular geometries [12,13], capture relevant demonstration patterns [2], or combine
multiple simple policies [20]. These works exploit Riemannian geometry at data
level to learn or define task-specific policies, and thus are complementary to
the ideas presented hereafter. In contrast, this paper focuses on the potential
of human-inspired, physically-meaningful geometric representations of low-level
robot actions (i.e., joint coordinations), and their coupling to perception.
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2 Geodesic synergies: Basics and Proof of concept

In this section, we first briefly introduce the mathematical tools underlying the
notion and use of geodesic synergies. For in-depth introductions to Riemannian
geometry and geometry of mechanical systems, we refer the interested reader
to, e.g., [5,15], and to [4], respectively. We then provide examples of geodesic
synergies and preliminary solutions to use them for robot motion generation.

2.1 Riemannian geometry of mechanical systems

Riemannian manifolds The configuration space Q of a multi-linked mechani-
cal system can be viewed as a Riemannian manifold, a mathematical space which
inherently considers the characteristics of the system. A n-dimensional manifold
M is a topological space which is locally Euclidean. In other words, each point
in M has a neighborhood which is homeomorphic to an open subset of the n-
dimensional Euclidean space Rn. A tangent space TxM is associated to each
point x ∈ M and is formed by the differentials at x to all curves on M pass-
ing through x. The disjoint union of all tangent spaces TxM forms the tangent
bundle TM. A Riemannian manifold is a smooth manifold equipped with a Rie-
mannian metric, i.e., a smoothly-varying inner product acting on TM. Given a
choice of local coordinates, the Riemannian metric is represented as a symmetric
positive-definite matrix G(x), called a metric tensor, which depends smoothly
on x ∈ M. The Riemannian metric leads to local, nonlinear expressions of inner
products and thus of norms and angles. Specifically, the Riemannian inner prod-
uct between two velocity vectors u, v ∈ TxM is given as ⟨u,v⟩x = ⟨u,G(x)v⟩.
The configuration space manifold Points on the configuration space mani-
fold correspond to different joint configurations q ∈ Q. The manifold Q can be
endowed with the so-called kinetic-energy metric [4]. Specifically, the metric ten-
sor G(q) is equal to the mass-inertia matrix of the system at the configuration
q ∈ Q. In this sense, the mass-inertia matrix, i.e., the Riemannian metric, curves
the space so that the configuration manifold accounts for the nonlinear inertial
properties of the system. Figure 1a illustrates the effect of the Riemannian met-
ric, represented by ellipsoids G(q) at different joint configurations q ∈ Q, on
the configuration space of a 2-DoF planar robot. Intuitively, the kinetic energy
k = 1

2 ⟨q̇,G(q)q̇⟩ at q is high for velocities q̇ ∈ TqM following the ellipsoid major
axis, and low along the minor axis. This implies that, in the absence of external
force, trajectories of robot joints are not straight lines as in Euclidean space, but
instead follow geodesics, i.e., generalization of straight lines to manifolds.

Geodesics Similarly to straight lines in Euclidean space, geodesics are minimum-
energy and minimum-length, constant-velocity curves on Riemannian manifolds.
They solve the following system of second-order ordinary differential equations
(ODE), obtained by applying the Euler-Lagrange equations to the kinetic energy∑

j
gij(q)q̈j +

∑
jk

Γijkq̇j q̇k = 0, (1)

where
∑

jk Γijkq̇j q̇k = ci(q, q̇) represents the influence of Coriolis forces, gij de-

notes the (i, j)th entry of G, and Γijk = 1
2

(
∂gij
∂qk

+ ∂gik
∂qj

− ∂gjk
∂qi

)
are the Christoffel
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(a) Riemannian configuration space. (b) Geodesic motions. (c) Euclidean motions.

Fig. 1: Illustration of the Riemannian configuration space of a 2-DoFs planar robot. (a)
The Riemannian metric G(q) ( ), equal to the robot mass-inertia matrix, curves the
space. The energy is reflected by its volume ∝ det(G). Minimum-energy trajectories
between two joint configurations correspond to geodesics ( ), which differ from Eu-
clidean paths ( ). (b)-(c) Robot configurations along the trajectories depicted in (a).
The motions reflect the differences between geodesic and Euclidean paths (see 1, 3, 4).

symbols of the first kind. In other words, geodesic trajectories are obtained by
applying the joint acceleration q̈(t) solution of (1) at each configuration q(t)
with velocity q̇(t) along the trajectory. Note that (1) corresponds to the stan-
dard equation of motion G(q)q̈+C(q, q̇)q̇+τg(q) = τ in the absence of gravity
(τg(q) = 0) and external forces (τ = 0). Thus, a geodesic corresponds to a pas-
sive trajectory of the system. Geodesic trajectories of a 2-DoF planar robot are
displayed in Figure 1. As geodesics naturally result in coherent co-activations of
joints, they can straightforwardly be used to define synergies, as explained next.

2.2 Robot motion generation with geodesic synergies

As previously mentioned, geodesics are the solution to the system of ODEs (1)
and are therefore completely determined by their initial conditions. In other
words, one simply needs to define the initial joint configuration q(0) ∈ Q and
velocity q̇(0) ∈ Tq(0)Q and solve the corresponding initial value problem (1) to
obtain a minimum-energy trajectory in the robot configuration manifold. The
resulting joint coordination is called a geodesic synergy [16].

Similarly to motion synthesis with classical synergies, novel behaviors can
be obtained by combining several known geodesic synergies. However, their Rie-
mannian nature must be taken into account, so that the combinations still re-
sult in meaningful, minimum-energy joint trajectories. Let us first consider two
geodesic synergies with the same initial position q0 and different initial velocities

q̇
(1)
0 , q̇

(2)
0 ∈ Tq0Q. In this case, novel motions can be obtained by solving (1) with

the initial velocity defined as a weighted sum of the velocities of the individual
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(a) 1st geodesic synergy (b) 2nd geodesic synergy (c) w1 = 1.2, w2 = 0.7

(d) w1 = 1.2, w2 = −0.5 (e) w1 = −0.5, w2 = 1.0 (f) w1 = −0.5, w2 = −0.5

Fig. 2: Illustrations of geodesic synergies for the right arm of the humanoid robot
ARMAR-6 [1]. (a)-(b) Arm motion (from transparent to opaque) and hand trajectory
( , ) resulting from individual synergies. (c)-(f) Arm motion and hand trajectory
( ) obtained from different combinations of the two geodesic synergies (a) and (b).

synergies, i.e., q̇0 = w1q̇
(1)
0 +w2q̇

(2)
0 . However, geodesic synergies may not share a

common initial position and it may be desirable that the robot starts its motion
at a different initial configuration. In these cases, an additional step must be
taken before summing the initial velocities. Indeed, as explained in Section 2.1,
in Riemannian geometry, each velocity vector q̇ ∈ TqQ is linked to a specific
position q as it lies on its tangent space TqQ. Therefore, in order to be com-

bined, the velocities q̇
(1)
0 ∈ T

q
(1)
0

Q, q̇
(2)
0 ∈ T

q
(2)
0

Q must first be transported onto

the tangent space of the initial configuration q0. This is achieved via parallel
transport, a well-known operation in Riemannian geometry. Figure 2 presents a
proof of concept illustrating the generation of novel motions (Fig. 2c- 2f) via the
combination of two geodesic synergies (Fig. 2a- 2b). It is important to notice
that combinations of geodesic synergies are themselves geodesics. Moreover, the
presented approach applies to any number of synergies. In particular, combina-
tions of N geodesic synergies with metric-orthogonal initial velocities (i.e., whose
Riemannian inner product is 0) can generate any motion of a N -DoFs robot. A
video of the geodesic synergies of Figure 2 including comparisons with traditional
PCA-based linear synergies is available at https://youtu.be/XblzcKRRITE.

3 Vision and Challenges

As illustrated previously, geodesic synergies offer a compelling solution to gen-
erate energy-efficient, well-coordinated robot motions. Indeed, they inherit the
benefits of the classical synergies, as a wide range of motions can simply be gen-
erated by combining few well-selected synergies. Moreover, they are specifically
designed to account for the nonlinearities arising from the intrinsic dynamics

https://youtu.be/XblzcKRRITE
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of robotics systems. In this sense, geodesic synergies are physically meaningful,
interpretable, and contribute to the explainability of the generated robot behav-
ior. This contrasts with the PCA-based Euclidean synergies commonly used in
robotics. Moreover, geodesic synergies directly encode dynamic robot motions, as
opposed to postural and kinematic synergies, which disregard the robot dynam-
ics. Furthermore, geodesic synergies result in trajectories with minimum-energy
demand for the robot. This becomes especially relevant for energy-constrained
systems such as robotic prosthesis, exoskeletons, humanoid robots, and mobile
robots in general. Finally, according to the recent studies [3,16,14] covered in Sec-
tion 1, robot motions produced by geodesic synergies follow the same principle
as in human motion planning. Therefore, they may lead to more natural motions
of wearable robots that comply with human motion generation mechanisms and
thus may improve their assistive abilities. However, as discussed next, several
challenges are yet to be tackled for leveraging geodesic synergies in robotics.

Selection of geodesic synergies Among the first challenges to solve for a
successful application to robot motion generation is the extraction and selec-
tion of relevant geodesic synergies. To do so, we envision two different ap-
proaches. First, geodesic synergies may be learned from humans. Namely, we
contend that geodesic synergies may be extracted from human motions using
Riemannian dimensionality reduction methods such as principal geodesic anal-
ysis (PGA) [8,24], the Riemannian equivalent of PCA. Similarly to PCA-based
approaches [9,10,11,22], geodesic synergies may be given by the first n princi-
pal geodesics accounting for a given proportion of the information contained
in the motion. Notice that such an analysis may also offer novel perspectives
on understanding the mechanisms of human motion generation. An important
challenge would then be to transfer these biological geodesic synergies to robots,
while accounting for the differences between the human and the robot configu-
ration manifold. Although this may be relatively straightforward for robots with
anthropomorphic design, this generally remains an open problem. A second ap-
proach to extract synergies would be to directly design them for the robot at
hand. This may be achieved, e.g., by defining a orthonormal basis in the robot
configuration manifold and select the most relevant directions (under some cri-
teria) as geodesic synergies for the robot’s movements.

Interacting with the environment Another challenge to be tackled in the
context of geodesic synergies is to handle external influences arising from inter-
actions with the environment or external perturbations. This is important as
robot motions should not only remain optimal under all circumstances, but also
be reliably safe for the user. We hypothesize that two research directions may be
followed and coupled to tackle this challenge. First, the motion of the robot may
be adapted to external conditions by artificially shaping the Riemannian metric,
and which adapt the the geodesic synergies accordingly. To do so, we may take
inspiration from methods developed around Riemannian motion policies [6,20].
This first approach may typically be used for the robot to cope with an addi-
tional load, e.g., an manipulated object. Second, we advocate for the design of
Riemannian optimal controllers based on geodesic synergies, which would allow
the robot to react appropriately to external events.
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Geodesic synergies for action-perception couplings To achieve motions
adapted to a wide variety of tasks, the activation of synergies should be designed
according to the current task and environment state. In other words, synergies,
i.e., low-level robot actions, should be coupled to the perception. We hypoth-
esize that geodesic synergies may be key components of novel, interpretable
perception-action couplings in technical cognitive systems thanks to their Rie-
mannian nature. Namely, taking inspiration from neurosciences [17,19], we sug-
gest that robot perception spaces may be understood as geometric spaces and
eventually endowed with Riemannian metrics, thus being identified as Rieman-
nian manifolds. Through the lens of Riemannian geometry, perception inputs
may then be intertwined with geodesic synergies via geometric mappings be-
tween their respective manifolds. Although important challenges such as the
design of Riemannian perception spaces, and learning of mappings between the
perception manifold and the configuration space manifold awaits along the way,
we believe that introducing such geometric representations in robot perception-
action loops may pave the way towards the generation of efficient and explainable
robot motions. This may complement and improve upon recent end-to-end deep
learning methods lacking explainability and adaptability.

Overall, we believe that Riemannian geometry may be the theory reconciling
perception and action systems for robust robot motion generation. Viewing the
robot action and perception spaces through the lens of geometry may lead to
a unified Riemannian framework for robot motion learning, control, and adap-
tation. Such a framework would allow robots to seamlessly associate perception
inputs with compatible and adaptable minimum-energy joint coordinations. We
believe that this is key to provide robots with robust motion generation mecha-
nisms that build on innovative and explainable perception-action loops. In this
sense, Riemannian geometry may prove to be a game changer for deploying
robots in our everyday life, as it was for Einstein’s theory of general relativity.
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