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Abstract— Humanoid robots that have to operate in cluttered
and unstructured environments, such as man-made and natural
disaster scenarios, require sophisticated sensorimotor capabili-
ties. A crucial prerequisite for the successful execution of whole-
body locomotion and manipulation tasks in such environments
is the perception of the environment and the extraction of
associated environmental affordances, i.e. the action possibilities
of the robot in the environment, in order to generate whole-
body locomotion and manipulation actions. We believe that such
a coupling between perception and action could be a key to
substantially increase the flexibility of humanoid robots.

In this paper, we present an approach for the generation
of whole-body locomotion and manipulation actions based on
the affordances associated with environmental elements in the
scene which are extracted via multimodal exploration. Based
on the properties of detected environmental primitives and the
estimated empty space in the scene, we propose methods to gen-
erate hypotheses for feasible whole-body actions while taking
into account additional task constraints such as manipulability
and balance. We combine visual and inertial sensing modalities
by means of a novel depth model for generating segmented
and categorized geometric primitives. A rule-based system is
then incorporated to assign affordance hypotheses to these
primitives. Finally, precomputed whole-body manipulability
and stability maps are used for filtering affordances that are out
of reach and for identifying the most promising locations for the
action execution. We tested the developed methods in different
scenes, unknown to the robot, demonstrating how reasonable
the generated affordance hypotheses are.

I. INTRODUCTION

One of the most fundamental questions in robotics re-
search is how to enable robots to autonomously interact
with unknown environments. This problem has been partially
addressed by numerous works that try to bridge the gap
between low-level control and high-level abstract reasoning
(e.g. [1]–[4]). Most of these publications focus on ma-
nipulation tasks with single robotic arms or upper body
humanoids with mobile platforms. Bipedal humanoid robots
add more complexity to the problem, in terms of their
kinematic structure as well as in terms of the possible ways
of interacting with the environment. Particularly, constraints
on balance have to be satisfied, including the utilization of
the environment to enhance stability.

This paper presents a first step towards enabling hu-
manoids to interact with unknown environments. It is divided
into two parts that approach the two primary challenges of
this problem. First, that the environment is unknown and
therefore, we need to recognize shapes to interact with.
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Fig. 1: The proposed methods allow the identification of
affordance hypotheses from active vision and inertial sensor
data.

Second, we assume that a safe navigation in unstructured
environments requires the ability to use walls and other
objects for stabilization. The recognized shapes should there-
fore be used to increase the stability of the humanoid when
navigating through the scene.

For the first part, we improve state-of-the-art techniques to
fuse inertial and visual information to a depth model which
is then segmented and categorized into geometric primitives.

The second part of our approach relies on the idea that
the observed scene is only partially unknown due to the
known structures of human environments. In other words,
we can assume some prior knowledge on the scene to infer
affordance hypotheses based on shapes, sizes or orientations
of the detected primitives (see Fig. 1). For instance, we can
assume that vertical, large planes are probably walls that can
afford to lean on them.

The concept of affordances was first proposed by JJ.
Gibson [5] in the context of ecological psychology. Since
then, it has been applied to several fields of research, from
cognitive science and neuropsychology to human-computer
interaction and autonomous robotics. In the original psy-
chological context, the main idea behind the concept of
affordance was that perception is economical, i.e. instead of



modeling the whole world, only the relevant environmental
information is perceived.

In the context of autonomous robots, affordances have
been used to simplify complex tasks, such as grasp planning
[3]. Works like [6] show that grasp affordances have the
potential to completely avoid complex grasp planning, by as-
sociating unknown objects with known geometries for which
the robot has predefined grasps. Similarly, in [2] practical
and efficient solutions to grasp planning for unknown objects
based on affordances and potential fields are proposed. We
think that the research on whole-body motion with contacts
[7]–[9] can greatly benefit from the use of whole-body
affordances to break down the problem in separate parts that
can be organized by a high level reasoning process.

In this work, we define a whole-body affordance hypoth-
esis as an association of a whole-body stable action to a
perceived primitive of the environment. Based on previous
approaches like [2] and [10], we aim at deriving, refining
and utilizing whole-body affordances like holding, leaning,
stepping-on or supporting in unknown environments.

For representation and execution of whole-body actions,
we will rely on the concept of Object-Action Complexes
(OACs) [1]. The concept of OACs states that the execution
of an action is tightly related to the object that the action
involves. This viewpoint of objects and actions being coupled
is related to the concept of affordances. One could think of
affordances as preconditions for the instantiation of OACs.

To generate utilizable affordance hypotheses, we rely on
the extension of the manipulability maps introduced in [11]
and [12] to whole-body stability maps. Such maps are
discrete representations of the robot’s workspace. For each
end effector pose, the stability map contains the best possible
stability rating among the whole-body configurations that
realize the respective end effector pose. We use stability
maps for detecting affordances in reach and for computing
an initial guess for the point of application of an associated
action.

We have implemented both, vision and affordance gen-
eration methods and evaluated them in different unknown
scenarios involving small and big objects, stairs and walls.
Our preliminary results show that the implemented approach
allows us to associate realistic affordance hypotheses.

In the remainder of the paper, Section II describes the
incorporated techniques for detecting environmental primi-
tives and Section III explains how affordances are assigned
to these primitives and refined using reachability and stability
information. Section IV presents the output of the methods
when perceiving different exemplary environments. Finally,
Section V discusses the results and outlines our ideas for
future work.

II. ENVIRONMENTAL PERCEPTION

There are various sensing modalities involved in the
environmental perception for humanoid robots such as vi-
sual, vestibular, tactile, auditive, thermoception, etc. Due
to its versatility and unobstructive nature, as well as the
large amount of information it provides, the visual sensing

modality is fundamental for environmental state estimation.
Particularly in partly unknown, cluttered and disaster-like
scenarios, the environmental state estimation implies various
complex skills. In addition to localization and mapping,
these skills have to include environmental detection and
categorization of unknown elements. Due to its model-free
nature, the general environmental detection should solely
rely on surface extraction, characterization, segmentation
and classification. Such a robust and precise environmental
detection can provide the necessary perceptual information
for exploration and task planning, namely the generation and
selection of plausible physical interactions with unknown
surroundings. This generation process is based on the con-
cept of affordances (III-A), whereas the selection of the most
promising action is based on the robot stability maps (III-B).

A. Related Work

In the last decade, important contributions on visual si-
multaneous localization and mapping vSLAM for humanoid
robots have been achieved (see [13]–[15]). Despite of their
impressive capabilities in terms of reliability, large-scale
and real-time performance, these approaches lack of the
proper information required in multiple contact planning for
physical exploration of unknown objects. This occurs due to
the internal representations exploited in vSLAM methods.
Concretely, the sparse representations using visual and/or
spatial key features [14] do not provide piecewise continuous
geometric surfaces necessary for the estimation of stable
contacts (see Section III).

Recently, dense representations from active cameras have
been successfully exploited. Despite its scalability, the octree
representation with coarse voxel discretization [16] does not
support the proper extraction of geometric primitives. This
happens because within each voxel the continuity of the
surface is reduced to a point. This implies the loss of surfaces
boundaries while also making it impossible to determine the
curvature at each sensed point.

Furthermore, there are notable contributions on surface
reconstruction and segmentation from active sensors like
active cameras and lasers (see [17]). An essential limitation
of these methods is the assumption on high point density.
This is either explicitly stated when using lasers or implicitly
granted when using active cameras by placing the target
objects close enough (usually 0.5-2.5 m) so that the point
sparsity remains neglectable. These sparsity limitation are
even more restrictive when the robot’s vantage point cannot
be planned in advance, for example in disaster-like scenarios.

Another notable contribution in [18] provides volumetric
consistent results by fusing multiple views while tracking
the camera generating high quality implicit surface repre-
sentations. However, these methods have limited use for
autonomous environmental state estimation because the sur-
face acquisition requires various sparse vantage points, in
addition to high GPU computability. This is a cyclic problem,
because in order to place the robot’s camera in the next
convenient position (to generate the scene representation) a
path plan is needed to avoid collisions which also requires
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Fig. 2: Schematic representation of the pipeline for visual
extraction of environmental geometric primitives.

the environmental representation. An even more restrictive
property of the multiple view fusion approach is the internal
regular grid discretization which does not scale small rooms
(a maximal volume of 8 m3 according to [19]) to large spaces
such as corridors or large rooms. This limits its application
in disaster-like scenarios such as factories, hospitals, schools,
etc. Another restrictive property of the fusion method is the
need of sufficient surface geometry in order to lock down
all degrees of freedom of the internal ICP point-plane opti-
mization. This means, the application of this method is still
tailored to certain scenarios such as living rooms. Finally, the
resulting surface representation (an implicit surface) provides
advantages for visualization (surface mapping, ray tracing,
etc). However, this representation is not efficient for our
objectives, namely computing the intersections with spatial
functions such as the reachability and stability maps (see
Section III-B).

B. Environmental Element Detection

Fig. 2 illustrates the visual extraction pipeline of envi-
ronmental geometric primitives. The novel depth model is
described in detail including its application along the inter-
mediate stages necessary to obtain the categorized surface
segments. The information flow from both sensors (active
camera and IMU) is illustrated with continuous arrows while
the depth model inclusion is denoted by dashed arrows.
Depth Model: Temporal artifacts (vanishing outliers, depth
deviations, etc.) as well as the lower point density are critical

0 315 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 9,870
0

100

200

300

400

500

600

700

760

820
Indexing Function Λ(Ψ(x))

D
is

cr
et

e 
D

ep
th

 L
ay

er
 In

de
x

Z−Depth in mm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

269
Layer Range Function Γ(Ψ(x))

D
ep

th
 R

an
ge

 (i
n 

m
m

) 

Z−Depth (in mm)

Fig. 3: The proposed active camera depth model consist of
two functions: i) In the upper plot, the indexing function
(see Eq. 1) maps depths to discrete layer indices. Notice,
when using the active camera ASUS-Xtion Pro the total
amount of discrete layers is Lmax = 820, whereas the
clipping planes are located at N = 315.0 and F = 9, 870.0
mm. ii) In the lower plot, the layer range function (see
Eq. 2) expresses the depth subspace contained within each
pixel-wise iso-disparity surface. Notice, at the layer index
i = 290 at 605 mm the first layer with a range of Γ(290) =
2mm appears. These functions are obtained experimentally
and were validated against the geometric setup as in [20].
The importance of this results is the fact that the specific
quantization and deviations of the particular device play an
important role in the processing pipeline.

sensing limitations when extracting environmental surfaces
from active cameras in order to generate affordances.

The key idea to overcome both temporal outliers and point
sparsity lies directly within the nature of the discrete depth
image. This key idea is developed into the so-called depth
model which is formally described as follows. First, consider
the structure of the discrete depth image Ψ(x) 7→ [N,F ] ⊂
R+ where x ∈ N2 denotes a pixel location, meanwhile N ∈
R+ and F ∈ R+ stand for the near and far clipping planes. In
this image, the depth values are distributed according to the
scene content and the pixel-wise iso-disparity principle [20].
This principle implies that scene points are laying within
discrete layers with particular depths. Hence, it is possible
to propose a depth indexing bijective function as

Λ(Ψ(x)) 7→ i ∈ Φ := {0, 1, ..., Lmax} ⊂ N (1)

which maps the Z-depth of a point Ψ(x) to its corresponding
layer index i, see the upper plot in Fig. 3.

Furthermore, when considering the adjacent discrete depth
layers i and i±1, it is plausible to determine the depth range
contained in layer i as the subspace bounded by [i−1, i+1].
This is formally expressed by the layer range function Γ(i ∈
Φ) 7→ R+ (see the lower plot in Fig. 3.) as

Γ(i) := Λ−1(i+ 1)− Λ−1(i− 1). (2)



Now, based on these layer indices, it is possible to deter-
mine whether two points are adjacent Θ(xu, xv) 7→ {0, 1}
independently of their varying depths as

Θ(xu, xv) :=

{
1 if |Λ(Ψ(xv))− Λ(Ψ(xu))| ≤ 2

0 else
. (3)

A layer tolerance (in each direction) compensates oscilla-
tion for points located at the iso-disparity surface. Hence,
the depth model provides invariant functions to determine
various important properties: i) General and robust surface
continuity assertion for estimating normals and segmenting
oriented point clouds. ii) A depth adaptive band-width selec-
tion for various tasks including outlier removal, covariance
neighborhood computation and spatial weighting along the
visual extraction pipeline of environmental geometric prim-
itives (see schematic in Fig. 2).
Temporal Fusion: By capturing a set of n depth images
Ψt(x) within the time scope [t1, tn≈15 at 30 Hz] it is possible
to detect and remove both, vanishing outliers and depth
deviations outliers. This extends our previous method in [21]
to the case of depth sensing. Formally, each element in the
depth image Ψ(x) has a layer deviation ∆(x, t1, tn) 7→ N
along the temporal scope which can be expressed as

∆(x, t1, tn) := max [Λ(Ψt(x))]
n
t=1 −min [Λ(Ψt(x))]

n
t=1 .

(4)
Those image locations x whose layer deviation spawns a
subspace beyond two subsequent layers (∆(x, t1, tn) ≥ 3)
are rejected as depth outliers. This criterion also removes
the temporal outliers (flickering points) due to the definition
Λ(0) := −∞. Namely, when a depth measurement is not
available (point is occluded or the surface’s material does
not reflect the IR pattern) the depth value is set to zero. In
this manner, the temporal fusion removes unreliable points.
Fig. 2-a shows a scene where the proposed temporal fusion
successfully produces outlier-free point cloud in Fig. 2-b.
Normal Estimation: When using the temporal fused depth
image Ψ̂(x), it is possible to calculate its corresponding 3D
point xu ∈ R3 in a reliable manner. Moreover, for each 3D
point xu there is an associated normal vector Nu ∈ R3 with
respect to its local neighborhood. This can be approximated
based on the covariance matrix concept [17]. In addition, it
is possible to incorporate three additional restrictions: i) the
surface continuity (in terms of Eq. 3). ii) the neighborhood
band-width from Eq. 2, and iii) the Epanechnikov kernel
weighting (given ~δ(u, v) := xu − xv) as

Υ(xu, xv) :=

1−
[
|~δ(u,v)|
w(u)

]2
if |~δ(u, v)|/w(u) ≤ 1

0 else
,

which considers the distance between the points on the
surface using an adaptive bandwidth w(u) 7→ R as a
polynomial function of the layer range, namely

w(u) :=

3∑
j=0

ajΓ(Ψt(u))j . (5)

The whole weighting is expressed in the covariance matrix

C(xu) =
1

|A(u)|
∑

v∈A(u)

Θ(xu, xv)Υ(u, v, w)~δ(u, v)~δ(u, v)T,

(6)
where the neighborhood set

A(u) := {xv ∈ Ψ : |~δ(u, v)| < w(u)} (7)

consists of all the points within an adaptive distance ac-
cording to the layer depth. Fig. 2-c shows the curvature
and normal estimation with consistent results at surface
discontinuities. The color map indicates the curvature at each
point. Further, Fig. 2-d shows the dense estimated normals
at one surface corner from Fig. 2-a.
Surface Segmentation: The subsequent stages to obtain the
environmental primitives also profit from the depth model
as follows. The segmentation based on the region growing
method [22] verifies not only normal orientation Nu ·Nv ≤
cosα but also curvature (from the ratios of the eigenvalues of
C(xu)), surface continuity Θ(xu, xv) and adaptive distance
range |(~δ(u, v)| < w(u). This produces consistent surface
segments with homogeneous curvature and continuity, see
Fig. 2-e,f.
Surface Categorization: The categorization of surface seg-
ments integrates both the robot model dimensions and the
orientation information provided by the IMU (see Fig. 2) in
order to associate the lower planar surfaces as the floor of
the scenario. The remaining patches are categorized based
on their size and curvature distribution. So far, based on
[17] four categories have been outlined: planar, cylindrical,
spherical and free-from shapes. In the planar case, the αp
orientation threshold used during the segmentation can be
narrowed in order to obtain more robust planar segments.
Surface Regression: The surface regression is performed
using RANSAC fitting [23], see resulting planes in Fig. 1.
Empty Space: Once the environmental primitives have been
extracted, the representation of the whole reachable space
needs to be established. In contrast to [16], the proposed
dual-octree can also represent the empty space by the in-
clusion of the methods to infer information from the inner
nodes of the tree (see Fig. 4).

III. DERIVING AFFORDANCE HYPOTHESES

Based on the surfaces visually perceived using the methods
discussed in the previous section, this section proposes
strategies for suggesting affordance hypotheses. Our pre-
liminary experiments focus on affordances related to planar
surfaces, although there is no principle limitation to these.
Extension to curved surfaces, like cylindric or spherical ones,
or volumetric primitives is possible and initial experiments
have been conducted.

In the following, the proposed process of affordance sug-
gestion is explained. First, we pursue a rule-based assignment
of affordance hypotheses to environmental surfaces based
on parameters like extent or orientation. Then, precomputed
reachability information is used for limiting the amount of
found hypotheses to directly usable ones. In a final step



Fig. 4: The efficient empty space detection and representation
based on dual-octree. This scalable representation is used
in combination with the primitive detection to provide the
visual environmental state for the derivation of affordances.
Top: Dual-octree with empty space in cyan and occupancy
nodes in gray. Bottom: The point set.

Fig. 5: Visualization of an exemplary depth image. The scene
contains a table with several objects on it, a chair next to the
table and a wall behind the table.

we compute an initial estimation about where the assumed
hypotheses can optimally be applied with respect to the
robot’s stability.

A. Suggestion of Affordance Hypotheses

The methods for visual perception discussed in Section II
allow the detection and approximation of surfaces. Fig. 5
shows the depth image of an exemplary scene and the set of
primitives resulting from the perception process.

Affordance hypotheses are suggested by rules that incor-
porate parameters of the primitives like orientation or extent.
This approach eventually results in a set of rules that link
geometric primitives to affordance hypotheses, similar to
[24]. An exemplary set of such rules is given in Table I.
For example, a planar surface that is sufficiently large and
oriented horizontally, e.g. a table, suggests the affordance
support. A long curved surface of a certain radius, e.g.
a handrail, suggests the affordance hold. The last column
of Table I describes the preferred end-effector pose when

TABLE I: Example of a set of rules for affordance derivation.
See Fig. 6 for xeef, yeef and zeef. The operator ↑ tells
if two vectors point into the same direction1. The λi are
implementation-specific constants.

Affordance Surface Parameters Conditions EEF

Support Planar
Normal n n ↑ zworld

zeef ↑ n

Area a a ≥ λ1

Lean Planar
Normal n n ⊥ zworld

Area a a ≥ λ2

Grasp
Planar

Normal n
a ∈ [λ3, λ4]

Area a

Curved
Radius r r ∈ [λ5, λ6]

yeef ↑ d
Direction d ‖d‖ ≤ λ7

Hold Curved
Radius r r ∈ [λ8, λ9]

Direction d ‖d‖ ≥ λ10

Fig. 6: The TCP coordinate systems for the left hand (left)
and the left foot (right) of ARMAR-4.

utilizing the respective affordance, (see also Fig. 6). This
will be of interest in Section III-C.

Using the rules outlined in Table I, the system can identify
several affordance hypotheses in the exemplary scene (see
Fig. 7). In the next steps, the resulting hypotheses are
filtered according to their reachability and reasonable points
of application are chosen. Both steps base on stability maps.

B. Stability Maps

For investigating reachability of affordances, we incorpo-
rate a pre-computed representation of the robot’s workspace.
The workspace is represented by a 6D voxel grid Re that
contains quality values regarding the end effector e, relative
to its pose p ∈ SE(3), consisting of an translational com-
ponent tp ∈ R3 and a rotational component Rp ∈ SO(3):

Re(p) = Re(tp,Rp) ∈ [0, 1] (8)

Depending on the task, the stored values may cover
binary reachability information [12], [25] or more complex
information like the manipulability that the end effector can
achieve at the respective location [11]. In this work, we use
an extension of reachability maps called stability maps, that
contain static stability information for a bipedal humanoid
in whole-body reaching scenarios. Each voxel of a stability
map Se tells how stable the robot would be when achieving
the requested end effector pose p. Since quality information
for a redundant robot is stored, the workspace representation

1v ↑ w ↔ v·w
‖v‖·‖w‖ ≈ 1



Fig. 7: Bounding boxes of planar primitives derived from the
scene using the perception process (see Section II) together
with the derived affordances (see Table I). The depths of the
boxes indicate the derivation of the perceived points from
the fitted plane.

just gives an upper bound of the stability that can be achieved
for a given pose in workspace. In particular, the stability map
tells if the end effector pose in question is reachable at all.

The stability of a whole-body configuration c in this case
is expressed by the proximity of the projected center of mass
x′com(c) to the center xcenter(c) of the support polygon sc with
boundary ∂sc:

stability(c) =
min {‖x′com(c)− y‖ : y ∈ ∂sc}

min {‖xcenter(c)− y‖ : y ∈ ∂sc}
, (9)

with

x′com(c) =

[
1 0 0
0 1 0

]
· xcom(c). (10)

Stability maps keep the best achieved stability value
stability(c) for an end effector pose p, based on sampled
whole-body configurations c. Fig. 8 shows an exemplary
stability map, where the map was projected to three di-
mensions by computing the average stability rating of all
possible orientations, represented by a finite discretization2

Ω ⊂ SO(3):

value(x) =
1

|Ω|
∑
R∈Ω

Se(x,R). (11)

Stability maps, as well as reachability maps are generated
offline (see [11], [12]). Pose validation methods ensure that
all considered robot configurations respect constraints like
self-collisions or, as in this paper, static stability.

In this work we incorporate the two stability maps
SLeft Hand and SRight Foot which refer to the respective end

2In our experiemts we used discretizations of 6 cm (translational) and
0.75 rad (orientational).

Fig. 8: Cut through the whole-body stability map for the left
hand of the simulated robot ARMAR-4 [26]. The stability
rating depends on the distance of the projected center of mass
(blue box) to the center of the support polygon. Each entry
of the stability map is computed according to Eq. 11.

effector. Both maps contain the stability values for reachable
end effector poses. However, while in case of SLeft Hand, both
feet are set to fixed poses, the robot is only supported by
one single foot in case of SRight Foot.

Although the creation of stability maps has high compu-
tational costs, querying is efficient. This enables us to utilize
stability maps for filtering affordance hypotheses that the
robot can currently not reach.

C. Determining Reachable Hypotheses

The previous sections show that, based on depth mod-
els obtained from active cameras, a robot can identify
plenty of primitives pi in a scene and is able to as-
sign affordance hypotheses hi to these primitves: H =
{(p1, h1), · · · , (pk, hk)}. For planning purposes it is im-
portant to identify HR, the subset of hypotheses that are
directly reachable for the robot, either for utilization or for
verification.

For each affordance hi, Table I constraints the set of
possible end effector poses by fixing one axis of the end
effector’s local coordinate system (see Fig. 6). The resulting
constrained space of orientations will be denoted as Ω(pi,hi).
The geometric shapes of the primitives together with the
suitable end effector poses allow us to assign a stability value
to each point x ∈ ∂pi on the surface3 of the primitive pi:

stability(pi,hi)
(x) = max

{
Se(x,R) : R ∈ Ω(pi,hi)

}
. (12)

This value tells how stable it is for the robot to reach the
different points on the primitive’s surfaces while maintaining
the preferred end effector orientation.

D. Post-Processing Affordance Hypotheses

Based on the stability value defined in Eq. 12, two tactics
for hypothesis post-processing are conducted:

First, hypotheses for which the robot’s stability rating,
when reaching for them, lies below a threshold σ are

3In the examples presented in this work, primitives are surfaces, hence
∂pi = pi.



Fig. 9: Captured depth image of a staircase (left) and derived
reachable affordance hypotheses for the right foot (right).

filtered out as they are not directly utilizable for the robot.
This strategy allows us to create the set HR of reachable
affordance hypotheses:

HR =
{

(p, h) ∈ H : ∃x ∈ ∂p : stability(p,h)(x) > σ
}

(13)

Second, the point on a primitive’s surface that has the
highest stability rating is the point where the robot can utilize
the respective affordance in the most stable manner. This
point is regarded as an initial guess on where exactly to
perform an action that is suggested by an affordance:

hotspot(p, h) = argmax
x∈∂p

stability(p,h)(x). (14)

Fig. 1 depicts the result of the affordance assignment
process. It shows only those affordances whose stability
rating lies above a threshold σ. Furthermore, the affordance
labels are attached to the points with the highest stability
ratings.

IV. EXPERIMENTS

In the previous sections we proposed a method for assign-
ing affordance hypotheses to environmental primitives. This
section will show, how the method performs for different
exemplary scenes.

Fig. 9 shows the robot confronted with the depth image
of a staircase. As the resulting image on the right shows,
the principal elements of the staircase, i.e. the walls, the
stairs and the handrail, are properly seperated into different
primitives. In this example, SRight Foot was used for identify-
ing reachable affordance hypotheses. Therefore, hypotheses
that are not suitable to a foot, e.g. grasp, were ignored. The
results show that the affordances that are important for the
chosen end effector are found and properly assigned to the
steps reachable for the robot.

In another example, depicted in Fig. 10, the robot is
intended to walk through a tunnel. In this case, both maps,

Fig. 10: Extracted geometric primitives and reachable affor-
dance hypotheses for two available end effectors in a tunnel
scenario.

SLeft Hand and SRight Foot were incporated to let the methods
look for a promosing point for foot placement while also hav-
ing a hand contact for increased stability. Based on the depth
model from the active camera, the proposed methods are able
to successfully identify affordance hypotheses for a possible
foot placement as well as several leaning-affordances that
the robot can incorporate for stabilizing itself.

V. CONCLUSIONS AND FUTURE WORK

This paper presents our approach to the detection of
whole-body affordance hypotheses based on the fusion of
visual and inertial sensor information. In the first phase,
depth images are processed using the proposed depth model
in order to extract, segment and categorize surfaces based
on estimated curvature and normals. These surfaces are then
further processed into geometric primitives.

The second phase incorporates a predefined set of rules
that links symbolic affordances to properties of the extracted
primitives. This information is fused with the robot’s stability
map in order to determine reachable affordance hypotheses.
The stability map indicates how stable the robot would be if
the end effector would reach for a given pose.

The combination of both phases, i.e. the perception and the
affordance derivation, has been evaluated in three exemplary
scenes. This work can be regarded as a first step towards
affordance based locomotion and manipulation in unknown
environments. The results look promising as the derived
affordance hypotheses are valid and would be useful in the
exemplary situations.

In the next steps we will extend and evaluate Table I and
work on the generation of suitable whole-body configurations
based on a chosen set of pairs of end effectors and affor-
dances. We will also work on formalizing the robot’s task in
order to reduce the amounts of affordances to consider per
end effector. Another central aspect of our future work will
be the verification of affordance hypotheses by incorporating
the different sensor modalities of a humanoid robot. We
especially plan to use force-based exploration to estimate the



Fig. 11: The process of detection and exploration of whole-
body affordances: Based on sensory information from active
cameras or IMUs, the perceptual component produces an
abstract representation of the environment. The resulting
primitives are used for deriving affordance hypotheses as
well as the most promising points of their application. One
possible choice is then to trust a derived hypothesis, in
which case it directly results in an OAC instance that can be
executed. The other choice is to start an exploration process
to estimate the affordance’s reliability and the execution
parameters. In this case, exploration OACs are executed
and the sensed feedback again contributes to the affordance
assignment step.

reliability of an affordance as well as to determine the actual
execution parameters. The exploration step will be based
on the formalism of Object-Action Complexes introduced
in [1]. Fig. 11 depicts the pursued strategy for affordance
derivation and exploration and the execution of actions based
on perceived whole-body affordances.
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