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Abstract— Despite impressive advances of humanoid robotics,
the autonomous planning of whole-body loco-manipulation
actions in unknown environments is still an open problem.
In our previous work, we addressed two fundamental aspects
related to this problem: 1) the autonomous detection of end-
effector contact opportunities in unknown environments and
2) the goal-directed planning of multi-contact pose sequences,
which can serve as the starting point for motion planning and
control approaches of reduced complexity. Both problems suffer
from the extensive amounts of possible solutions, particularly
due to the complexity of humanoid robots and the multitude
of available contact opportunities.

In this paper, we propose a method for the planning of
whole-body multi-contact tasks based on our previous work
on vision-based detection of loco-manipulation affordances
and whole-body multi-contact pose sequence planning. We
demonstrate a combined approach for planning multi-contact
pose sequences with a focus on the utilization of available end-
effectors for stabilizing contacts with the environment during
loco-manipulation tasks. The method is evaluated in simulation
in multiple exemplary scenarios based on actual sensor data
and the humanoid robot ARMAR-4.

I. INTRODUCTION

Humanoid robots are designed to operate in unstruc-
tured, human-centered environments, which are not entirely
known in advance. Within these environments, the robots
are intended to demonstrate human-like whole-body loco-
manipulation capabilities, i. e. the execution of combined
locomotion and manipulation actions that incorporate the
whole body. Such actions are particularly important for
realizing stable locomotion over challenging terrain, e. g.
rubble or stairs, where multi-contact motions that utilize the
robot hands are desired to enhance stability (see Fig. 1).
Due to the high dimensionality of the configuration space of
a humanoid robot, the imprecise and semantically unlabeled
environmental perception, and the infeasible amount of pos-
sible environmental contacts, the problem of planning whole-
body multi-contact loco-manipulation actions is challenging
and considered unsolved. While existing approaches employ
sophisticated, high-dimensional motion planners for planning
complex whole-body actions, these approaches commonly
assume entirely known environments and require excessively
long planning times, making their online application hard.

To solve the problem of multi-contact motions for hu-
manoid robots, we identify three distinct subproblems, which
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Fig. 1: Exemplary multi-contact pose of the humanoid robot
ARMAR-4 with additional hand support.

need to be addressed: 1) the detection of possibilities for
support contact in the unknown environment, 2) the planning
of pose sequences based on the available contact opportuni-
ties and 3) the planning and control of the actual motion
trajectory based on the generated intermediate poses. In our
previous work, we proposed methods and solutions to the
first two problems:

1) In [1], we presented a perceptive-cognitive system for
the autonomous detection of loco-manipulation affor-
dances in unknown environments, which has been suc-
cessfully applied in the context of shared autonomous
control of humanoid robots [2]. In this control mode, the
cognitively challenging roles of action and task planning
based on detected affordances are leveraged to a human
pilot. See Section III-A for a more detailed introduction.

2) Following the contacts-before-motion paradigm [3], we
proposed in [4] an approach for the generation of whole-
body multi-contact pose sequences, which is inspired by
techniques from natural language processing. In this ap-
proach, an n-gram model learned from observed human
motions is used to model transition probabilities be-
tween characteristic whole-body poses. See Section III-
B for a more detailed introduction.

In this paper, we aim at combining the above methods
into a joint approach for the initially defined problems



of environmental contact affordance perception and whole-
body pose planning. Our approach allows to generate multi-
contact pose sequences for whole-body loco-manipulation
tasks based on affordances detected in unknown environ-
ments. We demonstrate the validity of our approach and its
ability to generate feasible pose sequences in four exemplary
scenarios.

The remainder of this work is structured as follows:
Section II discusses related approaches in the two areas
outlined above. Section III provides details on our previously
proposed approaches to autonomous affordance detection and
whole-body multi-contact pose planning, before introducing
the combined approach in Section III-C. Section IV evaluates
the combined approach based on real sensor data using
the simulated humanoid robot ARMAR-4, before Section V
concludes the paper and discusses future work.

II. RELATED WORK

The problem of whole-body multi-contact motion planning
for loco-manipulation actions in unknown environments is
central in the field of humanoid robotics and has been
approached with a variety of different motivations. Many
researchers focused on particular aspects of the problem,
e. g. in the areas of motion planning, contact and footstep
planning or visual perception. In the following, related work
will be presented concerning the two essential aspects of
our approach: the detection of whole-body loco-manipulation
affordances and the generation of whole-body motions for
humanoid robots given a model of the environment.

A. Whole-Body Affordances
The psychological theory of affordances [5] attempts to

explain the process of perception of action and interac-
tion possibilities of humans and animals with the world.
It suggests that affordances, i. e. action possibilities, arise
based on properties of perceived objects and the perceiving
agent’s capabilities. Extensive surveys on the application of
affordances in robotics can be found in [6], [7]. The idea of
whole-body affordances has been introduced in [8], referring
to affordances that relate to whole-body loco-manipulation
actions. State-of-the-art approaches to the detection of action
possibilities with humanoid robots commonly define affor-
dances as templates, containing 3D representations of objects
and conceptual descriptions of their utilization. Due to the
embedded object descriptions, such templates can be easily
recognized in captured point cloud data, eventually allowing
to reason about available action possibilities. Prominent
examples have been demonstrated at the DARPA Robotics
Challenge, including [9]–[11]. Template-based approaches
work well in environments, where principle structures are
known with only small tolerated variations. A conceptually
related approach for the detection of loco-manipulation affor-
dances was used in [12] for locomotion planning in unknown
environments.

B. Generation of Whole-Body Motions
Many authors have demonstrated the generation of whole-

body motions by using optimization techniques, such as

quadratic programming [13]–[17], or by using randomized
sampling-based algorithms, such as variants of rapidly-
exploring random trees [18], [19]. These approaches how-
ever cannot be used to efficiently solve the problem of
multi-contact locomotion, where long motion sequences with
frequent contact changes paired with a large number of
DoFs result in a high-dimensional search space. A reduction
in problem complexity can be achieved for such motion
tasks by sequencing given motion primitives to form the
resulting whole-body motion [20], [21]. A popular approach
to simplifying the search space for multi-contact motions
formulates the problem in a contacts-before-motion approach
[3], [22], which separates the problem into two steps that can
be solved independently. In the first step, a generated motion
is represented as a sequence of stance poses or configuration
poses that specify the order and locations of contacts to be
used during the motion [3], [12], [23], [24]. The generation
of multi-contact pose sequences presented in this paper also
aims to solve this first step, with its input being represented
by the perceived whole-body affordances of the environment.
In a second step not tackled by this paper, these stance poses
can then be linked to a continuous trajectory that e. g. satisfies
given stability constraints [25], [26].

III. APPROACH

Before introducing the proposed approach in Section III-
C as the main contribution of this paper, we will briefly
introduce our previously proposed works in the areas of loco-
manipulation affordance detection (Section III-A) and whole-
body multi-contact pose sequence generation (Section III-B).

A. Whole-Body Loco-Manipulation Affordances

In [1], we proposed a formalization of the affordance
concept based on affordance belief functions Θa, defined
over the space of end-effector poses:

Θa : SE(3)→ D. (1)

Affordance belief functions assess the existence of af-
fordances by mapping Dempster-Shafer belief expressions
d ∈ D to end-effector poses x ∈ SE(3). In order to effec-
tively reason about complex loco-manipulation affordances,
we formalized the hierarchical composition of affordance
belief functions, which enables the consistent integration
of affordance-related evidence on multiple layers. Evidence
gained on lower-level affordances, e. g. platform graspability,
is considered in the joint belief in higher-level affordances,
e. g. supportability. Fig. 2 shows the composition rule for
the affordance belief function ΘSupport, representing sup-
portability affordances. The composition is based on the
lower-level affordance belief function ΘG-Platform for platform
graspability and the property belief functions ΘHorizontal and
ΘFixed which estimate horizontal orientation and assumed
mobility of a primitive p based on geometric properties.

While a core concept of the proposed formalization is
the integration of affordance-related evidence from multiple
sources, the principle source of affordance-related informa-
tion is visual perception. The experiments in [1] and [2]
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Fig. 2: The composition of an affordance belief function
ΘSupport for support affordances.

demonstrate that visual affordance detection based on the
above formalism is a viable and feasible approach to the
detection of action possibilities in unknown environments
for whole-body loco-manipulation on real humanoid robots.

B. Multi-Contact Whole-Body Pose Planning

The generation of multi-contact pose sequences is based
on a statistical approach first proposed in [4], which uses an
n-gram model to describe transition probabilities between
whole-body poses. This use of an n-gram model represents
a linguistic point of view towards the problem of multi-
contact motion generation, wherein words represent whole-
body poses and sentences represent multi-contact motions.
The n-gram model describes the conditional probability

P
(
ki | (ki−n+1, . . . , ki−1)

)
(2)

of observing a certain whole-body pose ki, given the n −
1 preceding poses. The probability of a pose sequence of
arbitrary length can then be determined by multiplication of
all conditional probabilities in that pose sequence:

P
(
(k1, . . . , kN )

)
=

N∏
i=1

P
(
ki | (ki−n+1, . . . , ki−1)

)
. (3)

The four individual steps for learning this statistical model
for pose transitions from human observation are outlined in
the following, while further details on the process can be
found in [4]:

1) Motion Acquisition: Whole-body motion demon-
strations of human subjects are captured together with the
motions of environmental elements utilized in the demonstra-
tion, for which we use a marker-based passive-optical motion
capture system1. From the captured marker trajectories, the
6D root pose and joint angles are reconstructed for the 104-
DoF Master Motor Map (MMM) human reference model
[27], which is based on existing biomechanics literature.

1VICON MX system with ten T10 cameras running at 100Hz.

Since fingers and some other joints of the MMM are ex-
cluded in this work, 40 of the available joints are used for this
reconstruction and subsequently for the definition of whole-
body configuration poses.

2) Support Pose Segmentation: Reconstructed MMM
motions are segmented with regard to the used support poses
of the human subject [28]. We consider both the velocities
of human body segments and their distances to supporting
environmental objects to detect supporting contacts between
the human and the environment. For a given set of support
contacts at any point in time, the corresponding support
pose is determined and hence the motion is represented as a
sequence of these support poses.

3) Configuration Pose Classification: Since support
poses extracted from the motion segmentation are defined
only through the set of used support contacts, these poses are
further subdivided into configuration poses2, which define
concrete values for the 40 considered joints of the MMM
human reference model. As described in [4], 8 to 16 possible
configuration poses are extracted from human motion data
for each of the support poses, yielding a total number of
111 possible configuration poses. Using the pose retargeting
capabilities of the MMM framework [27], these configuration
poses can subsequently be transferred to the kinematic em-
bodiment of an arbitrary humanoid robot model. By further
processing the segmented motion data from the previous step,
each occurrence of a support pose in the segmented motion
data is assigned to its closest matching configuration pose,
minimizing spatial deviations for the four end-effectors of
the human body. As a result, we represent captured human
motions as sequences of configuration poses.

4) Model Learning: In the final step, the n-gram model3

for pose transitions is learned from a sufficiently large set of
representative training motions. Training the n-gram model
is based on textual representations of the observed motions
as configuration pose sequences, facilitated using the SRILM
Toolkit [29]. In addition, we are learning a spatial translation
model which describes the displacement of the whole-body
center of mass along the straight line towards the goal
position of a locomotion.

Given the statistical representation of transitions between
whole-body poses in human motion, in [4] we proposed an
algorithm for planning multi-contact motions that is based on
maximizing the n-gram model likelihood of the generated
pose sequence while sufficing all constraints imposed by
a given locomotion task. The algorithm is shown as pseu-
docode in Algorithm 1. Since the number of possible pose
sequences grows exponentially with the length, we cannot
consider all possible pose sequences, but use an informed
breadth-first search to explore the space of these possible
pose sequences. Additionally, pruning techniques (explained
in more detail in [4]) are employed to limit the growth
of active paths during the breadth-first search (lines 7–16).

2Dubbed shape poses in [4].
3In this work: n = 5, Witten-Bell smoothing. See [4] for details.



Algorithm 1 Pose Sequence Planning (modified from [4])

1: activePaths← heap()
2: Insert Path(startPose) into activePaths
3: i← 0
4: loop
5: i← i+ 1
6: bestPath← EXTRACTMAX(activePaths)
7: if (i mod prunePeriod) = 0 then
8: pruneDist← bestPath.distance− pruneThresh
9: newPaths← heap()

10: for all path ∈ activePaths do
11: if path.distance ≥ pruneDist then
12: Insert path into newPaths
13: end if
14: end for
15: activePaths← newPaths
16: end if
17: if activePath.distance ≥ distance and

bestPath.endPose = endPose then
18: return bestPath . Solution found
19: else . bestPath is not a solution
20: expandedPaths← EXPANDPATH(bestPath)
21: for all path ∈ expandedPaths do
22: Score path using n-gram model
23: Insert path into activePaths
24: end for
25: end if
26: end loop

In each iteration of Algorithm 1, the most promising pose
sequence is extracted from the heap activePaths (line 6) and
expanded with the addition of all valid successor poses (line
20). This path expansion, as outlined in Algorithm 2, consid-
ers both the validity of the appended pose (VALIDATEPOSE)
and a limitation on how long a given contact may be kept
(MAXCONTACTDUREXCEEDED), which is detailed in [4].

In [4], valid successor poses in VALIDATEPOSE (Algo-
rithm 2, line 7) are determined from a manual definition
of the locomotion task, where available hand contacts are
provided as intervals of the straight distance from the start
to the goal position. In contrast, with the combined approach
introduced in this work, we propose to determine possible
successor poses directly by considering affordances extracted
from visual perception in the VALIDATEPOSE function.

C. The Combined Approach

The central idea of the combined approach is that the set
of contact possibilities, required for pose sequence planning,
can be generated from visually detected supportability affor-
dances. The critical part of Algorithm 1 in this regard is the
determination of suitable and valid nodes for expansion (see
EXPANDPATH and VALIDATEPOSE in Algorithm 2), which
in our previous work has been implemented via predefined
intervals of support availability. Instead of relying on such
a manual definition of possible contacts, the proposed ap-
proach queries affordance belief functions generated from

Algorithm 2 Expansion of Pose Sequence

1: function EXPANDPATH(path)
2: newPaths← list()
3: . Consider all 111 possible configuration poses
4: for all cp ∈ allCPs do
5: newPath← path
6: Append configuration pose cp to newPath
7: if !MAXCONTACTDUREXCEEDED(newPath)

and VALIDATEPOSE(newPath.lastPose) then
8: Append newPath to newPaths
9: end if

10: end for
11: return newPaths
12: end function

visual affordance detection for available support possibilities.
More formally, the perceptive-cognitive process for affor-
dance detection produces a set of geometric primitives

Ψ = {p1, . . . , pK}, (4)

and a set of associated affordance belief functions Θa,
which map end-effector poses to Dempster-Shafer belief
assignments. Out of the set of possible affordances proposed
in [1], we will focus on supportability affordances ΘSupport
in this work. In order to enable the effective processing of
affordance belief functions, geometric primitives p ∈ Ψ are
sampled into end-effector pose samplings Sp, which are in
contact with the primitive boundary ∂p:

Sp = {s1, . . . , sN}, si ∈ ∂p ⊂ SE(3). (5)

Affordance belief functions express belief in the existence
of an affordance with respect to an end-effector pose x ∈
SE(3). In the aspired application of this work however,
the orientational aspect of x is neglected at this stage. The
existence of an affordance is further assessed by evaluating
the expected probability E(Θa(x)) [30] of the Dempster-
Shafer valued affordance belief functions. These considera-
tions allow the representation of generated affordance belief
functions Θa as a point cloud Pp,a,λ, which can be organized
in an octree data structure for efficient spatial access:

Pp,a,λ =
{
t(x) : x ∈ ∂p,E(Θa(x)) > λ

}
. (6)

The notion t(x) ∈ R3 refers to the translational component
of x ∈ SE(3). Validation of poses is performed within
Algorithm 2 during path expansion and an expanded path is
only considered valid if the added configuration pose can be
validated, i. e. if this pose is considered kinematically feasible
given the detected affordances of the scene. The affordance-
based pose validation method is implemented in Algorithm 3.
For a pose to be valid, all end-effectors which are used in
supporting contacts (in this work, hands and feet) must be
validated in a three-step process:

1) First (lines 3–8), the octree data structure is searched
for suitable supportability affordances in the vicinity



Algorithm 3 Affordance-Based Validation of Poses

Require:
affOct – Octree of affordance pointcloud
maxCandDist – Maximum distance for support aff.

1: function VALIDATEPOSE(pose)
2: for all end-effector ee used as a contact in pose do
3: . Check availability of support affordances
4: eePos ← ee.pos . Forward kinematics
5: affCand ← OCTREE-RADIUS-SEARCH(

affOct, eePos, maxCandDist)
6: if affCand = ∅ then
7: return false . No support afford. found
8: end if
9:

10: . Rank available support affordances based on
expected probability and distance

11: jointAnglesFound ← false
12: scoredCand ← list()
13: for all c ∈ affCand do
14: eeDist← ‖c.pos− eePos‖2
15: score← E (ΘSupp.(c.pos))+

(
1− eeDist

maxCandDist

)
16: Add (c.pos, score) to scoredCand
17: end for
18: Sort scoredCand by score
19:
20: . IK-based refinement of configuration pose
21: for all c ∈ scoredCand do
22: Use IK to find joint angles to reach c.pos
23: if solution found then
24: Save joint angles for pose
25: jointAnglesFound ← true
26: Abort loop
27: end if
28: end for
29: if !jointAnglesFound then
30: return false . No joint angles found
31: end if
32: end for
33: return true
34: end function

of the end-effector position. If no affordance is found
within a distance of maxCandDist, the candidate pose
is discarded.

2) Next (lines 11–18), available supportability affordances
are ranked based on a combined metric that includes
the distance of the affordance to the end-effector (lower
is better) and the expected probability of the affordance
(higher is better).

3) Finally (lines 21–31), the joint angles that are provided
by the configuration pose are altered through inverse
kinematics (IK), such that the end-effector reaches the
position of the supportability affordance to be used.
Affordances are tested with decreasing score and once
the IK finds a solution to reach the given affordance,

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Fig. 3: Four evaluation scenarios for walking with support
contact opportunities composed from different arrangements
of tables in a hallway. The scenes are represented as regis-
tered point clouds.

the computed joint angles are stored and the next
end-effector is considered. Note that the locomotion
displacement between different configuration poses is
not altered in this process. In the case that none of
the available supportability affordances is reachable, we
deem the configuration pose invalid.

IV. EVALUATION

The proposed combination of loco-manipulation affor-
dance detection and whole-body pose sequence planning is
evaluated based on a set of four exemplary hallway scenarios
with different arrangements of tables (see Fig. 3). The tables
provide opportunities for supporting hand contacts along a
defined locomotion path. The scenes, which are assumed
to be entirely unknown to the robot, are represented as
registered point clouds captured using an ASUS Xtion Pro
sensor. In the evaluation scenarios, we employ the proposed
approach to plan locomotion pose sequences with supporting
end-effector contacts for the humanoid robot ARMAR-4.
Fig. 4 shows the geometric primitives extracted from the
scenes, as described in Section III-A. All considered ex-
amples define the target locomotion trajectory as a straight
path along the hallway. The trajectories are chosen such
that sequences of contact and non-contact phases with the
same end-effector (Scenario 1a and Scenario 2), unreachable
contact opportunities (Scenario 1b), as well as sequences of
simultaneous or alternating contact phases with both end-
effectors (Scenario 3 and Scenario 4) are captured in the



Scenario 1a/b (red/blue) Scenario 2

Scenario 3 Scenario 4

Fig. 4: Visualization of geometric primitives obtained from
the evaluation scenarios shown in Fig. 3, including aspired
straight locomotion trajectories.

evaluation. In all evaluation scenarios, the locomotion is
defined to start and stop in the configuration pose LFRF 1,
which represents a neutral double-foot support. The defined
locomotion distance varies between 2 m, 4 m and 6 m.

For model training, the dataset from [4] is used, consisting
of 137 human motion recordings from the KIT Whole-Body
Human Motion Database4 [31] that have been processed as
described in Section III-B. These recordings represent walk-
ing motions, in which different supportability affordances
from handrails and tables have been used during locomotion
tasks. The employed dataset is symmetric with regard to
left/right hand supports.

The proposed affordance-based pose sequence planner is
able to successfully find pose sequences for ARMAR-4 with
appropriate utilization of environmental support opportuni-
ties in all evaluated scenarios. The solution pose sequences
generated for the evaluation scenarios 1a, 2, 3 and 4 are visu-
alized in Fig. 5, where selected intermediate robot poses are
depicted with end-effector contact indicated by red highlight-
ing. The detected supportability affordance belief functions
are visualized as green areas in the respective first pictures.
The examples demonstrate that the affordance-based pose
sequence planner is able to produce meaningful multi-contact

4The motions can be found at https://motion-database.
humanoids.kit.edu/details/motions/<ID>/ with
ID ∈ {395, 396, 677, 678, 679, 681, 705, 724}.

poses for crucial points in a desired whole-body locomotion
trajectory, which can be used for subdividing the subsequent
trajectory planning into multiple computationally feasible
subproblems, as explained in Section II-B.

Table I lists performance measurements for the eval-
uation scenarios for trajectory lengths of 2 m, 4 m and
6 m, respectively. In order of appearance, the columns of
Table I represent the runtime of the affordance detection
process (excluding the generation of geometric primitives),
the resulting sizes of ΘSupport, the runtime of the affordance
filtering process from Eq. 6, the runtime of the octree
generation, the defined locomotion distance, the number of
iterations and validation steps performed by the planner, the
average runtime of the expansion step outlined in Algo-
rithm 2 and the runtime of the planning process. Note that
the first four values only depend on the scenario, not on
the locomotion distance. The figures show that affordance-
based pose sequence planning is computationally feasible
with a maximum total runtime of about 16 s in scenario 2.
The planning duration roughly corresponds to the intuitive
problem complexity and the choice of the pruning param-
eterization (pruneThresh and prunePeriod in Algorithm 1).
Since the employed pruning strategy unconditionally purges
paths whose modeled translation falls behind the current
path by a static threshold, large areas of continuous contact
opportunities (such as the two adjacent tables left to the
robot in scenario 2), which increase the number of possible
successor poses, lead to larger heap sizes and thus to longer
planning times.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel approach towards
affordance-based planning of whole-body multi-contact lo-
comotion actions for humanoid robots in unknown envi-
ronments. We tackle this problem by extending and com-
bining two previously proposed methods for the detection
of affordances in unknown environments and for the plan-
ning of whole-body pose sequences based on n-gram pose
transition models learned from human motion data. Our
approach produces a sequence of whole-body poses which
consider environmental contact opportunities as indicated by
detected affordances. The approach has been implemented
and evaluated using four exemplary scenarios for multi-
contact locomotion based on real sensor data.

In our future work, we will continue to pursue the pro-
posed approach and aim at completing it by implement-
ing methods for whole-body motion planning and whole-
body control based on the affordance-informed generation of
whole-body pose sequences. We further intend to apply the
concepts, which are evaluated in a kinematic simulation at
this point, to dynamically simulated robots and to the real hu-
manoid robot ARMAR-4, which requires means for the dy-
namic stabilization of generated motions. The consideration
of dynamic motions further raises the challenging question,
how dynamic properties of human motion demonstrations
can be appropriately transferred to the robot.

https://motion-database.humanoids.kit.edu/details/motions/<ID>/
https://motion-database.humanoids.kit.edu/details/motions/<ID>/


Pose #5 Pose #10 Pose #15 Pose #25 Pose #35

Pose #6 Pose #12 Pose #17 Pose #23 Pose #30

Pose #5 Pose #14 Pose #21 Pose #27 Pose #31

Pose #9 Pose #14 Pose #19 Pose #25 Pose #31

Fig. 5: Solution paths for the humanoid robot ARMAR-4 in the evaluation scenarios 1a (first row), 2 (second row), 3 (third
row) and 4 (third row). See Fig. 3 and Fig. 4 for descriptions of the scenario setups. The affordance belief function ΘSupport
is visualized in the leftmost pictures, in which support contact opportunities are highlighted green. Note that the presented
solutions are sequences of configuration poses with end-effector contact information, not continuous motion trajectories.



TABLE I: Runtimes of the different steps of the proposed approach in four scenarios with a total amount of 15 configurations.

Scenario Aff. Extr. Aff. Sampling Sz. Aff. Point Cloud Octree Distance #Iterations #Validations Expansion Planning

Scenario 1a
2m 1,044 5,024 4.19ms 4.41 s

250ms 707,760 173ms 9.17ms 4m 2,573 12,773 4.21ms 10.96 s
6m 4,690 22,174 2.65ms 12.76 s

Scenario 1b
2m 1,065 5,363 1.15ms 1.25 s

253ms 707,760 205ms 9.33ms 4m 1,001 5,205 1.20ms 1.23 s
6m 2,811 14,203 1.42ms 4.12 s

Scenario 2
2m 2,001 9,573 5.76ms 11.62 s

296ms 906,572 276ms 9.52ms 4m 3,708 16,569 3.40ms 12.77 s
6m 4,712 21,465 3.22ms 15.43 s

Scenario 3
2m 1,007 4,894 3.37ms 3.42 s

358ms 660,856 221ms 5.35ms 4m 1,009 4,802 2.15ms 2.23 s
6m 2,008 9,558 2.01ms 4.16 s

Scenario 4
2m 459 2,211 1.67ms 0.78 s

533ms 934,268 295ms 8.26ms 4m 1,892 9,505 2.30ms 4.43 s
6m 2,400 11,647 1.82ms 4.51 s
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