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Abstract. The perception of affordances in unknown environments is an
essential prerequisite for autonomous humanoid robots. In our previous
work we developed a perceptual pipeline for the extraction of affordances
for loco-manipulation actions based on a simplified representation of the
environment starting from RGB-D camera images. The feasibility of this
approach has been demonstrated in various examples in simulation as
well as on real robotic platforms. The overall goal of the perceptual
pipeline is to provide a robust and reliable perceptual mechanism for
affordance-based action execution.
In this work we evaluate the performance of the perceptual pipeline in
combination with sensor systems other than RGB-D cameras, in order to
utilize redundant sensor equipment of humanoid robots. This is particu-
larly important when considering challenging scenarios where particular
sensors are not applicable, e.g. due to intense sunlight or reflective sur-
faces. In this work we focus on stereo cameras and LIDAR laser scanners.
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1 Introduction

One of the main motivations behind the development of humanoid robots is
the idea of creating a robotic system that is able to autonomously operate in
unstructured, human-centered environments. Such robots require a rich percep-
tual basis for identifying possible ways of interaction with the environment. The
theory of affordances, originally proposed by Gibson [1], provides a conceptual
mechanism for explaining the human perceptual process. It states that action
possibilities are proposed to an agent, for example a human or a humanoid robot,
based on properties of relevant environmental objects and based on the agent’s
capabilities. A chair for example affords sitting, but only to agents of sufficient
height and capability. Overviews over applications of affordances in robotics can
be found in [2] and [3].
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Many of the teams participating in the DARPA Robotics Challenge (DRC)
Finals in 2015 pursued an affordance-driven approach to whole-body locomotion
and manipulation. The perceptual process as well as the execution of actions
were controlled by human operators via teleoperation in supervised autonomy.
Examples for such pilot interfaces can be found in [4,5,6]. The teams partic-
ipating in the DRC mostly used a combination of LIDAR sensors and stereo
vision for range sensing. Promising results have also been generated solely using
stereo camera systems [13]. LIDAR sensors are precise, but expensive time-of-
flight laser scanners. Point clouds are obtained by aggregating line scans of the
rotating sensor over time. Stereo camera systems are cheap, passive range sen-
sors based on the identification of point correspondences in two camera images.
Stereo camera systems are known to perform poorly with untextured objects.

While affordances found many applications in the field of robotics, we specif-
ically aim at the concept of whole-body affordances, i.e. affordances that refer
to actions of whole-body locomotion or manipulation. This includes actions for
whole-body stabilization, e.g. leaning against walls or holding handrails, or large-
scale manipulation, e.g. pushing or lifting of large objects. Actions of whole-body
locomotion and manipulation play an important role for the utilization of struc-
tures designed for the human body. In the next section we describe our previously
proposed hierarchical formulation of affordances based on fundamental grasp af-
fordances, which we regard as initial work towards the formulation of whole-body
affordances.

2 Technical Approach

The perceptual process employed in this work starts with creating a simpli-
fied representation of the captured scene. The acquired point clouds pass several
pipeline steps until the scene is represented in terms of environmental primitives,
i.e. planes, cylinders or spheres. In the first step we perform a part-based object
segmentation method [7] which over-segments the scene in order to roughly sep-
arate groups of environmental primitives. We further employ geometric features
for iteratively categorizing the resulting segments into environmental primitives.
Fig. 1 shows the structure of the perceptual pipeline from depth sensor informa-
tion to the extraction of affordances. Fig. 2 visualizes the intermediate steps of
the perceptual pipeline.

In [12] we proposed a hierarchical framework for the extraction of loco-mani-
pulation affordances based on a scene represented with environmental primitives.
The framework follows the idea that the majority of loco-manipulation actions
break down to elementary power grasps at the lowest level. We particularly focus
on platform grasps and prismatic grasps as we think that these two grasp types
are predominant for the considered set of actions. However, the framework is
not limited to these two elementary affordances. Affordances are represented as
continuous certainty functions

Θa : SE(3)→ [0, 1], (1)



Exp. Eval. of a Perceptual Pipeline for Hierarchical Affordance Extraction 3

Fig. 1: The perceptual pipeline for affordance extraction [8,9,10]. The perceived
scene is segmented into environmental primitives which form the basis for the
extraction of affordances. The pipeline is implemented within the robot software
framework ArmarX [11] and intertwined with its memory subsystem MemoryX.

(a) Raw point cloud (b) Part-based segmentation

(c) Environmental primitives (d) Combined view

Fig. 2: The intermediate steps of the perceptual pipeline (see Fig. 1) for an
exemplary scene containing a large box A, a stack of bricks B and a table C
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which tell, how certain the perceptual system is about the existence of an affor-
dance a for a given end-effector pose x ∈ SE(3).1 Two mathematical operations
are applied to form higher-level affordance certainty functions:

– Affordance certainty functions can be multiplied in order to form combined
affordance certainty functions.

– Environmental properties can be converted into compatible certainty func-
tions by applying sigmoid threshold functions.

The procedure of affordance extraction is robot agnostic, taking elementary
body-scaled parameters, e.g. end-effector dimensions, into consideration. Fig. 3
shows the hierarchical process of affordance extraction based on the exemplary
bimanual support affordance ΘBi-Sp(x1,x2).

Fig. 3: Example of a bimanual affordance certainty function. The bimanual sup-
port affordance ΘBi-Sp(x1,x2) consists of a bimanual platform grasp affordance
ΘBi-G-Pl(x1,x2) in combination with a horizontal orientation of the underlying
primitive p. Horizontality is defined via a threshold applied to the orientation
function up(p). A bimanual platform grasp affordance consists of two uniman-
ual platform grasp affordances, one for each end-effector pose, and a threshold
applied to the distance d(x1,x2) between x1 and x2.

Fig. 4 shows an exemplary sampling of the affordance certainty functions
ΘG-Pl for platform grasping and ΘG-Pr for prismatic grasping, extracted from
a perceived staircase. The example shows that the perceptual pipeline is able
to successfully segment the perceived environment into elementary primitives
and that it can subsequently compute reasonable certainty functions for various
elementary affordances. It also shows that the perceptual pipeline is able to
produce useful segmentations of real scenes captured with point cloud sensors.
The displayed affordance certainty functions can directly be used as a basis
for planning feet poses for stepping (ΘG-Pl) or hand locations for grasping the
handrail (ΘG-Pr). Further results can be found in [8,9,10]. The system has been
implemented and evaluated in experiments based on the humanoid platform
ARMAR-III. One of the performed experiments demonstrates the perception of
turnable objects in the context of a bimanual valve-turning task (see Fig. 5 and
[12] for further details).

1 SE(3) denotes the special Euclidean group.
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Fig. 4: A visualization of affordance certainty functions for platform grasps ΘG-Pl

(left) and prismatic grasps ΘG-Pr (right) extracted from a perceived staircase.
The colors indicate the value of the respective certainty function ranging from
red (highly uncertain) to green (very certain), while certainty values of zero
were omitted in the visualization. The scene is segmented into environmental
primitives, in this case planes, e.g. the ground plane (blue arrow), and cylinders,
e.g. the handrail (orange arrow).

Fig. 5: Top: The perceptual pipeline properly extracts bimanual affordances and
proposes suitable end-effector poses (left) for the subsequent action execution
(right) in a valve turning scenario. Bottom: A comparable experimental setup
for the humanoid robot WALK-MAN.
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3 Experiments

The experiments carried out in [12] demonstrate the general feasibility of the pro-
posed approach for loco-manipulation affordance extraction and the usefulness of
the generated data for subsequent action execution. The perceptual pipeline has
been designed and tested with RGB-D camera images, which provide a simple
and cheap solution to range sensing. However, there are multiple approaches to
visual perception for humanoid robots which promise to perform better in critical
circumstances that real humanoid robots would have to face. Such circumstances
could include outdoor scenarios with intense sunlight or malicious object mate-
rials, e.g. reflective surfaces. In the following we present initial evaluations of the
perceptual pipeline with sensor systems other than RGB-D cameras. The exper-
iments have been carried out in multiple scenarios with the perceptual system
of the humanoid robot WALK-MAN [14].2

3.1 Evaluation Scenarios

To evaluate the perceptual pipeline we captured a total of 129 stereo vision
and 66 LIDAR point clouds. The point clouds resemble static snapshots of two
evaluation scenarios S1 and S2 (see Fig.6). For each scenario Si, we defined
multiple experiments Ei,1, . . . , Ei,k by changing the camera perspective or by
slightly modifying the experimental setup. For each experiment Ei,j we took a
series of point clouds Pi,j,1, . . . , Pi,j,n. Although the captured scene was static
during the experiments, the set of point clouds captured over time resembles
noise of the underlying sensor system. In Fig. 6 we briefly describe the evaluation
scenarios S1 and S2.

Fig. 6: The evaluation scenarios S1 (left, A vertical wooden bar in front of the
robot) and S2 (right, A large box, a table and a stack of bricks).

2 WALK-MAN is equipped with a MultiSense SL sensor head from Carnegie Robotics
containing a LIDAR sensor and a stereo camera system. The LIDAR scanner cap-
tures 1024 points per scan and was configured to rotate with 0.5 rad/sec. The stereo
camera system produces point clouds using semi-global matching based on 1 Mpx
camera images. No postprocessing filters have been applied in both cases.
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The perceptual pipeline requires a set of parameters to be specified, especially
for the segmentation and primitive extraction stages. These parameters poten-
tially need to be adjusted when changing the environmental setup. However, in
the following evaluation we used the same parameter setup for all experiments
Ei,j from a scenario Si.

3.2 Evaluation Procedure

Each point cloud Pi,j,l is processed using the perceptual pipeline, extracting af-
fordance certainty functions for the elementary power grasp affordances ΘG-Pl

and ΘG-Pr. For each evaluation scenario Si, we first manually create a ground
truth set of environmental primitives and then compute the ground truth affor-
dance certainty functions Θ∗

G-Pl and Θ∗
G-Pr. We then perform a binary compar-

ison of the ground truth affordance certainty functions with the ones extracted
from the experiment point cloud, applying a threshold of 0.5 to the certainty
values of Θ and Θ∗. The spatial and orientational tolerances ∆x and ∆ϕ for
proximity of end-effector poses have been set to 7.5 cm and π

4 rad, respectively.
The tolerances can be chosen generously at this point as the process of affor-
dance extraction in general is understood as a source of high-level information on
affordances and end-effector poses, prone to a certain degree of error. Handling
these perceptual inaccuracies falls into the scope of affordance validation and
action execution, as described in [10]. In order to evaluate the continuous nature
of the certainty functions, we additionally define a similarity measure which is
defined as the ratio of similar sampling points over the total number of ground
truth sampling points. Two end-effector poses x and x∗ are considered similar
if |Θ(x)−Θ∗(x∗)| < ε.3

3.3 Results

Table 1 shows the evaluation results for the scenarios S1 and S2 with respect
to the affordance certainty functions ΘG-Pl and ΘG-Pr. For each experiment Ei,j
and for both available sensors, we list the number of point clouds processed (#),
as well as the F1 and similarity scores, comparing with the experiment’s ground
truth. The ground truth stays the same for both evaluated sensors. Fig. 7 displays
mean and standard deviation of the precision and recall values from Table 1 for
scenario S2 and the affordance certainty function ΘG-Pr. The results show that
the perceptual pipeline can successfully process point clouds originating from
the considered sensors. However, stereo vision data performs significantly worse
than LIDAR data, mainly because the depth information for more distant and
less textured objects is less accurate. In many cases, especially for platform
grasps in scenario S2, the ground truth primitives were properly extracted, but
significantly shifted when using stereo vision input.

Referring to Fig. 4, platform grasp affordances usually form two-dimensional
manifolds in the space of end-effector positions, whereas prismatic grasp affor-
dances form one-dimensional manifolds. This makes it harder for the perceptual

3 In our experiments, we chose ε = 0.1.



8 P. Kaiser, E. E. Aksoy, M. Grotz, D. Kanoulas, N. Tsagarakis and T. Asfour

pipeline to properly extract prismatic grasp affordances within the applied tol-
erances. This is the main reason why the F1 scores are significantly worse for
ΘG-Pr than for ΘG-Pl, for both sensors likewise. In many cases, possibly due to
outliers in the point clouds, the extracted primitives are larger than the ground
truth primitives, but properly oriented and shaped. Such circumstances result in
failures when comparing with the ground truth, but resulting affordances might
still be of reasonable use for action planning, when employing appropriate con-
trol mechanisms. Table 2 displays the runtimes of the primitive extraction and
the affordance extraction steps of the perceptual pipeline for two selected exper-
iments both, for LIDAR and for stereo vision point clouds. The runtimes have
been generated on a standard Core i7 desktop PC. Note that the perceptual
pipeline has not been optimized for runtime efficiency.

Table 1: Comparison of the affordance certainty functions ΘG-Pl and ΘG-Pr pro-
duced by the perceptual pipeline based on different sensors in S1 and S2.

LIDAR Stereo Vision

Scenario Exp. # F1 Sim. # F1 Sim.

ΘG-Pl

S1
E1,1 8 0.93 0.84 20 0.85 0.69

E1,2 2 0.92 0.84 5 0.76 0.56

S2

E2,1 9 0.92 0.85 23 0.79 0.63

E2,2 9 0.92 0.84 17 0.50 0.35

E2,3 10 0.90 0.81 18 0.62 0.45

E2,4 9 0.90 0.81 13 0.56 0.39

E2,5 10 0.93 0.85 13 0.53 0.35

E2,6 9 0.91 0.82 20 0.74 0.58

ΘG-Pr

S1
E1,1 8 0.59 0.98 20 0.15 0.82

E1,2 2 0.82 0.98 5 0.19 0.78

S2

E2,1 9 0.80 0.98 23 0.72 0.87

E2,2 9 0.70 0.97 17 0.41 0.67

E2,3 10 0.72 0.97 18 0.36 0.82

E2,4 9 0.69 0.97 13 0.43 0.66

E2,5 10 0.70 0.97 13 0.38 0.70

E2,6 9 0.72 0.97 20 0.51 0.75

4 Conclusion

In our previous work, we proposed a perceptual pipeline for the extraction of
affordance certainty functions from environments perceived with an RGB-D cam-
era, which has proven to produce reasonable and useful results in multiple ex-
periments. In this work we defined an evaluation procedure for the perceptual
pipeline based on ground truth primitive sets and evaluated the performance in
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Fig. 7: A comparison of average precision and recall and their standard deviations
in the experiments E2,1, . . . , E2,6 of scenario S2 (see Table 1).

Table 2: Average point clouds sizes (number of points) and runtimes of different
steps of the perceptual pipeline.

LIDAR Stereo Vision

Experiment Size Prim. Extr. Aff. Extr. Size Prim. Extr. Aff. Extr.

E2,1 (ΘG-Pl) 117K 7.2 s 67 ms 569K 19.3 s 109 ms

E2,1 (ΘG-Pr) 117K 6.7 s 50 ms 569K 19.0 s 87 ms

affordance extraction with point clouds obtained from sensor systems other than
RGB-D cameras. In particular we used the sensor equipment of the humanoid
robot WALK-MAN, i.e. the laser scanner and the stereo camera system of the
MultiSense SL sensor head. By extending the range of sensor systems applica-
ble with the perceptual pipeline, we aim at exploiting the full capabilities of
robots with redundant sensor systems. This is a crucial capability for a percep-
tual system when operating in unknown environments that can happen to be
particularly unfortunate for one of the implemented sensors.

The results show that the perceptual pipeline can handle LIDAR and stereo
vision point clouds. However, as expected, it performs significantly better with
the more precise LIDAR scans. The stereo vision point clouds examined have
been more dense than the LIDAR data, resulting in a much higher computation
time. Although the results do not seem to justify a need for this density, it is ex-
pected to perform better in smaller-scale environments. Based on the result, we
conclude that the exploitation of redundant sensor systems is possible using our
previously proposed methods on affordance extraction. It would be promising to
develop autonomous or semi-autonomous capabilities for detecting environmen-
tal circumstances that demand a specific sensor to be used. The extraction of
affordances based on the fusion of point clouds from different sensors would also
be a certain improvement.
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