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Extraction of Physically Plausible Support Relations
to Predict and Validate Manipulation Action Effects

Rainer Kartmann*, Fabian Paus*, Markus Grotz and Tamim Asfour

Abstract—Reliable execution of robot manipulation actions
in cluttered environments requires that the robot is able to
understand relations between objects and reason about con-
sequences of actions applied to these objects. We present an
approach for extracting physically plausible support relations
between objects based on visual information which does not
require any prior knowledge about physical object properties,
e. g. mass distribution or friction coefficients. Based on a scene
representation enriched by such physically plausible support rela-
tions between objects, we derive predictions about action effects.
These predictions take into account uncertainty about support
relations and allow applying strategies for safe bimanual object
manipulation when needed. The extraction of physically plausible
support relations is evaluated both in simulation and in real world
experiments using real data from a depth camera, whereas the
handling of support relation uncertainties is validated on the
humanoid robot ARMAR-III.

Index Terms—Perception for Grasping and Manipulation,
Semantic Scene Understanding, RGB-D Perception

I. INTRODUCTION

ROBOTS operating in dynamic and cluttered environ-
ments must be able to infer a physically plausible scene

representation, which allows to leverage the environment for
manipulation tasks and ensure a successful action execution. In
cluttered scenes, a pure geometric reasoning about the scene
is not sufficient to plan and execute actions. Therefore, the
robot must be able to acquire and utilize knowledge about the
structure of the scene, i. e. how objects physically interact with
each other, in order to generate feasible and safe action plans.

Human perception automatically combines visual features,
prior knowledge, and basic physical constraints into a plau-
sible model of the scene. The latter part is known as naive
physics (see [1], [2]) since the human brain does not ac-
curately model all physical phenomena at work. Rather, a
simplified model based on prior knowledge about action-effect
relations is employed when acting in the world. Furthermore,
by identifying ambiguities and uncertainties in their scene un-
derstanding, humans are able to interact with the environment
to verify hypotheses about objects, their relations and possible
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Fig. 1: The humanoid robot ARMAR-III segmented the scene
based on RGB-D images. The support relations are visualized
in a graph, in which uncertain edges are marked red. In order to
lift the coffee filters on top of the pile, a precondition requires
no top-down support.

interactions with them, and to acquire new knowledge about
the scene structure. Inspired by the concept of naive physics,
we have investigated how a robot can extract physically
plausible support relations between entities in the scene based
only on geometric reasoning. Since our approach does not
require any prior knowledge about the physical properties of
an object, we need to explicitly take the uncertainty of support
relations into account.

Consider the scene in Fig. 1. The robot’s task is to lift the
coffee filters box on top of an object stack. The robot extracted
a geometric scene representation using RGB-D images from its
depth camera. Based on these 3D geometric shapes, physically
plausible but not necessarily accurate support relations are
extracted and represented as a directed graph, in which objects
are the nodes and support relations are the edges. The edge
from the top-most object to the box underneath is marked red,
indicating that such support relation is uncertain. Lifting the
coffee filters (Box_4) might cause falling of the underlying
box (Box_3). We can predict these action effects by observing
the preconditions of the lift action, which require the non-
existence of a support relation between the lifted object and
the box underneath (highlighted in red in Fig. 1). Instead
of not executing the action, our approach employs a safe
manipulation strategy using one hand to execute the action,
and the second hand to secure potentially falling objects.
Further, we use force measurements obtained from force-
torque sensors in the robot’s wrists to detect whether an object
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fell into the second hand and update the support relations
accordingly. To this end, we propose bimanual manipulation
strategies to cope with the inherent uncertainty about the
consequences of action executions.

There are two main contributions of this work. First, we
extend the concept of support relations by uncertainty detec-
tion based on a support polygon analysis, see Section III.
This allows the robot to detect potential top-down support
relations. Second, we propose a bimanual manipulation strat-
egy to cope with situations arising from an uncertain support
relation, see Section IV. Depending on the interaction result,
the robot validates or discards the support hypothesis. Sec-
tion V shows our evaluation results. We evaluate the extracted
support relations in simulated environments and on recorded
RGB-D views of scenes with varying complexity. Thereby,
we demonstrate how uncertainty detection improves recall
without inflating precision compared to other approaches. In
order to evaluate the safe manipulation strategy, we conduct
experiments with the humanoid robot ARMAR-III [3].

II. RELATED WORK

In Section II-A, we discuss semantic scene understanding
approaches which extract symbolic support relations from
images. Subsequently, Section II-B addresses related work
about stability reasoning under gravity. We cover relevant
approaches for predicting action effects on the perceptual level
in Section II-C, whereas Section II-D describes the prediction
of symbolic changes.

A. Semantic Scene Understanding

Scene understanding aims at describing a scene by its qual-
itative structure and spatial relationships [4]. In our previous
work [5], we utilized a graph-based semantic scene repre-
sentation based on neighborhood relations between geometric
primitives to allow execution of interaction possibilities in
a shared autonomous operation. In this work, however, we
go beyond modeling spatial relationships to consider physical
support between structures. Silberman et al. [6] rely on RGB-D
images to identify support relations for indoor environments by
utilizing a MAP inference approach and linear programming.
The authors exploit the Manhattan world assumption for their
scene understanding approach. However, this assumption is
not feasible for all scenarios. Further, only one supporting
object is considered in their work. The idea of a support
relation between objects has been extended by Panda et al.
[7], [8]. The authors identify support relations to plan an action
sequence to remove objects in order to get access to a specific
object. Besides neighborhood relationships, they also consider
the relationship type, i.e. support from below, support from
the side, or containment. While their approach relies on hand-
crafted rules and depends on a structure classifier, no physical
principles are considered in their work.

B. Stability Reasoning under Gravity

The general idea of stability reasoning is to incorporate
physics by considering stability under gravity. In [9], [10], a

stability relationship analysis between objects is proposed. Us-
ing a voxel-based scene model the authors cluster volumetric
primitives to physically stable objects using a stability func-
tion. Support relations can be used to improve other vision-
based tasks. Jia et al. [11] utilize a derived stability relationship
to improve scene segmentation based on a volumetric box
representation of the scene. Similar to the work of Panda et
al., the relation includes discrete types such as surface on-
top, partial on-top, or side support. However, planning and
safely executing action plans have not been considered so
far. Furthermore, in such scenarios, the assumption of having
a complete world model or sufficient information about the
objects is no longer valid. Mojtahedzadeh et al. [12] have
investigated the safe removal from an unstructured pile in
shipping containers based on geometric object representation.

C. Perceptual Prediction of Action Effects

Another relevant scientific area deals with dynamics antici-
pation. Given an action, the goal is to predict the dynamic be-
havior of the scene. Fromm et al. utilize a dynamic simulation
to predict the cost of an action in terms of undesired motions
of inactive objects in [13]. Sophisticated physics models or
dynamic simulations as used in [12] and [13] rely on prior
knowledge about the physical properties of the objects, such
as mass distribution and friction coefficients. However, these
properties typically vary between different scenes and may not
be available in unknown environments. Deep neural networks
have been used to predict action effects on the perceptual level
[14], [15]. Byravan et al., for example, designed a deep neural
network architecture called SE3-net to segment a scene into
objects and predict their rigid motion, given a 3D point cloud
and an action vector [16].

D. Symbolic Prediction of Action Effects

In order to predict the symbolic effects of actions, dif-
ferent methods have been proposed in the literature. Kernel
perceptrons can be used to learn the effects of actions [17].
They learn the difference in state after an action has been
applied. Object-Action-Complexes (OACs) were proposed to
model the expected change on an object as a consequence
of an action ([18], [19]). The unpredictability of an action
is defined as the difference between the actual change and
the expected change when executing an action. In their work,
they assume that actions are implemented fairly optimal, i. e.
they do not introduce undesired side effects in addition to the
expected change. In [20], the authors discover effect categories
of actions using unsupervised clustering methods. By learning
the relation between object features and the effect categories,
they can categorize objects based on the generated effects of
available actions.

III. EXTRACTION OF SUPPORT RELATIONS

In this work, we abstract the environment using basic 3D
geometric shapes like boxes, cylinders, and spheres extracted
from segmented RGB-D data. Both the extraction of support
relations and the presented manipulation strategy require an
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(a) Point cloud (b) Objects (c) Support graph

Fig. 2: Shapes are extracted from a 3D point cloud captured by an RGB-D camera (a) and used as input. Given the 3D
geometry and pose of each object (b), we extract binary support relations and represent them as a directed graph (c). Black
edges represent certain bottom-up support, blue edges are unknown and red edges are potential top-down support relations.

object representation consisting of geometry and pose. First,
we register multiple views into a single globally consistent
point cloud. To speed up subsequent steps, we then segment
the scene into plausible disjunct parts. To this end, we resort
to state-of-the-art methods available in the point cloud library
(PCL) [21]. We utilize a RANSAC model fitting approach
for each segment to determine its 3D geometric shape. To
address the issue of occlusion and missing data, we modified
the RANSAC box fitting approach of Garcia et al. [22], so that
we only need two visible faces instead of six. Fig. 2 depicts
an example scene, the extracted 3D geometric shapes, and the
derived support relations.

Our approach extends [12], which uses a Static Equilibrium
Analysis (SEA) to determine support relations. SEA requires
all objects and the range of their physical properties to be
known. Since objects are extracted from RGB-D images, our
method needs to handle incomplete knowledge. Furthermore,
we add explicit handling of objects with almost vertical
separating planes to further improve accuracy. We provide a
publicly available implementation of our method1.

A. Definition and Representation of Support Relations

Given a set of objects O represented by their geometric 3D
shape, our goal is to extract binary support relations SUPP(· , ·)
between each object pair. We follow the definition of support
relation given in [12]: For two objects A, B ∈ O we denote
SUPP(A, B) iff removing A causes B to lose its motionless state,
i. e. A supports B. For instance, B falls when A is removed.
This definition incorporates physical object interactions and
enables us to assess the scene’s stability when certain actions
are performed.

To represent support relations of a given object set O, we
define a support graph whose nodes represent objects and
whose edges indicate support. Support relations are transitive,
i. e. there are indirect support relations between objects without
direct contact. However, it is more practical to model only
direct relations explicitly and infer indirect relations as needed.
Therefore, a support graph is a directed graph Gs = (V,E)
whose transitive closure 〈Gs〉 = (V, ~E) models the support
relations with

V = O, ~E = {(A, B) ∈ O ×O | SUPP(A, B)} . (1)

1https://gitlab.com/h2t/semantic-object-relations

B. Act Relation Heuristic

In the first step of the support analysis, act relations ACT(· , ·)
as proposed by [12] are computed. Let A, B ∈ O be two objects
with given pose and geometry. Motivated by Newton’s third
law of motion, ACT(A, B) indicates that, due to gravity, A is
exerting a force on B. In this case, A is called acting and
B is called reacting. First, the contacts between A and B are
computed. To deal with perceptual inaccuracies, we increase
the size of the objects by a small margin δc ∈ R≥0 for contact
detection. Using the contact points and normals, the plane Psep

separating A and B is constructed. If A is above Psep and B is
below, we set ACT(A, B), and vice versa if B is above Psep.

When objects are located horizontally next to each other as
shown in Fig. 3c, it might not be clear which object is acting,
reacting, or whether a force is exerted at all. In these cases,
the separating plane will be almost vertical. As an extension
to [12], we introduce a threshold αmax. If the separating
plane’s rotation angle relative to the vector of gravity is below
αmax, we mark the act relations between the respective objects
as unknown. We will evaluate different values for αmax in
Section V.

After computing ACT(· , ·) for each pair of objects, we use
it to generate our first support hypothesis by setting

SUPP(A, B)⇔ ACT(B, A) . (2)

In other words, we state that an object B is supported by
another object A if B acts on A. This heuristic is valid in many
scenes where objects are stacked on top of each other (see
Fig. 3a), thereby offering a good basis for a support hypothesis.
However, there are cases of support which are not covered by
act relations. For instance, consider the configuration shown in
Fig. 3b. Clearly, B acts on A, and thus SUPP(A, B) according to
the act heuristic. In addition, it seems likely that A falls if B is
removed. As A does not act on B, this possible support is not
found by the act heuristic. By vision alone, one cannot know
whether B supports A. If most of A’s mass is located at its left
side, resting on C, it might not need support from B to be stable
under gravity. Still, this uncertainty must be detected and
taken into account when executing actions affecting a possible
support between B and A. The following section explains how
we detect uncertain support relations.
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(a) (b) (c)

Fig. 3: (a) Scene with solely bottom-up support. All support relations are correctly determined by the act hypothesis. (b) Scene
with possible top-down support from B to A. Depending on the mass distribution of A, it may fall or not when B is removed.
(c) Scene with vertical separating planes. While A supports B, there is no support between A and C.

C. Detection of Uncertain Support Relations

Approaches addressing top-down support typically assume
a uniform mass distribution [12], [13]. We present a purely
geometric approach for detecting potential top-down support.
Let Gs = (V,E) be the support graph resulting from applying
(2) to the computed act relations. Let A, B ∈ V be two objects
with (A, B) ∈ E, i. e. A supports B according to their act
relation. In order to decide whether B may also support A, we
consider how likely it is that A falls when B is removed. For
example in Fig. 3a, A is well supported by the objects below
it and will not fall when removing B. In Fig. 3b, however, A
is badly supported by the object below it. Since A is at rest
nonetheless, it seems likely that it is supported by B.

Thus, to decide whether A may fall when B is removed,
we examine how well A is supported by the other objects.
The process is visualized in Fig. 4. First, we project A to
the ground plane, resulting in a 2D polygon PA. If an object
has round faces or edges, it is approximated by a triangle
mesh. Second, each object C supporting A is projected onto
the ground plane as well, and its projection polygon PC

is intersected with PA. Then, the intersecting areas of all
supporting objects are combined into the set of polygons
PA = {PA ∩ PC | A, C ∈ O, SUPP(C, A)} representing the
directly supported area of A. The support polygon Ps is the
convex hull of the polygons in PA.

Finally, the support area ratio rs is computed as the propor-
tion of the supported area of A to its total area

rs =
area(Ps)

area(PA)
. (3)

Note that rs ∈ [0, 1], where rs = 1 if A is fully supported,
and rs = 0 if A is not supported at all, i. e. A is floating.
If rs is below a threshold rs,min, A is considered potentially
unstable. In this case, a new edge (B, A) labeled as uncertain is
added to E. If rs is above the threshold rs,min, A is likely well
supported by the objects below it and will stay at rest when B is
removed, so no edge is added. This reasoning is performed for
all pairs of objects, adding edges to Gs where potential support
is detected. The supported area ratio is a simple heuristic
which does not require explicit assumptions about the mass
distribution of objects. A more sophisticated model could use

(a)

(b) (c) (d)

Fig. 4: Example of support polygon construction. (a) The
object constellation. A supports B and is supported by C and
D. (b) The objects A, C and D are projected onto the ground,
creating polygons PA, PC and PD, respectively. (c) PC and
PD are intersected with PA, constructing PA. (d) The support
polygon Ps is the convex hull of the polygons in PA.

the supported volume ratio or estimate the object’s center of
gravity which requires more prior knowledge.

Uncertainty detection (abbr. UD) requires a base support
extraction method (see Section III-B) to determine supporting
objects used in the support polygon calculation.

IV. HANDLING UNCERTAINTIES IN ACTION EFFECTS

In [12], they generated an action plan by greedily choosing
to remove the object which causes the least motion. They
execute the action even if it would cause major disturbances.
Our approach detects potentially unsafe actions and employs
a safe bimanual manipulation strategy to cope with these
situations.

A. Detecting Unsafe Actions

We consider two operators push and lift, which the
robot can execute in order to manipulate a pile of objects.
However, our methods can be easily extended to more sophisti-
cated manipulation actions. Listing 1 specifies operators, their
preconditions, and effects. We use the predicate OBJECT(A)
to denote that A is an object with which the agent can interact.
The predicate HAND(H) identifies the end-effector H used
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�
push(A, B, H): Push object A on object B

using hand H
Precon.: OBJECT(A), OBJECT(B), HAND(H)

SUPP(B,A), ¬SUPP(A,B)
Effects: --

lift(A, B, H): Lift object A from object
B using hand H

Precon.: OBJECT(A), OBJECT(B), HAND(H),
SUPP(B,A), ¬SUPP(A,B)

Effects: ¬SUPP(B,A), SUPP(H,A)�
Listing 1: Definition of operators, i. e. actions which the robot
can execute, including their preconditions (Precon.) and
effects (Effects) using STRIPS notation.

to execute the action, and SUPP(A,B) requires a support
relation between objects A and B.

Uncertainties in the extraction of support relations might
lead to the execution of actions, which violate the defined
preconditions or have additional undesired effects on the
world state. We focus on the undesired effects on the support
graph, i. e. pushing or lifting an object causes other objects to
change their support relations. We use the previously described
uncertainty detection method (UD) to identify potential top-
down support relations. If the action contains a precondition
that relies on the non-existence of an uncertain support relation
involving the object to be manipulated, we can still execute the
action using a safer bimanual manipulation strategy. Consider
the case of lifting B in Fig. 3b. UD adds an uncertain support
relation SUPP(B, A) which may cause the undesired effect of
A falling. Using the second hand of the humanoid robot, we
can prevent these undesired changes in the scene structure.

B. Safe Manipulation Strategy

Given an object set O, a support graph, an action a on
a target object T ∈ O and an object S ∈ O with uncertain
support relation SUPP(T, S), we want to execute action a,
prevent any undesired effects caused by the existence of
SUPP(T, S) and detect whether SUPP(T, S) was true in the
initial scene.

We solve this problem by using one hand HT to execute
the primary action on the target object T, and the other hand
HS to secure the supporting object S. If S would fall after or
during the action execution, instead of falling unpredictably, a
new support edge SUPP(HS, S) from the securing hand HS to
the supporting object S is added. Using force-torque sensors
in the hand of the robot we can decide whether SUPP(HS, S)
needs to be added to the graph.

Algorithm 1 shows the implementation of the safe manipu-
lation strategy. First, we decide which hand executes the action
and which hand secures the supporting object. The action
hand is chosen by a simple heuristic. If the target object’s
position is to the right of the robot’s base, we choose the right
hand and vice versa. Then, we can calculate the secure and
target poses pS and pT needed to execute the action safely.

Algorithm 1: Safe Manipulation Strategy
Input: HR, HL: Right and left end-effector

T, S: Target and supporting object
a: Action to be executed
Fmax: Force threshold for fall detection
Gs = (O, E): Estimated support graph

Output: Gnew: Resulting support graph
Gcorr: Corrected initial support graph

HT, HS = ChooseHands(HR, HL, T, S);
pS = CalculateSecurePose(HS, S);
pT = CalculateTargetPose(a,HT, T);
ppre,T = CalculatePrepose(a,HT,pT);
qBody = SolveBimanualIK(HT,ppre,T, HS,pS);
MoveBody(qBody);
FT = CreateFilteredForceTorqueSensor(HS);
ExecuteAction(a,pT);
Enew = Ecorr = E;
if FT.MaxForceValue.z > Fmax then

Enew = E ∪ {(HS, S)};
else

Ecorr = E\{(T, S)};
end
return ((O, Enew), (O, Ecorr));

Before executing the action, the robot should move its end-
effector to a suitable prepose ppre,T. We solve the IK for the
kinematic chain consisting of both arms and a hip joint, to
allow bimanual manipulation. Using the resulting joint values
qBody, the robot moves its end-effectors to the secure pose and
action prepose. Before we execute the desired action, the force-
torque sensor of the supporting hand is started and a median
derivative filter is applied to detect changes more easily. If
the filtered force value in the z-direction (down) exceeds
the predefined force threshold Fmax, the unsafe support edge
existed and undesired side effects were prevented by adding
SUPP(HS, S). Otherwise, the edge SUPP(T, S) did not exist in
the initial scene and can be removed from the corrected graph.

In order to compensate for noise and drift in the force-torque
sensors of our robot, we use a median derivative filter to detect
the fall of an object onto the securing hand. Let Fw(k) be the
latest w ∈ N force sensor values at time step k ∈ N:

Fw(k) =
{
f(k), f(k − 1), . . . , f(k − w + 1)

}
, (4)

where f(k) ∈ R is the reported force value along the direction
of gravity at time step k. Let median(F ) return the median
of a finite set F ⊂ R. Then, the filtered value f̂(k) ∈ R at
time step k ∈ N is determined as follows:

f̂(k) = median(Fv(k))−median(Fw(k)) (5)

where v, w ∈ N are window sizes with w � v. The filtered
value will be close to zero if the applied force does not change.
However, a caught object will result in a significant peak (for
an example see Fig. 5).

V. EVALUATION

We evaluated both the extraction of support relations as well
as the handling of uncertainties in action effects. Simulation
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Fig. 5: Filtered force values during a push action. A fallen
object produces a clear peak, while the filtered force values
stay around zero when the object remains on the pile.

and real-world experiments were conducted on the humanoid
robot ARMAR-III [3] using the ArmarX [23] robotic frame-
work. A video showing our experiments is attached to this
paper and available online2.

A. Extraction of Support Relations

We evaluate our extraction methods on multiple scenes
containing piles of objects on a table. The RGB-D images
for the real world scenes were recorded using an ASUS Xtion
Pro. For the simulation, a depth camera was simulated. All
support hypotheses GHyp = (OHyp, EHyp) were constructed
using a contact margin δc = 10mm and a threshold for the
support area ratio rs,min = 70%. We used three base strategies
which can be combined with uncertainty detection:
α0: No separating plane angle threshold (αmax = 0◦)
α10N: Within threshold, assume no support (αmax = 10◦)
α10S: Within threshold, assume support (αmax = 10◦)
For each scene, we created a ground truth support graph

GGT = (OGT, EGT). In the simulation, we determined sup-
port relations of each object by registering what other objects
move due to the removal of the inspected object. For the real
scenes, we annotated the support relations by hand. All ground
truth graphs were transitively reduced to remove redundant
edges. We manually matched objects in OHyp and OGT, since
we are only interested in the extracted support edges. Table I
shows precision and recall for all scenes and each of the four
strategies calculated as

Prec =
|EGT ∩ EHyp|
|EHyp|

, Rec =
|EGT ∩ EHyp|
|EGT|

. (6)

Selected evaluation scenes are presented in Table II. The
α10N strategy is a strict improvement over α0, demonstrating
the usefulness of the threshold αmax. Almost all support
edges detected by α10N are correct. However, it misses more
edges than the other strategies resulting in the worst recall.
α10S produces a higher recall than α10N due to adding

2https://youtu.be/iEw-mDmnRGE

unknown edges to the support hypothesis. Yet, precision is
reduced considerably since not all of the added edges are cor-
rect. Adding UD improves recall without negatively affecting
precision in scenes containing top-down support (e. g. S4, R2,
R7). As can be expected, α10S+UD adds the most edges
out of all strategies and therefore achieves the best recall.
It also adds the most false positives, resulting in the worst
precision. Overall, α10S is too conservative and adds too many
edges. α10N+UD achieves high precision and recall values
by adding only potential top-down support edges. It offers
the best compromise between correctness and completeness
of the support hypothesis. Therefore, we propose that the
α10N+UD strategy is most suitable for scene understanding
in cluttered environments. We will also see its benefits for
robotic manipulation in Section V-B.

Further, we noticed that due to visual occlusions some of
the extracted objects were too small. The support hypothesis
was affected in two ways:

1) The extracted objects were not in contact, hence no
support was found. For example, this is the case in
scene R8, where Box_8 and Box_15 seem to float,
and Box_13 is not supported by Box_10.

2) Some objects were considered to be badly supported
because there seemed to be no object below them.
Consequently, UD generated wrong support edges. This
effect can be observed in scene R8, where Box_5 is
possibly supported by Box_2 and Box_3 according to
the UD strategy.

If the input point cloud was more complete and the objects’
extents were more accurately estimated, these errors could be
reduced.

B. Handling Uncertainties in Action Effects

In order to validate the handling of uncertainties, we con-
ducted experiments on the humanoid robot ARMAR-III. We
purposefully created scenes that contained uncertain top-down
support relations to trigger the safe manipulation strategy.
The robot was given the task of either lifting or pushing an
object which potentially supports another object underneath
it. We chose the same parameters for the support extraction
as in Section V-A, configured the force-torque filter with
v = 11, w = 101 (corresponding to time spans of about
300ms and 3000ms in our setup) and set the force detection
threshold to Fmax = 0.2.

In the first scenario, the task was to lift the coffee filters on
top of the yellow container (see Fig. 1). We shifted weights
inside the container to alter the mass distribution creating
both cases of existing and non-existing top-down support. The
second scenario involved a push action where we changed the
positioning of the supporting blue cereal box to provoke both
support cases. The robot was able to prevent the fall of the
bottom object in the case of real top-down support and detect
the fall of the object using its force-torque sensors (see Fig. 5).
In case of no top-down support, we detected that the object
did not fall on the robot’s hand.
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Strategy S1 S2 S3 S4 R1 R2 R3 R4 R5 R6 R7 R8 VL VP Mean

α0
Prec 1.00 0.71 0.71 0.80 1.00 0.78 0.67 0.86 0.86 1.00 1.00 0.75 1.00 0.86 0.86

Rec 1.00 1.00 1.00 0.89 1.00 0.78 0.67 0.86 0.86 1.00 0.75 0.75 0.83 0.75 0.87

α10N Prec 1.00 0.83 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.98

Rec 1.00 1.00 1.00 0.89 1.00 0.78 0.67 0.86 0.86 1.00 0.75 0.75 0.83 0.75 0.87

α10S Prec 1.00 0.63 0.56 0.73 1.00 0.73 0.75 0.93 0.81 1.00 1.00 0.58 1.00 0.88 0.83

Rec 1.00 1.00 1.00 0.89 1.00 0.89 1.00 0.93 0.93 1.00 0.75 0.75 0.83 0.88 0.92

α0+UD Prec 1.00 0.71 0.71 0.75 1.00 0.80 0.67 0.81 0.82 0.75 1.00 0.67 1.00 0.88 0.83

Rec 1.00 1.00 1.00 1.00 1.00 0.89 0.67 0.93 1.00 1.00 1.00 0.80 1.00 0.88 0.94

α10N+UD Prec 1.00 0.83 1.00 0.90 1.00 1.00 1.00 0.76 0.93 0.75 1.00 0.80 1.00 1.00 0.93

Rec 1.00 1.00 1.00 1.00 1.00 0.89 0.67 0.93 0.93 1.00 1.00 0.80 1.00 0.88 0.93

α10S+UD Prec 1.00 0.63 0.56 0.75 1.00 0.75 0.75 0.74 0.78 0.75 1.00 0.53 1.00 0.89 0.79

Rec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.99

TABLE I: Precision (Prec) and recall (Rec) of extracted support relations for all scenes and strategies. S1 – S4 are simulated
and R1 – R8 are real scenes. VL and VP are our validation scenarios (for lifting and pushing, respectively).

VI. CONCLUSION

We presented an approach for the extraction of physically
plausible support relations between objects in cluttered scenes.
Our approach allows detecting possible top-down support
relations, which need to be carefully handled during action
execution. To this end, we proposed a safe manipulation strat-
egy utilizing both arms of a humanoid robot to simultaneously
execute the given task and secure potentially falling objects.
We showed that physically plausible scene understanding is
possible without complete modeling of the scene dynamics and
physical object properties. With geometric reasoning based on
naive physics, a robot can plan safe manipulation actions. The
scenes we have considered include piles of objects on top of
a table. In future work, we will extend the work towards a
wider variety of scenes focusing on cluttered and unstructured
environments and apply the approach to whole-body loco-
manipulation actions.
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Scene Point Cloud Extracted Objects Support Hypothesis Support Ground Truth

S3

S4

R2

R3

R5

R7

R8

VL

VP

TABLE II: Selected evaluation scenes. We show the recorded point cloud, the extracted objects, our support hypotheses and
the ground truth support graph. Support hypotheses for all four strategies are visualized by color coding differing edges. Black
edges were generated by the α10N strategy and are also part of the three other strategies. Blue edges are part of the graph if
we use α10S, while red edges are added by UD. The scenes not shown in this table are slight variations of their neighbors,
e. g. R1 is a simpler version of R2 without the unknown and uncertain edges.
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