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Abstract— We propose a formalism for the hierarchical
representation of affordances. Starting with a perceived model
of the environment consisting of geometric primitives like planes
or cylinders, we define a hierarchical system for affordance
extraction whose foundation are elementary power grasp af-
fordances. Higher-level affordances, e.g. bimanual affordances,
result from combining lower-level affordances with additional
properties concerning the underlying geometric primitives of
the scene. We model affordances as continuous certainty
functions taking into account properties of the environmental
elements and the perceiving robot’s embodiment. The developed
formalism is regarded as the basis for the description of
whole-body affordances, i.e. affordances associated with whole-
body actions. The proposed formalism was implemented and
experimentally evaluated in multiple scenarios based on RGB-D
camera data. The feasibility of the approach is demonstrated
on a real robotic platform.

I. INTRODUCTION

Humanoid robots are intended to operate in unstructured,
human-centered environments that are not specifically de-
signed for robot interaction. Robots that are exposed to such
environments need to employ flexible perceptual mechanisms
for identifying possible ways of interaction with the environ-
ment. Such interactions between the robot and environmental
objects include whole-body actions like i) stepping on and
over obstacles, ii) the manipulation of large objects or iii) the
utilization of environmental objects to support balance. With
this work we aim at creating the perceptual basis for the
detection of whole-body affordances in a loco-manipulation
context, i.e. affordances for actions that incorporate the
whole body for locomotion and/or manipulation purposes.

The psychological concept of affordances, originally intro-
duced by Gibson [1] as an approach to understand the human
perceptual process, states that agents perceive action possi-
bilities latent in the environment with respect to their own
action capabilities. Affordance-based approaches have been
widely applied in robotics, especially in the areas of grasping
and manipulation, human-robot interaction, and locomotion
and navigation. A comprehensive overview is found in [2].
Krüger et al. proposed the idea of coupling objects and
actions to combined representations of sensorimotor expe-
rience, termed Object-Action Complexes (OACs) [3]. The
affordance extraction process proposed in this work could
provide the perceptual preconditions for the instantiation of
OACs.
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Fig. 1: The humanoid robot ARMAR-III confronted with a
valve: It needs to identify environmental objects that afford
turning and subsequently determine suitable end-effector
poses for turning the chosen object. The perceived primitives
are visualized in blue on the left side. The extracted bimanual
turn affordance is shown in green including the proposed
end-effector poses.

Works like [4] indicate that many of the aspired whole-
body actions can be differentiated on the lowest level by
fundamental grasp affordances. The authors also show that
this is not generally true, e.g. in the case of sitting. However,
we think that the research on whole-body locomotion and
manipulation can greatly benefit from a deeper understanding
of the perception of actions that establish stabilizing contacts
by grasping. Hence, we propose a hierarchical approach
to affordance perception based on elementary power grasp
affordances.

Many of the teams participating in the DARPA Robotics
Challenge (DRC) Finals in 2015 pursued an affordance-
driven approach to manipulation that was supervised by
a human operator (e.g. [5], [6], [7]). In contrast to these
works based on object templates, we assume unknown en-
vironments. The methods proposed in this work could help
increasing the level of autonomy for tasks similar to the ones
from the DRC. Reducing the degree of human intervention
necessary to operate a humanoid robot in complex environ-
ments will be a valuable step towards the development of
fully autonomous humanoid robots. A survey on the degree
of autonomy used by the DRC teams can be found in [8].

In our previous works ([9], [10], [11]) we proposed a gen-
eral perceptual pipeline for the extraction of environmental
primitives like planes, cylinders and spheres from RGB-D
point clouds. In this work we extend our previous rule-
based approach for affordance extraction to a hierarchical



formalism based on a set of fundamental grasp affordances.
The affordance extraction pipeline is bootstrapped with a
part-based object segmentation method [12] that leads to
over-segmentation of the perceived scene. Part-based object
segmentation is intensively used in robotics and computer
vision for the task of affordance extraction, for instance, from
geometric features [13]. Our perceptional pipeline differs
from previous works, such as [14], [15], in employing
geometric features for categorizing scene segments as planes,
cylinders, or spheres in an iterative manner which leads to
dense primitive exploration.

The method proposed in this work eventually produces
a set of affordance certainty functions based on the set of
primitives detected in the perceived environment. Our goal
is to use this information as a basis for task planning (e.g.
[16], [17]), whole-body action planning with contacts (e.g.
[18], [19]) or whole-body contact-based control (e.g. [20]).

The remainder of this paper is structured as follows:
Section II defines fundamental unimanual grasp affordances
that form the basis of the hierarchical structure for affordance
extraction (Layer L0). Section III discusses the extension of
the set of fundamental grasp affordances towards higher-level
affordances of bimanual whole-body manipulation (Layers
L1-L4). Section IV discusses several examples for extracted
affordances based on captured RGB-D data. Finally, Sec-
tion V concludes the paper and discusses future work.

II. FUNDAMENTAL AFFORDANCES

The proposed hierarchical affordance formalism relies on a
set of fundamental grasp affordances. These affordances are
detected based on a simplified environmental representation
in terms of environmental primitives as introduced in our
previous work in [10] and [11]. An exemplary scene with
detected environmental primitives is depicted in Fig. 1. In
the following, we will further discuss the formalization of
environmental primitives and affordances used throughout
this paper.

A. Environmental Primitives

Let Π = {p1, . . . , pk} denote a set of environmental.
Each primitive pi provides information concerning its shape,
orientation and extent. This information will later be fed into
different layers of the affordance hierarchy.

1) Shape Functions: We define a set of shape functions
that determine the degree to which pi belongs to an asso-
ciated shape class. Possible shape functions, matching the
current capabilities of our perceptual pipeline, are:

planar(pi) ∈ [0, 1]

circular(pi) ∈ [0, 1]

spherical(pi) ∈ [0, 1]

cylindrical(pi) ∈ [0, 1]

(1)

The extension of the system to further shape classes is
possible and straightforward.

2) Distance Function: The distance function d(pi,x,v)
describes the extent of the primitive at the point x ∈ R3 in
direction v ∈ R3, ‖v‖ = 1 (see Fig. 2):

d(pi,x,v) = max
{
λ ∈ R+ : x± λ

2
v ∈ pi

}
(2)

Both, x and v relate to the primitive’s local coordinate frame.
For simplification, we will write dx(pi,x) := d(pi,x,1x)
and similarly for the other axes 1y and 1z .

Fig. 2: d(pi,x,v) describes the length of the longest possible
symmetric line, i.e. ‖x − x′‖ = ‖x − x′′‖ in the direction
of v that lies entirely inside pi, i.e. x′,x′′ ∈ pi. In this case:
d(pi,x,v) = ‖x′ − x′′‖.

3) Orientation Function: The orientation function up(pi)
describes the orientation of pi with respect to the global
up-vector u1. It computes the angle between the primitive’s
normal vector n(pi) and u:

up(pi) = arccos
(

n(pi) · u
‖n(pi)‖ · ‖u‖

)
∈ [0, π] (3)

B. Affordance Certainty Functions

An affordance as understood in our approach is a function
Θ defined over the Cartesian product of a space S of end-
effector poses and the set Π of environmental primitives:

Θa : Π× S → [0, 1] (4)

S defines the underlying representation of end-effector
poses relevant to the affordance. It will be chosen as S =
SE(3) for unimanual affordances and as S = SE(3) ×
SE(3) for bimanual affordances2. The certainty function
Θa(p, e) for an affordance a describes how certain the
perceptual system is about the existence of a for a given end-
effector pose e ∈ S. Mathematical operations can be applied
to combine certainty functions for different affordances in
order to construct joint certainties for higher-level affor-
dances. Subsequently, Θa can be used in order to propose
end-effector poses based on the existence certainty of the
corresponding affordance a.

C. Fundamental Grasp Affordances

The most fundamental affordance for whole-body loco-
manipulation is grasping, while grasping in this context is
understood as bringing an end-effector in contact with an
environmental primitive. Grasp taxonomies, e.g. [21], usually
differ between precision grasps and power grasps. Power

1In our implementation: u = 1z
2SE(3) denotes the special euclidean group. We refer to e ∈ SE(3)

as a homogeneous matrix e ∈ R4×4. The rotational and translational
components of e will be denoted as t(e) ∈ R3 and R(e) ∈ R3×3.



Fig. 3: The two grasp types considered throughout this work:
a prismatic grasp (left) and a platform grasp (right).

grasps are specifically important for establishing reliable
contacts with environmental objects.

Works like [22] and [23] show that humans indeed heavily
rely on power grasps when performing tasks of daily living.
According to these works the predominant power grasp types
are the prismatic grasp and the circular grasp. However, in
our application that is primarily focused on stabilization, we
believe that the prismatic grasp together with the platform
grasp (see Fig. 3) are suitable for implementing basic behav-
iors of whole-body loco-manipulation. Extension to further
power grasp types as well as to precision grasp types for
dexterous manipulation is possible and planned in our future
work.

The existence of grasp affordances in the environment
depends on the dimensions of environmental objects with
respect to the perceiving agent’s embodiment. Fig. 4 depicts
the end-effector parameters considered for the extraction of
grasp affordances. Table I lists possible values for these
parameters for the embodiments of an average human and
the humanoid robots ARMAR-III [24] and ARMAR-4 [25].

Fig. 4: The body-scaled parameters βL, βB and βS as foun-
dation for perceiving grasp affordances. The parameters refer
to Hand Length, Hand Breadth and Hand Span, respectively,
as defined in [26].

TABLE I: Comparison of body-scaled parameters for an
average human and the humanoid robots ARMAR-III and
ARMAR-4 in cm.

Parameter Sym. Human3 ARMAR-III ARMAR-4

Hand Length βL 19.71 17.0 16.0

Hand Breadth βB 8.97 10.0 6.5

Hand Span βS 12.42 13.0 10.0

Shoulder Length βSh 0.258H 40.0 40.0

The main building block of affordance certainty functions
are threshold-based decision functions applied to properties
of environmental primitives. In this work we employ a
sigmoid function as a continuous version of such a decision
function:

sigmλ,β(x) =
1

1 + e−λ(x−β)
∈ (0, 1) (5)

In Fig. 5 a visualization of sigmλ,β(x) and two of its
variations is shown.
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Fig. 5: The sigmoid functions sigmλ,β(x) (blue) and
sigm−λ,β(x) (red). The bottom plot displays a sigmoid-
based interval function sigmλ,β−ε(x) · sigm−λ,β+ε(x)
(green).

There are two predominant types of inputs to the sigmoid
function: translations t ∈ R in mm and rotations r ∈ [0, 2π)
in radians. The parameter λ of the sigmoid function can be
fixed with respect to the input type, resulting in two instances
of the decision function Γt and Γr4:

Γtβ(x) = sigmλt,β
(x)

Γrβ(x) = sigmλr,β
(x)

(6)

For the matter of simplicity we also define the comple-
ments Γ̄tβ and Γ̄rβ :

Γ̄tβ(x) = 1− Γtβ(x) = sigm−λt,β
(x)

Γ̄rβ(x) = 1− Γrβ(x) = sigm−λr,β
(x)

(7)

Finally, we define an interval function based on the above
sigmoids, which will be a common pattern in the affordances
developed later:

∆t
β,ε(x) = Γtβ−ε(x) · Γ̄tβ+ε(x)

∆r
β,ε(x) = Γrβ−ε(x) · Γ̄rβ+ε(x)

(8)

Now we can express the fundamental power grasp af-
fordances in terms of certainty functions Θ composed of
the defined sigmoid-based decision functions Γ, Γ̄ and ∆.
Note that Γ̄ and ∆ are essentially shortcuts for products of
differently parameterized Γ-functions.

3The hand measures for the human embodiment in Table I refer to the
hand of an average male adult [26]. The shoulder length is given relative
to the body height H as described in [27].

4In our implementation: λt = 1, λr = 20



1) Platform Grasp: For modeling platform grasp affor-
dances (G-Pl), we consider the body-scaled parameters for
the hand length βL and hand breadth βB (see Fig. 4 and
Table I):

ΘG-Pl(p, e) = ΓtβB
(dx(p, e)) · ΓtβL

(dy(p, e)) (9)

The above equation states that a platform grasp is appli-
cable to a primitive p at an end-effector pose e if p is large
enough to fit a bounding box of the end-effector’s dimensions
around e. The axes x and y refer to the local end-effector
coordinate systems as shown in Fig. 6.

Fig. 6: The assumed end-effector coordinate systems exem-
plary for a hand and a foot of ARMAR-4. The axis z points
into grasp direction (blue) and y points into the direction of
the longest end-effector extent (green).

2) Prismatic Grasp: For modeling prismatic grasp affor-
dances (G-Pr), we consider the body-scaled parameters for
the hand span βS and hand breadth βB (see Fig. 4 and
Table I):

ΘG-Pr(p, e) = ΓtβB
(dx(p, e)) · Γ̄tβS

(dy(p, e)) (10)

The above equation states that a prismatic grasp is ap-
plicable to a primitive p at an end-effector pose e if p is
large enough in x-direction to fit the hand breadth and small
enough in y-direction to fit into the open hand.

Note that the formalization of the fundamental grasp
affordances discussed in this section does not consider reach-
ability, stability or similar indices. Such information can be
included in selection strategies based on the set of extracted
affordances.

III. AFFORDANCE HIERARCHY

In this section we will define higher-level affordances
based on the previously discussed fundamental grasp af-
fordances ΘG-Pl and ΘG-Pr (L0-Affordances). Higher-level
affordances result from combining lower-level affordances
with additional environmental properties or from combining
multiple lower-level affordances. In the following we will
discuss higher-level unimanual and bimanual affordances.

A. Unimanual Affordances (L1)

The fundamental unimanual grasp affordances ΘG-Pl and
ΘG-Pr can be combined with additional environmental prop-
erties to form higher-level unimanual affordances. For ex-
ample, the unimanual affordances lean (Ln) and support

Fig. 7: Properties of the environmental primitive p pass
sigmoid decision functions. The results are multiplied in
order to form certainties for fundamental affordances, in
this case for a platform grasp affordance. Affordance cer-
tainty functions can participate in forming certainties for
more abstract affordances. The colors refer to environmen-
tal primitives (purple), their properties (blue), mathematical
operations (green) and affordance certainties (orange).

(Sp) result from the certainty function for a platform grasp
affordance in combination with the degree of horizontality
of the underlying primitive p:

ΘLn(p, e) = ΘG-Pl(p, e) ·∆r
π,ε(up(p)) (11)

ΘSp(p, e) = ΘG-Pl(p, e) ·∆r
0,ε(up(p)) (12)

Fig. 7 shows a visualization of the computational process
behind the certainty function ΘLn. The unimanual affor-
dances discussed in this section appear in the second layer
(L1) of the affordance hierarchy. Table II defines further
higher-level unimanual affordances.

B. Bimanual Affordances (L2-L4)

The extraction of bimanual affordances based on their
unimanual counterparts is one of the major contributions
of the hierarchical affordance framework. Note that for
bimanual affordances the underlying space S of end-effector
poses changes from SE(3) to SE(3) × SE(3) to account
for the availability of two end-effectors. The new end-effector
pose space S allows further environmental properties to be
considered in the affordance extraction process, properties
that put the two end-effector poses into relation:

1) Distance: The distance d(e1, e2) between the two end-
effector poses e1 and e2:

d(e1, e2) = ‖t(e1)− t(e2)‖ ∈ R+ (13)

2) Angle: The angle α(e1, e2) between the two end-
effector poses e1 and e2, assuming the grasp direction
R(e∗) · 1y is the same:

α(e1, e2) = arccos
((
R(e1) · 1x

)
·
(
R(e2) · 1x)

))
(14)

3) Relative Orientation: The relative orientation
up(e1, e2) of the two end-effector poses e1 and e2 with
respect to the global up-vector u (see Eq. 3).

up(e1, e2) = arccos
(

(t(e1)− t(e2)) · u
‖(t(e1)− t(e2))‖

)
(15)

The elementary bimanual grasp types Bi-G-Pl and Bi-G-
Pr can be defined by evaluating the individual unimanual



Fig. 8: Bimanual affordance certainty functions ΘBi-* are
combinations of the underlying unimanual affordance cer-
tainty functions evaluated at the respective end-effector poses
e1 and e2. Additional properties can be taken into consider-
ation that put e1 and e2 into relation, in this case d(e1, e2)
for their distance.

affordance certainty functions. In addition, we impose con-
straints on the grasp distance which is constrained by the
hand length βL to the lower end and by the shoulder distance
βSh to the upper end, e.g.:

ΘBi-G-Pl(p, e1, e2) = ΘG-Pl(p, e1) ·ΘG-Pl(p, e2)

· ΓtβL
(d(e1, e2)) · Γ̄tβSh

(d(e1, e2))
(16)

Based on these fundamental bimanual grasping affor-
dances (layer L2 in Table II), we differentiate affordances for
four further bimanual grasp types that are directly usable for
executing high-level bimanual skills. These bimanual grasp
types are differed by considering the underlying unimanual
grasp type (as in Eq. 16) as well as the mutual orientation
α of the end-effector grasp poses. We define an aligned type
(α = 0) and an opposing type (α = π) of each of the
bimanual grasp types defined above, e.g.:

ΘBi-G-Pl-Al(p, e1, e2) = ΘBi-G-Pl(p, e1, e2)

·∆r
0,ε(up(e1, e2))

·∆r
0,ε(α(e1, e2))

(17)

The remaining three bimanual grasp types can be found
in Table II (layer L3). As an example for a higher-level bi-
manual affordance, we define a bimanual support affordance
(Bi-Sp) in a similar way as Sp, just replacing the underlying
grasp affordance (see Fig. 8):

ΘBi-Sp(p, e) = ΘBi-G-Pl(p, e1, e2) ·∆r
0,ε(up(p)) (18)

Table II and Fig. 9 show the full affordance hierarchy as
defined in this work. This hierarchy is not to be understood
as complete, it’s more an incrementally growing hierarchy
for the affordance exploration process in our experimental
setups.

IV. EXPERIMENTAL EVALUATION

For making the process of affordance extraction computa-
tionally tractable, we pursue a sampling-based approach. We
reduce the space S to the set of poses that lie on the boundary
of at least one of the available primitives. For example, in
the case of S = SE(3):

Sred =
{
e ∈ SE(3) : ∃p ∈ Π, e ∈ ∂p

}
(19)

Fig. 9: The hierarchical structure induced by the affordance
definitions from Table II. Layers that contain unimanual
affordances are drawn in blue while layers with bimanual
affordances are drawn in red.

while ∂p denotes the boundary of the primitive p. This
reduction works in a similar way if S = SE(3) × SE(3).
We now define all certainty functions Θ∗ to evaluate to zero
for inputs e /∈ Sred. The rationale behind this is that all
affordances defined in Table II are based on fundamental
grasp affordances, i.e. they all require the end-effectors to be
in contact with one of the available primitives. By definition
of the fundamental grasp affordances, suitable contact with
a primitive p only occurs if e ∈ ∂p. This reduced space
Sred can efficiently be sampled using spatial and orientational
discretization step sizes ∆x and ∆ϕ.5

In the following we will evaluate our approach to affor-
dance extraction based on three exemplary scenes from the
area of whole-body loco-manipulation. One of these exam-
ples, the turning of an industrial valve, has been implemented
and executed on a real robotic platform.6

A. Example I: Staircase

Fig. 10 visualizes the affordance certainty functions ΘG-Pl
and ΘG-Pr computed for a perceived staircase. The example
demonstrates the capability of the perceptual pipeline to
generate a reasonable segmentation of the scene into en-
vironmental primitives as well as the successful extraction
of certainty functions for various affordances. It also shows
that the formalization of the proposed affordance hierarchy
can, to some degree, handle perceptual inaccuracies, e.g.
it properly assigns high certainties for prismatic grasps
along the whole handrail although the perceptual process

5Throughout this work, we used discretization step sizes of ∆x = 3 cm
and ∆ϕ = π

2
rad

6All three experiments have been performed using the embodiment of
ARMAR-III (see Table I).



TABLE II: Affordance Hierarchy

Label Certainty Function Expression Θ*(p, e) or Θ*(p, e1, e2) Description
L

0 G-Pl ΘG-Pl(e) ΓtβB
(dx(p, e)) · ΓtβL (dy(p, e)) Platform grasp

G-Pr ΘG-Pr(e) ΓtβB
(dx(p, e)) · Γ̄tβS (dy(p, e)) Prismatic grasp

L
1

G ΘG(e) max{ΘG-Pl(p, e),ΘG-Pr(p, e)} Grasp (platform or prismatic)

Sp ΘSp(e) ΘG-Pl(p, e) ·∆r
0,ε(up(p)) Support

Ln ΘLn(e) ΘG-Pl(p, e) ·∆r
π,ε(up(p)) Lean

Hd ΘHd(e) ΘG-Pr(p, e) · Γtλ1
(dx(p, e)) Hold

Lf ΘLf(e) ΘG-Pr(p, e) · Γ̄tλ2
(dx(p, e)) · Γ̄tλ3

(dz(p, e)) Lift

Ps ΘPs(e) ΘG-Pl(p, e) · Γ̄tλ4
(dx(p, e)) · Γ̄tλ5

(dy(p, e)) Push

Tn ΘTn(e) ΘG-Pr(p, e) · circular(p) Turn

L
2 Bi-G-Pl ΘBi-G-Pl(e1, e2) ΘG-Pl(p, e1) ·ΘG-Pl(p, e2) · ΓtβL

(d(e1, e2)) · Γ̄tβSh
(d(e1, e2)) Bimanual platform grasp

Bi-G-Pr ΘBi-G-Pr(e1, e2) ΘG-Pr(p, e1) ·ΘG-Pr(p, e2) · ΓtβL
(d(e1, e2)) · Γ̄tβSh

(d(e1, e2)) Bimanual prismatic grasp

L
3

Bi-G ΘBi-G(e1, e2) max{ΘBi-G-Pl(e1, e2),ΘBi-G-Pr(e1, e2)} Bimanual grasp (platform or prism.)

Bi-G-Al-Pl ΘBi-G-Al-Pl(e1, e2) ΘBi-G-Pl(p, e1, e2) ·∆r
0,ε(up(e1, e2)) ·∆r

0,ε(α(e1, e2)) Bimanual aligned platform grasp

Bi-G-Al-Pr ΘBi-G-Al-Pr(e1, e2) ΘBi-G-Pr(p, e1, e2) ·∆r
0,ε(up(e1, e2)) ·∆r

0,ε(α(e1, e2)) Bimanual aligned prismatic grasp

Bi-G-Op-Pl ΘBi-G-Op-Pl(e1, e2) ΘBi-G-Pl(p, e1, e2) ·∆r
0,ε(up(e1, e2)) ·∆r

π,ε(α(e1, e2)) Bimanual opposed platform grasp

Bi-G-Op-Pr ΘBi-G-Op-Pr(e1, e2) ΘBi-G-Pr(p, e1, e2) ·∆r
0,ε(up(e1, e2)) ·∆r

π,ε(α(e1, e2)) Bimanual opposed prismatic grasp

Bi-Sp ΘBi-Sp(e1, e2) ΘBi-G-Pl(p, e1, e2) ·∆r
0,ε(up(p)) Bimanual support

Bi-Ln ΘBi-Ln(e1, e2) ΘBi-G-Pl(p, e1, e2) ·∆r
π,ε(up(p)) Bimanual lean

L
4

Bi-Hd ΘBi-Hd(e1, e2) ΘBi-G-Al-Pr(p, e1, e2) ·ΘHd(e1) ·ΘHd(e2) Bimanual hold

Bi-Lf ΘBi-Lf(e1, e2) ΘBi-G-Al-Pr(p, e1, e2) ·ΘLf(e1) ·ΘLf(e2) Bimanual lift

Bi-Ps ΘBi-Ps(e1, e2) ΘBi-G-Al-Pl(p, e1, e2) ·ΘPs(e1) ·ΘPs(e2) Bimanual push

Bi-Tn ΘBi-Tn(e1, e2) ΘBi-G-Op-Pr(p, e1, e2) · circular(p) Bimanual turn

ε = π
8

, λ1, . . . , λ5 implementation-specific constants. For example, λ2 and λ3 characterize the maximum dimensions liftable objects.

segmented the handrail into several primitives of different
types.

B. Example II: Ladder

Fig. 11 shows the affordance certainty functions ΘG-Pr,
ΘSp and ΘBi-G-Op-Pr computed for a perceived ladder. Bi-
manual certainty functions are visualized by connecting the
respective end-effector poses with a line colored according
to the certainty value. For clarity we applied a certainty
threshold of 0.7 in the visualization, reducing the amount
of bimanual configurations displayed.

The resulting certainty functions ΘBi-G-Op-Pr and ΘSp pro-
vide initial information for planning a bimanual trajectory
for climbing the ladder. In this case a footstep would be
regarded as a platform grasp. Note that further information,
e.g. concerning reachability and stability, is required for
actual trajectory planning.

C. Example III: Valve

In our last example, we confronted the system with a
DRC-inspired scenario: Turning an industrial valve (see
Fig. 12). In order to demonstrate the feasibility of our
perceptual pipeline and the usefulness of the resulting hints
for action execution, we tested this example on the humanoid
robot ARMAR-III.

The perceptual pipeline successfully identifies two pre-
dominant primitives in the scene: The valve and the wall

(see Fig. 12a). Both of these primitives are planar, the valve
however receives a high circularity score (circular(p) ≈ 1).
In this particular example we focus on the bimanual turn
affordance (Bi-Tn, see Fig. 12b). The system successfully
identifies end-effector poses for bimanual turning based on
bimanual prismatic grasping with opposing end-effectors
(Bi-G-Op-Pr). In the next step, we choose the most certain
affordance among the available affordances (see Fig. 12c).
Note that one of the criteria involved in ΘBi-Tn a horizontal
relative orientation of the two end-effector poses. This is why
the end-effector poses shown in Fig. 12c are chosen over
the alternatives depicted in Fig. 12b. The end-effector poses
that correspond to the chosen affordance used to execute a
predefined skill for valve turning (see Fig. 12d). A recording
of this experiment is presented as video attachment enclosed
with this publication. The video is not accelerated.

V. CONCLUSION

We presented an hierarchical approach to the extraction
of whole-body affordances, representing these affordances
in terms of continuous certainty functions. Higher-level
affordances result from combining certainties for lower-
level affordances with additional environmental properties.
The system produces valuable hints for action execution,
e.g. possible end-effector poses, that can be used as an
input for various planning components. The effectiveness
of these hints was evaluated in multiple experiments based
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Fig. 10: Visualizations of different affordance certainty func-
tions applied to a perceived staircase (a). Figure (b) displays
the primitives extracted from the point cloud. Figures (c)
and (d) visualize the affordance certainty functions ΘG-Pl
and ΘG-Pr, respectively. Figure (e) displays the visualization
of a certainty function Θ in greater detail. Each sampled
end-effector pose appears as a line colored from green (high
certainty) to red (low certainty). Very low certainties (Θ ≈ 0)
are omitted. The end-effector pose space for the visualized
unimanual affordances is S = SE(3)

on captured point cloud data. One of these examples was
implemented on a real robot platform demonstrating the
feasibility of the complete approach.

A. Future Work

Currently, our affordance hierarchy is based on two grasp
types that we consider predominant in actions of whole-
body loco-manipulation: the platform grasp and the prismatic
grasp. However, established grasp taxonomies define further
types of power grasps that will be integrated into our
framework in order to gain higher flexibility in affordance
definition as well as in the produced hints for action execu-
tion. The system is capable of including additional sources
of affordance certainties. These certainties can come from
a human operator, autonomous exploration and validation
or higher-level reasoning. Our future work will address the

(a) (b)

(c) (d)

Fig. 11: Visualizations of different affordance certainty func-
tions applied to a perceived ladder (a). The affordances
shown are (b) ΘG-Pr and (c) ΘSp and (d) ΘBi-G-Op-Pr. The end-
effector pose space for the visualized unimanual affordances
is S = SE(3) and for the bimanual affordance S = SE(3)×
SE(3).

question of introducing such additional certainty functions
into the affordance extraction process. Another extension
to the existing method is the (partly) automatic acquisition
of the affordance certainty functions, which are currently
manually defined (see Table II).
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Afford or Not to Afford: A New Formalization of Affordances Toward
Affordance-Based Robot Control,” Adaptive Behavior, vol. 15, no. 4,
p. 447, 2007.
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