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Autonomous Detection and Experimental Validation
of Affordances
Peter Kaiser and Tamim Asfour

Abstract—We propose a computational formalization of affor-
dances, which is able to consistently combine affordance-related
evidence resulting from different observations. We represent
affordances as Dempster-Shafer belief functions defined over
the space of end-effector poses, which can be combined using
uncertain logic in order to allow their hierarchical organization.
The primary source of affordance-related evidence is visual
affordance detection, which first simplifies the perceived envi-
ronment into geometric primitives and then evaluates a hierar-
chical set of affordance definitions based on the available visual
information. The resulting belief functions are used as initial
affordance hypotheses, which are subject to further investigation
and validation. As pure visual affordance detection can fail to
properly estimate important preconditions, e. g. the stability of
environmental structures, validation experiments are conducted
in order to incrementally improve the system belief and the
reliability of detected affordances. The proposed formalism is
implemented and evaluated in the context of loco-manipulation
affordances for humanoid robots using the simulated robots
ARMAR-III and ARMAR-4.

Index Terms—Humanoid Robots, Perception for Grasping and
Manipulation, Semantic Scene Understanding

I. INTRODUCTION

AUTONOMOUS humanoid robots are designed to assist
humans in performing large varieties of tedious, ex-

hausting or dangerous tasks. Such tasks include for example
household work or elderly care in domestic environments, pro-
duction, assembly or maintenance in workshops and factories
as well as search and rescue in destructed or contaminated
buildings. The environments that humanoid robots will be
deployed in are human-centered and unstructured, such that
they cannot be entirely known to the robot in advance. One
key prerequisite for robots to be able to act in such unknown
environments is their capability to reason about interaction
possibilities with the environment. The psychological theory of
affordances [1] attempts to explain the process of action possi-
bility perception in humans and animals. It defines affordances
as action possibilities latent in the environment, which arise
depending on properties of perceived objects and capabilities
of the perceiving agent. The theory of affordances is generally
accepted as a promising foundation for autonomous robots
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Figure 1: Affordance-related evidence from different sources,
such as our perceptual pipeline, human expert knowledge and
action executions (green and blue blocks), is aggregated into a
set of observations (red blocks). Evidence fusion describes the
process of deriving a joint system belief Θa from the available
observations.

acting in unknown environments. Moreover, the concept of
affordances provides a powerful mechanism for high-level
robot control, where affordance-based scene representations
are used to operate a humanoid robot by a human pilot.
Such shared autonomous control modes would greatly benefit
if affordance-based perception would reduce the large space
of possible actions to a limited set of actions, which are
reasonable and applicable in the current context. In this work
we aim at developing the foundation for a robotic perceptive-
cognitive system that addresses locomotion and manipulation
affordances in both, autonomous and shared autonomous con-
trol modes.

A. Previous Work

In our previous works [2], [3], [4] and [5], we developed
and evaluated a computational approach to the detection of
affordances in unknown environments. The environment is
perceived using an RGB-D camera and subsequently simpli-
fied into a representation in terms of geometric primitives such
as planes, cylinders and spheres (see Fig. 2). The formalization
of affordances employed in our previous work, particularly [4],
is based on two fundamental observations:

1) Affordances are hierarchical, i. e. the existence of sophis-
ticated affordances is based on the existence of more
primitive affordances.

2) End-effector contact is crucial for the considered actions
and therefore serves as fundamental affordances in our
approach.

The foundation of the affordance detection system as
proposed in our previous work is the notion of affordance
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Figure 2: The process of affordance detection (step S4) and validation as a fusion of affordance-related evidence. Evidence
results from visual scene information (steps S1, S2 and S3) and feedback of executed actions. While the visual detection
of affordances has been employed in our previous works [2], [3], [4] and [5], the understanding of affordance detection as a
process of multimodal evidence fusion is a contribution of this paper.

certainty functions Θa, which assess the existence certainty of
affordances a for given end-effector poses x ∈ SE(3). Higher-
level affordance certainty functions may include certainty
estimations from lower-level affordances. Supportability is for
example composed from platform graspability in combination
with a horizontal primitive orientation and the primitive’s
assumed immobility (see Fig. 3). Both of these properties
are estimated based on fundamental geometric attributes of
the primitive. The framework for affordance detection based
on hierarchical affordance certainty functions has been suc-
cessfully evaluated in multiple scenarios in simulation and on
the real humanoid robots ARMAR-III [4] and WALK-MAN
[5]. However, we identified two principle problems with our
previous approach which are addressed in this work:

1) Affordance-based evidence from sources other than the
visual pipeline cannot be considered.

2) Affordance certainty functions do not naturally allow
logic operations suitable for their hierarchical composi-
tion.

B. Contribution

In this work we extend the previously proposed concept of
affordance certainty functions to affordance belief functions,
which allow the fusion of evidence from various, possibly
contradicting, sources and formally support hierarchical orga-
nization. We approach this goal by formalizing affordances as
Dempster-Shafer belief over the space of end-effector poses.
In contrast to conventional probability theory, Dempster-
Shafer theory (DST) [6] allows the consistent combination
of evidence from different sources with different assigned
degrees of belief. An extensive survey on DST and its various
extensions can be found in [7]. We evaluate the principles
of affordance-related evidence fusion in two ways: 1) by
simulating large amounts of observations drawn from ran-
domized ground-truth affordance belief functions, and 2) by
letting the simulated robot ARMAR-III autonomously perform
affordance validation experiments in a dynamically simulated
kitchen environment (see Fig. 5).

The remainder of the paper is structured as follows: After
discussing related work in Section II, we formalize the affor-
dance concept in Section III and the principles of evidence
fusion and hierarchy in Section IV and Section V. In Sec-
tion VI we evaluate the proposed concept with the humanoid
robot ARMAR-III, before concluding in Section VII.
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Figure 3: The belief function for a supportability affordance
ΘSupport(x) is composed of a platform graspability affordance
ΘG-Platform(x) in combination with belief functions for the
horizontality and the mobility of the primitive p, which are
estimated based on geometric properties of p. See [4] for
further details.

II. RELATED WORK

The concept of affordances has inspired many approaches
to describing and formalizing the link between perception and
action in robotics, resulting in a large variety of affordance-
based methods. These approaches differ in their use-cases
and their interpretation of the affordance concept. Extensive
surveys on the application of affordances in robotics can
be found in [8], [9], [10] and [11]. Several approaches
attempt to learn the relations between visual features in
depth images and affordances, e. g. using selected geometric
features [12], CNNs [13] or spatial relations between objects
and human body parts [14]. In contrast to such learning-
based approaches, we aim at detecting and validating affor-
dances based on primitive geometries and agent embodiments,
without requiring significant amounts of labeled training data.
The authors in [15] and [16], describe how to infer object
affordances by learning object categories, action effects or
action parameters for ultimately performing symbolic planning
based on learned object affordances. The authors of [17]
propose a framework for symbolic inference of affordances
under uncertainty using DST. Our concept differs from the
above work by concentrating on the lower-level perceptive-
cognitive process of the robot, not assuming any prior infor-
mation about objects and their recognition. Furthermore, some
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Figure 4: An exemplary situation of affordance validation
based on real sensor data: The validation of supportability
ΘSupport in a stepping scenario. The uncertainty of the initial
visual affordance detection is defined to be relatively high
(η = 0.5), indicated by the yellow visualization of the asso-
ciated belief function (see Fig. 6). The validation experiment
(b) emphasizes the existence of the affordance and therefore
increases belief in a local neighborhood around the end-
effector pose used for the validation experiment (c).

works attempt to jointly learn visual affordance perception
and symbolic or subsymbolic information about actions and
their effects: e. g. based on denoising autoencoders [18] or
Bayesian Networks [19]. More pragmatic approaches define
affordances as templates, containing 3D representations of
objects and conceptual descriptions of their utilization. Due to
the embedded object description, such templates can be easily
recognized in captured point cloud data, eventually allowing to
reason about available action possibilities. Prominent examples
have been demonstrated at the DARPA Robotics Challenge,
including [20], [21] and [22]. Template-based approaches work
well in environments, where principle structures are known
with small variations tolerated. In contrast to template-based
approaches, we assume perceived environments to be entirely
unknown to the robot. A conceptually related approach for
the detection of loco-manipulation affordances was used in
[23] for locomotion planning in unknown environments. While
this approach is particularly focused on the direct detection of
affordances for hand and foot contacts, we aim at improving
the robustness of affordance detection by integrating multiple
sensory experiments.

Although not explicitly denoted in the following formaliza-
tion, affordance belief functions as proposed in this work es-
tablish a link between geometric primitives p and affordances
a. In our general framework introduced in [4], affordances
are further linked with combined representations of action
execution skills, symbolic preconditions and effects. Hence,
this work can be seen in the tradition of popular approaches
which understand affordances as relations between objects,
actions and action effects (e. g. [24]).

III. AFFORDANCE FORMALIZATION

The central contribution of this paper is a computational
formalization of loco-manipulation affordances which satisfies
the two prerequisites introduced in Section I:

Figure 5: Validation of prismatic graspability in a simulated
kitchen environment. The evidence gained from the successful
haptic validation experiment is fused with existing evidence
from visual affordance detection, producing an updated joint
affordance belief function ΘG-Prismatic. The affordance belief
function is visualized according to the color map in Fig. 6.

1. Evidence Fusion: The consistent fusion of affordance-
related evidence is important when considering a humanoid
robot as an inherently redundant machine, offering a multi-
tude of possible sensor modalities which provide information
regarding the existence of affordances. Affordance-related
evidence could further result from expert knowledge or the
robot’s own learned experience. The possible availability of
affordance-related evidence from different sources with differ-
ent attributed reliabilities necessitates a consistent formalism
for evidence fusion.

2. Hierarchical Representation: The requirement of a hi-
erarchical organization of affordances becomes self-evident by
the observation that many loco-manipulation actions establish
power grasping contact with environmental structures. Hence,
graspability affordances can be considered prerequisites for
higher-level affordances like pushability or pullability, which
themselves serve as prerequisites for affordances such as
bimanual pushability. The hierarchical representation of affor-
dances proposed in this work ensures that evidence of lower-
level affordances is appropriately propagated to higher-level
affordances and finally allows the hierarchical organization of
loco-manipulation affordances as introduced in [4].

A. Affordance Belief Functions

Based on the observation that end-effector contact is crucial
for loco-manipulation actions, an affordance a is defined to
exist with respect to a geometric primitive p and end-effector
poses x ∈ SE(3). Belief in the existence of a is expressed by
affordance belief functions Θa(x), mapping end-effector poses
x ∈ SE(3) to Dempster-Shafer belief expressions d ∈ D:

Θa : SE(3)→ D. (1)

The above belief function is suitable for representing uni-
manual affordances. While this focus on the unimanual case
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will prevail throughout this paper, the formalism can be
extended to consider an arbitrary number of N end-effectors
by extending the definition space of Θa:

Θa : SE(3)× · · · × SE(3)︸ ︷︷ ︸
N times

→ D. (2)

For expressing the system belief Θa(x) in the existence
of an affordance a with respect to an end-effector pose
x ∈ SE(3), two fundamental hypotheses are defined: a+

representing the assumption that a exists and a− representing
the assumption that a does not exist. It is the inherent task of
the affordance detection and validation system to obtain cer-
tainty about which of the two hypotheses is true by combining
and evaluating available evidence. The set Xa = {a+, a−} is
called hypothesis space and the set of possible combinations
of hypotheses results in:

2Xa =
{
∅, {a+}, {a−},Xa

}
. (3)

In the interest of simplicity the notations are abbreviated to
a+ := {a+} and a− := {a−}. A hypothesis space which is
suitable for DST must be complete and mutually exclusive, i. e.
it must contain the true hypothesis and no two hypotheses can
be true at the same time. As affordances can only either exist
or not exist, and as both possibilities are reflected in Xa as
distinct hypotheses, the hypothesis space is complete. As the
complements a+ and a− are the only contained hypotheses,
the hypothesis space is further mutually exclusive. These two
properties justify the applicability of DST to the hypothesis
space Xa. The space Xa contains two complementary hypothe-
ses, and therefore constitutes the simplest non-degenerated
case of a hypothesis space. Such binary spaces would more
classically be denoted as Xa = {a,¬a}. The simplicity of
Xa will play an important role for the formalization and for
the computational feasibility of the approach. In the DST,
belief is formally expressed by attributing probability mass
to each element of the power set 2Xa . Such probability
mass assignments m : 2Xa → [0, 1] are called basic belief
assignments if m(∅) = 0 and

∑
A∈2Xa m(A) = 1. Distributed

probability mass can be intuitively interpreted as follows:
• m(a+) expresses belief in the existence of a
• m(a−) expresses belief in the non-existence of a
• m(Xa) expresses uncertainty about the existence of a.
The space of belief expressions D introduced in Eq. 1 can

now formally be defined as the space of possible basic belief
assignments:

D :=

{
m : 2Xa → [0, 1]

∣∣∣∣ m(∅) = 0,
∑

A∈2Xa

m(A) = 1

}
.

In order to simplify the following formalizations, the evalu-
ation of affordance belief functions Θa for end-effector poses
x ∈ SE(3) and hypotheses A ∈ 2Xa is abbreviated as:

Θa(x, A) :=
(
Θa(x)

)
(A). (4)

The DST defines two fundamental functions: belief bel(A),
describing the confidence that A ∈ 2Xa contains the true

hypothesis, and plausibility pl(A), describing the confidence
that the true hypothesis does not contradict A. Belief and
plausibility can be expressed for affordance belief functions
Θa, end-effector poses x ∈ SE(3) and hypotheses A ∈ 2Xa

as follows:

bela(x, A) =
∑
B⊆A

Θa(x, B) ∈ [0, 1]

pla(x, A) =
∑

B∩A6=∅

Θa(x, B) ∈ [0, 1].
(5)

The set-theoretic definitions of belief and plausibility can
become computationally hard for large hypothesis spaces.
However, by exploiting the simplicity of Xa, the equations
become pleasantly simple. The (classical) probability p(A) of
a hypothesis A ∈ 2Xa can be interpreted to lie in the interval
[pl(A), bel(A)]. Based on this relation, the expected probabil-
ity Ea(x, A) as described in [25] is used in cases when belief
expressions are compacted into single real numbers:

Ea(x, A) = bela(x, A) +
1

2

(
pla(x, A)− bela(x, A)

)
. (6)

Note that the definition of expected probability used here
is the special case for binary hypothesis spaces. The formal-
ization of affordances as belief functions Θa over the space
of end-effector poses constitutes the core of our proposed
affordance formalization. In the following section, the initial
requirements of evidence fusion and hierarchy will be properly
formalized.

IV. EVIDENCE FUSION

For formalizing the process of evidence fusion, let Ω =
{ω1, . . . , ωN} be a sequence of observations. Each obser-
vation ω ∈ Ω is defined as an affordance belief function
ω : SE(3) → D. Hence, observations express affordance-
related evidence over the space of end-effector poses. Fig. 1
shows an overview of the concept of evidence fusion. The
DST defines Dempster’s rule of combination as an associative
operator ⊕ for combining compatible basic belief assignments.
Two basic belief assignments are compatible if they are defined
over the same hypothesis space. Hence, in the context of
affordance belief functions, two observations are compatible
if they express evidence related to the same affordance. For
A ∈ 2Xa , A 6= ∅, the fusion of compatible observations
ω1, . . . , ωN is formalized as:(

N⊕
i=1

ωi

)
(x, A) =

1

1−K(x)

∑
(
⋂N

j=1 Aj)=A

N∏
k=1

ωk(x, Ak)

with the conflict factor K(x):

K(x) =
∑

(
⋂N

j=1 Aj)=∅

N∏
k=1

ωk(x, Ak). (7)

Incremental evidence fusion is possible due to the associa-
tivity of the combination rule. The simplicity of Xa allows
the simplification of the combination rule into efficiently
computable equations.
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A. Spatial Generalization of Selective Observations

We consider two fundamental categories of observations,
which can occur depending on the utilized sensors and the
experimental setup:

1) Extensive Observations: These observations inherently
provide spatially distributed evidence, as the employed
sensor and the experimental setup evaluate affordances
for whole ranges of possible end-effector poses. Extensive
observations are for example produced by visual affor-
dance detection.

2) Selective Observations: These observations provide evi-
dence for specific end-effector poses only. Selective ob-
servations are for example produced by haptic affordance
validation.

In order to allow effective reasoning about affordances
in a larger scale, selective observations need to be spatially
generalized, which in accordance to [26] is performed by
combining two distribution functions

n(xref,x) ∝ N
(
t (xref) , σ

2
pos

)
m(xref,x) ∝M

(
R (xref) , σ

2
rot

)
,

(8)

for the translational component t(xref) and the rotational
component R(xref) of the end-effector pose xref, respectively.
The distribution function n is proportional to a normal dis-
tribution N , while m is proportional to a von Mises-Fisher
distribution M, both normalized to a maximum value of
1. Using the combined distribution function δ(xref,x) =
n(xref,x) · m(xref,x), the spatial generalization of selective
observations ω with associated observation certainty η ∈ [0, 1]
is modeled as:

ωη(x, A) =


η · δ(xref,x) · ω(x, a+), if A = a+

η · δ(xref,x) · ω(x, a−), if A = a−

1− ω(x, a+)− ω(x, a−), if A = Xa.

B. Examples

For exemplary visualization of 2D affordance belief func-
tions, the system belief is projected into the HSL color space
by computing the expected probabilities of the hypotheses a+

and a− and computing the decision value va(x) ∈ [0, 1]:

va(x) =
1

2

(
Ea(x, a+)− Ea(x, a−) + 1

)
. (9)

This value is transformed into a hue interval ranging from
green to red, while the lightness value represents uncertainty
(see Fig. 6). Two-dimensional affordance belief functions
constructed from eight consecutive selective observations are
shown in Fig. 7. Confirming observations emphasize belief
in the existence of the investigated affordance, resulting in
dark green areas of high belief bel(a+) (Fig. 7a). Contra-
dicting observations emphasize belief in the absence of the
investigated affordance, resulting in dark red color in areas
of high belief bel(a−) (Fig. 7c). The principle of evidence
fusion based on Dempster-Shafer belief functions is visualized
in Fig. 4 for the exemplary scenario of stepping based on
real sensor data. The affordance detection system successfully
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va(x)
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0.4

0.6

0.8
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Θ
a
(x
,X

a
)

Figure 6: Affordance belief functions are visualized by pro-
jection to the HSL color space: The decision value va(x) is
represented by the hue value, ranging from red to green, while
red indicates predominant belief in a− and green indicates pre-
dominant belief in a+. Uncertainty Θa(x,Xa) is represented
by the lightness value.
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Figure 7: Visualization of an affordance belief function, itera-
tively composed from eight consecutive selective observations,
visualized as red and green dots, for 2D end-effector positions
x ∈ [−10, 10]× [−10, 10].

evaluates the belief function ΘSupport for supportability for each
of the steps. A supportability affordance is derived from a plat-
form graspability affordance in combination with a horizontal
orientation of the primitive surface (see Fig. 3). The visual
detection of support surfaces is particularly critical as the
physical stability of the surface is hard to estimate purely based
on visual information. The conduction of affordance validation
experiments in addition to visual perception is therefore a
promising strategy for reliable legged locomotion in unknown
environments. The initial belief function obtained through
visual perception exposes a large degree of uncertainty, which
is reduced using a validation experiment.

V. HIERARCHY

As Dempster’s rule of combination is only defined for
belief assignments that share the same hypothesis space, the
combination of belief functions Θa1 and Θa2 for different
affordances a1 and a2 is not possible. In [4] we proposed
to compose affordances based on hierarchical derivation rules
which requires the capability of combining affordance be-
lief functions in the sense of logic operations. As a simple
example, consider a hierarchical rule for the existence of
supportability affordances, for which platform graspability
and the horizontal primitive orientation are given as belief
functions ΘG-Platform and ΘHorizontal:

ΘG-Platform(x) ∧ΘHorizontal(p)

ΘSupport(x)
. (10)
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Figure 8: DS-theoretic conjunction (Θ1 ∧ Θ2)(x) applied to
two assumed affordance belief functions Θ1(x) and Θ2(x) for
2D end-effector positions x ∈ [−10, 10]× [−10, 10].

In this case, ΘSupport is called the higher-level affordance as
its existence depends on the lower-level affordance ΘG-Platform.
The Theory of Subjective Logic [25] provides the theoretical
means for applying logic operations to Dempster-Shafer belief
values. Let a and b be distinct affordances with respective
hypothesis spaces 2Xa and 2Xb and x ∈ SE(3) be an end-
effector pose. Further, let A ∈ 2Xa and B ∈ 2Xb be affordance
hypotheses. Then the subjective logic operations A∧B, A∨B
and ¬A are defined as follows:

bela∧b(x, A ∧B) = bela(x, A) · belb(x, B)

bela∨b(x, A ∨B) = bela(x, A) + belb(x, B)

− bela(x, A) · belb(x, B)

bela(x,¬A) = 1− pla(x, A).

(11)

Note that, with the exception of the negation ¬A, resulting
belief is expressed over the new hypothesis spaces 2Xa∧b

and 2Xa∨b . The initially stated affordance inference rule from
Eq. 10 can now be written as:

ΘSupport(x) = ΘG-Platform(x) ∧ΘHorizontal(p). (12)

Fig. 8 shows a visualization of the DS-theoretic logic AND
operator applied to exemplary affordance belief functions Θ1

and Θ2. The images show that subjective logic operations
applied to affordance belief functions with areas of different
belief and uncertainty, produce intuitive results.

VI. EVALUATION

The hierarchical formulation of loco-manipulation affor-
dances as functions over the end-effector pose space has
been evaluated in various realistic scenarios on real humanoid
robot platforms, including ARMAR-III and WALK-MAN in
our previous work. The performed experiments demonstrate
the feasibility of the concept and its applicability to realistic
scenarios with real sensor data (see e. g. Fig. 4). The central
contribution of this work is the computational formalization of
the affordance concept in terms of affordance belief functions
suitable for the hierarchical arrangement of whole-body af-
fordances. Hence, the presented experiments concentrate on
the evaluation of the proposed evidence fusion mechanism
in synthetic scenes (Section VI-A) and in the system-wide
application of multimodal affordance detection and validation
in a dynamic simulation environment (Section VI-B).
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Figure 9: Averaged F1 scores, conflict and uncertainty of joint
affordance belief functions obtained via consecutive fusion of
increasing numbers of observations drawn from ground-truth
affordance distributions. The figures have been averaged over
400 ground-truth affordances each with σpos = 0.6, σrot = π

8
and η = 0.6.

A. Affordance Belief Functions

We first investigate if the proposed mechanisms for evidence
fusion are able to produce consistent joint belief functions via
the fusion of consecutive observations, that converge against
assumed ground-truth affordances. More formally, we assume
ground-truth affordance distributions G : SE(2) → {0, 1}
which are generated as intersections of randomly sampled
half-spaces in 2D. Sequences of observations ω1, . . . , ωN are
then sampled from the ground-truth affordances. In analogy
to the plots in Fig. 7, affordances are defined in 2D, either
representing the positional or orientational components of
SE(2). Fig. 9 shows averaged F1 scores of the obtained joint
belief functions for end-effector positions (top) and orienta-
tions (bottom) over increasing numbers of fused observations.
The results indicate that affordance belief functions are able to
accurately resemble ground-truth affordance distributions via
the fusion of spatially distributed observations ω. While the re-
sulting belief functions do not exactly represent the respective
ground-truth affordances, an F1 score greater than 0.8 for both,
positions and orientations, obtained from few observations is
suitable for the intended application. This is particularly true
as extensive observations such as visual affordance detection
provide prior belief in real applications. The results further
show that the average uncertainty Θa(x,Xa) decreases with
the growing number of observations, indicating that the system
belief converges against a state of high certainty. Further, the
average conflict Θa(x, a+) · Θa(x, a−) moderately increases
with the number of observations, which is expected as the
fusion of contradicting evidence causes conflict.
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Visual Affordance Detection After 70 Observations

After 160 Observations After 250 Observations

Figure 10: Visualization of the affordance belief function for
prismatic graspability in different stages of the evaluation.
Validation experiments predominantly reduce the amount of
false positives, e. g. the handles of low drawers, which are
unreachable for the robot.

B. Kitchen Evaluation Scenario

In the second evaluation scenario, we simulate the iterative,
haptic validation of prismatic graspability affordances in a
dynamic simulation environment using the humanoid robot
ARMAR-III. With this evaluation scenario, we aim at demon-
strating the feasibility of the fusion of multimodal affordance-
related evidence in the context of humanoid robotics. In this
scenario, visual scene perception is simulated by passing a
manually segmented point cloud of the kitchen environment
to the perception system which extracts geometric primitives
and evaluates the loco-manipulation affordance hierarchy as
described in Fig. 2. The robot then successively selects end-
effector poses based on a measure Ca(x) that incorporates
uncertainty and conflict:

Ca(x) = Θa(x,Xa)︸ ︷︷ ︸
Uncertainty

+ Θa(x, a+) ·Θa(x, a−)︸ ︷︷ ︸
Conflict

. (13)

This measure is exemplarily implemented in order to derive
end-effector poses x that seem interesting for affordance
validation as the existing belief contains large portions of
uncertainty or conflict. Different approaches to assessing po-
tential validation poses are possible and a thorough review is
beyond the scope of this work. The general structure of the
experiment is as follows:

1) Simulated perception of the full environment and visual
affordance detection

2) Selection of a geometric primitive p to inspect. Primitives
p are validated in the ascending order of their surface area
and primitives are considered validated if the maximum
uncertainty of the ΘG-Prismatic is below 0.3.

3) Selection of the end-effector pose x for validation based
on the measure Ca, i. e. x← arg maxx∈SE(3) Ca(x).
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Figure 11: Validation of visually detected prismatic graspa-
bility affordances through consecutive validation experiments
in a simulated kitchen environment.

4) Execution of a validation action for x and simulation of
the achieved effects.

5) Generation of an observation ω based on the result of the
validation action and fusion of ω with the existing belief
ΘG-Prismatic.

6) Go to step 2.
The employed validation action for prismatic graspability

first determines a suitable robot pose for action execution and
subsequently attempts a prismatic grasp at the chosen end-
effector pose x (see Fig. 5). The success of the grasping at-
tempt is determined based on the hand joint angles. The results
depicted in Fig. 10 and Fig. 11 show that the total amount of
uncertainty in the affordance belief functions decreases with
the number of performed validation experiments. The results
further demonstrate that the robot can gradually improve the
initial belief from visual affordance detection, which is already
relatively accurate (F1 > 0.6), by performing consecutive
haptic validation experiments. In order to achieve reproducible
results, the evaluation experiment was structured in the sense
that the robot attempted to validate geometric primitives in
the order of their size (defined by their surface area). Because
early validation actions are applied to smaller primitives, the
effects of these validation actions are less visible in Fig. 11
than those of later validation actions. Multiple validation
experiments can be identified that lead to large gains in the F1

score by significantly eliminating false positives. Note that the
excessive amount of validation experiments carried out in this
evaluation scenario, although providing a suitable validation of
the evidence fusion formalism, does not qualify as a general
strategy for affordance-based autonomy. In real applications,
autonomous and shared autonomous humanoid robots are
intended to perform individual validation experiments in cases
of high risk or uncertainty, possibly demanded by a human
pilot.

C. Performance

Fig. 12 displays runtime measurements for the computation
of eight affordance belief functions in the exemplary scenes
depicted in Fig. 4 and Fig. 10 and highlights the time spent
in the individual pipeline steps S2, S3 and S4 (see Fig. 2),
as well as general system overhead. Fig. 12 further subdivides
the runtime of the affordance detection step S4 into the times
spent for computing individual affordance belief functions.
The runtimes have been generated on a standard desktop PC
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Figure 12: Runtime measurements for the evaluation of eight
different affordance belief functions in the evaluation scenarios
shown in Fig. 4 and Fig. 10. Top: Runtime measurements of
the individual system components shown in Fig. 2. Bottom:
Runtime measurements of the evaluation of the individual
affordance belief functions.

using a spatial sampling distance of 2.5 cm and 16 sampled
orientations per position, averaged over 100 measurements.

VII. CONCLUSION AND FUTURE WORK

In this work we proposed a novel concept for the formaliza-
tion and experimental validation of loco-manipulation affor-
dances in unknown environments. We formalize affordances
as belief functions over the space of end-effector poses which
allow their hierarchical organization. Moreover, the formaliza-
tion allows the consistent fusion of affordance-related evidence
from multiple sources and sensorimotor experience with dif-
ferent degrees of certainty. Visual perception in this system is
treated as one out of possibly many sources of experimental
evidence. The concept of DS-based affordance belief functions
was first theoretically introduced and then evaluated in two
ways: 1) by comparing joint belief functions aggregated from
sequences of observations with randomly generated ground-
truth affordances and 2) by performing validation experiments
using the humanoid robot ARMAR-III in a simulated kitchen
environment. The experiments demonstrate the strengths of the
proposed formalism in the consistent fusion of affordance-
related evidence from multiple sources into a joint system
belief. In our future work, we plan to extend the evaluation
scenario towards the simultaneous validation of multiple af-
fordances, demonstrating the propagation of evidence in the
affordance hierarchy from [4] both, in simulation and on the
real robot ARMAR-III. Furthermore, we aim at improving the
formalization of affordance belief functions with respect to
the concept of time in order to capture temporally extended
observations or environmental state changes.
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H. Dai, C. Pérez D’Arpino, R. Deits, M. DiCicco, D. Fourie, T. Koolen,
P. Marion, M. Posa, A. Valenzuela, K.-T. Yu, J. Shah, K. Iagnemma,
R. Tedrake, and S. Teller, “An architecture for online affordance-based
perception and whole-body planning,” Journal of Field Robotics, vol. 32,
no. 2, pp. 229–254, 2015.

[23] W. Pryor, Y.-C. Lin, and D. Berenson, “Integrated affordance detection
and humanoid locomotion planning,” in IEEE/RAS International Con-
ference on Humanoid Robots, pp. 125–131.

[24] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning
object affordances: From sensory-motor coordination to imitation,” IEEE
Trans. on Robotics, vol. 24, no. 1, pp. 15–26.

[25] A. Jøsang, “A logic for uncertain probabilities,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9, pp. 279–
311.

[26] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger,
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