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Abstract

We present methods for extracting a fast indicator for push-recovery strategy selection from the data of an inertial mea-
surement unit mounted on a human or humanoid torso. The methods serve the purposes of detecting the beginning, the
direction and intensity of the push as well as predicting the feasible recovery strategy. We test our methods on a dataset of
78 push-recovery trials collected with a human subject and show the relation between push intensity and recovery strategy.

1 INTRODUCTION
In the research field of humanoid robotics there are great
efforts being made on addressing the problem of foot step
generation, trajectory optimization and motion planning for
bipedal walking (e.g. [1, 2, 6, 7]). These works demon-
strate that keeping a two legged robot with human pro-
portions stably balancing is a very difficult task, even un-
der controlled conditions. However, if humanoid robots
are to leave the research laboratories and fulfill tasks au-
tonomously and reliably in the field, even more attention
must be given to robust bipedal locomotion, the basis of
such operation.
It became evident in the finals of the DARPA Robotics
Challenge (DRC), held in June 2015, that even the most
advanced humanoid robots do not yet show the degree of
robustness in their locomotion capabilities that would be
desirable and necessary to reliably fulfill outdoor missions
[8]. Due to their technical complexity and fragility, most
humanoid robots are at a high risk of damage from falling
during walking, and many are not able to resume opera-
tion autonomously after such an incident even if undam-
aged (noteworthy exceptions being the very robust Atlas
robot [9] and the CHIMP robot [10] that succesfully got up
after falling during the DRC finals). This is why the re-
search on robust balancing and walking, equipping robots
with the ability to keep their balance even under challeng-
ing conditions, is crucially important for the advancement
of humanoid robotics. Not surprisingly, this problem has
gotten significant attention from researchers over the last
years (e.g. [5, 11, 12, 13]).
Disturbances from the planned motion can have a number
of different causes: They can result from an unstable or
moving ground (e.g. when walking over gravel), from col-
lision with an obstacle that was not incorporated in the mo-
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tion plan (e.g. tripping) or from collisions at torso height
(e.g. being pushed). The case of external disturbances in
the form of pushes is the one that is of the highest inter-
est for human/robot interaction, that is if humans and hu-
manoid robots are to work together in an otherwise con-
trolled environment. This will be the case for the most
immediately envisioned applications of such robots, be it
in personal care, rescue, or as factory co-workers. The
reaction to pushes as a source of disturbance (i.e. push-
recovery) is the part of balance recovery that has been given
the most attention in the robotics community. Hyon et al.
for example have presented a framework for balancing an
recovery from light pushes aimed at compliant interaction
with humans [14].
If an upright standing humanoid robot is pushed from the
back, there are three high-level strategies that it can ap-
ply to keep its balance [3]: The ankle strategy shifts the
center of pressure (COP) by applying torque to the ankle
pitch joints. This shift leads to a torque applied by the
ground reaction force (GRF) around the robot’s center of
mass (COM) that can be sufficient to recover from the dis-
turbance and let the robot remain balanced in the case of
relatively small pushes. Using the hip strategy, the robot
applies a torque to its hip pitch joint, causing its upper body
to bend. The reaction torque of this motion acts around the
robot’s COM and can be sufficient to recover from the dis-
turbed state, even for pushes that can not be handled with
the ankle strategy. Thirdly, if neither of the first two strate-
gies is feasible, the robot needs to take a step to let the GRF
at the new position generate a torque around its COM large
enough to compensate for the push and to come to a still
stand again.
The ankle strategy is the most straightforward to imple-
ment and therefore of limited interest to the research com-
munity. The hip strategy and several extensions that in-
volve the movement of other body parts to generate torques
that stabilize the robot are significantly more complex and
have gotten more attention (e.g. [15, 16]). One especially



interesting aspect of these works is the importance of an-
gular momentum control, largely inspired from human ob-
servation and by the fact that the whole-body angular mo-
mentum appears to be precisely controlled in the human
gait cycle [17]. Push recovery by stepping has been re-
searched as a dynamics problem, and using simplified lin-
earized models of the humanoid body such as the Linear
Inverted Pendulum and its derivatives ([4, 18, 19]), elegant
formulations for the necessary step length, such as the cap-
ture point concept [5], have evolved.
In this work, we address the question what high-level push
recovery strategy to use when presented with a specific
push. For this purpose we divide the possible recovery
strategies in two categories: those that do not involve a
step and those that involve stepping. The human with its
extremely sophisticated locomotion and balancing capabil-
ities is an ideal source of information that can help answer
such complex questions. Learning from human observation
is a promising line of research that is also being explored
in the literature for learning tasks from humans, especially
for humanoid robots that share a similar geometry with hu-
mans (e.g. [20, 21]). We suggest that the human example
as a source of information should be further explored, and
that the answer to the question of push-recovery strategy
selection can be learned from human observation.
Deciding on a strategy is difficult, as it has to happen in a
very early stage of the push recovery in order for enough
time to remain to successfully execute the recovery action.
Furthermore, the direction of the push has to be known as
early as possible so that the robot is able to react appropri-
ately. We explore the possibilities of using only minimal
sensory input to answer the questions about what type of
strategy to use and in which direction the step is applied.
The sensors we investigate are an external force sensor that
captures the applied push force and a body mounted inertial
measurement unit (IMU) that captures the linear accelera-
tion of the torso.

2 METHODOLOGY
To analyze the push that is exerted onto the human subject
during our data acquisition trials we investigate both an ex-
ternal force sensor and a body mounted IMU.

2.1 Sensing Tools
Force Measurement: We custom built a specific tool for
measuring the push force exerted onto a human subject dur-
ing push recovery experiments. The heart of the tool is
a very sensitive piezo-resistive load cell that can measure
forces of up to 1250N. The differential analog signal of the
force sensor is amplified and digitized using an analog to
digital converter (ADC) with 14 bit resolution. Periodic
sensor sampling is controlled by a microcontroller which
streams the data to a PC over a serial interface. As the elec-
tronics of the tool are battery powered and the serial down-
link for data transmission can be established wirelessly, it
offers great flexibility during experiments. The load cell

Figure 1 The force sensing glove, equipped with a piezo-
resistive load cell, a microcontroller and a wireless down-
link for data transmission. The leather cover is folded
back to expose the sensor.

is embedded in a 3D-printed adapter that includes a front
plate for pushing as well as a linear guiding mechanism.
All of this is fitted to a boxing glove, which allows for very
intuitive handling of the sensing system (Figure 1).
Acceleration Measurement: For acceleration measurement
we use an IMU from Xsens that provides 3D linear accel-
eration and the 3D orientation of the sensor. During our
experiments, we attach the IMU to the front of the sub-
ject’s torso by strapping it around the chest (see Figure 2).
As we are only interested in the torso’s linear accelerations
and not the gravity component of the acceleration, we per-
form a data processing step to remove the effects of gravity
in our measurements: Given the global orientation of the
IMU we transform the gravity vector into the sensor coor-
dinate system (CS) and subtract its three components from
the sensor acceleration readings. What remains is the grav-
ity free acceleration vector ag f with

ag f = am −RS
W

0
0
g

 (1)

where am is the measured acceleration in the sensor CS,
RS

W is the transformation matrix from the world CS to the
sensor CS computed from the IMU orientation, and g is the
magnitude of gravity (i.e. 9.81m/s2).
Relation between push force and torso acceleration:
During our push trials, we apply the pushing force at ap-
proximately the same height that the IMU is mounted on
the torso. Given the proportionality F = ma between the
force F acting on a body of mass m and its acceleration
a, it is not surprising to see that the measured push force
and the body acceleration show very similar progressions.
This is especially true for the first 300 ms of the push. Af-
ter this period, the reactive movements of the human add
additional acceleration to the torso, which results in a devi-
ation between the applied force and the measured acceler-
ation (see Figure 3). As we are interested only in the very
first moments of the push and its features that let us predict
whether a step should be taken or not, force and accelera-
tion data both serve our needs.



Figure 2 Subject wearing a motion capture suit and a
chest mounted IMU for COM acceleration measurement.
Note that motion capture data was not used for the pre-
sented study.

The IMU has two advantages over push force measure-
ment: It not only provides a measure of the acceleration
magnitude but also information about its direction, and it
is much easier to include in a robot than force sensors that
would allow measurement of interaction forces from vari-
ous directions. For these two reasons we use the IMU sen-
sor and the measured torso accelerations for quantifying a
push trial rather than the push force itself, although both
ways are feasible options.

2.2 Design of Experiments
We perform experimental push-recovery trials with a hu-
man subject in order to identify features in the torso accel-
eration that allow an early prediction of the type of push re-
covery strategy that will be used, and to identify the direc-
tion in which the push is applied. During the trials used for
the presented study, the subject wearing the IMU is pushed
from four different directions (right, left, back, front) and
for each trial the applied strategy type (stepping, no step-
ping) is recorded. All pushes are applied at shoulder height
either at the chest, the back or the shoulders.

3 EXPERIMENTAL RESULTS
3.1 Reference dataset
We collected a dataset that contains 78 push trials from
the four directions back, front, left and right. Pushes were
manually applied at different intensities so as to provoke
different push-recovery strategies. Each trial consists of the

Figure 3 Push force and magnitude of linear torso accel-
eration during a relatively hard push from the back, scaled
to match. Notice how the two are very similar in the first
300 ms of the push (between the dashed lines) and then
diverge due to push recovery actions by the subject.

push force applied, measured with the force measurement
glove, and the linear accelerations of the human subject,
measured by the torso-mounted IMU. Both quantities are
sampled at a frequency of 100 Hz and logged with consis-
tent time stamps for synchronization. The dataset also con-
tains a label for each trial, indicating the type of strategy
performed by the subject, either stepping or no stepping.
At the beginning of each trial, the subject is advised to
stand still with both feet placed in parallel and at shoulder-
width. It is further advised to not to take a step for push-
recovery unless it is necessary, in the sense that it can not
otherwise recover from the push. This is the strategy that
appears most feasible for robots: A step should only be
taken if necessary, as it involves more power consumption,
computational effort and a risk of falling by tripping or
stepping onto unstable ground. These instructions aim at
making the results applicable to humanoid robots and at
making the experiments reproducible. However, a certain
degree of unpredictability will remain due to the fact that
there are many influences to the human behavior, like vary-
ing body tension, varying attention levels and unpredictable
distractions.
From the data in the dataset we want to find ways to reli-
ably detect a push, to compute the direction in which the
push is applied and, most importantly, find a feature that
allows an early prediction of the type of recovery strategy
used by the subject. Learning rules to interpret this feature
based on human observation will be useful for the develop-
ment of efficient push-recovery algorithms for humanoid
robots.

3.2 Push detection
The detection of the push in the continuous stream of rela-
tively noisy IMU data is the first step in the data processing
and the basis for all following steps. As it is not known
initially in which direction the push was applied, the push
detection routine should consider a quantity that is inde-
pendent from this direction. As a direction-independent



Figure 4 The measured magnitude of acceleration and
the derived jerk during a push applied at the back. The
green line shows the linear regression of the acceleration
for the 10 first samples (i.e. 100 ms) after the push was
detected.

quantity we chose the scalar magnitude of the acceleration
vector computed as

Ma =
√

a2
x +a2

y +a2
z (2)

where ax, ay and az are the gravity free components of the
linear acceleration vector. To find the beginning of a push, a
sliding window containing the newest and the last nd accel-
eration samples is considered. A push is detected when the
difference between the minimum and maximum magnitude
value exceeds a specific threshold td . To add robustness
against false positives to this method we require the maxi-
mum to occur after the the minimum, as a push in our ex-
perimental setup will always cause the torso acceleration to
increase. We found that the start of any push in our dataset
can be detected with values nd = 5 and td = 0.4m/s2. That
means that a push can be detected based on the real-time
IMU data as early as 50 ms after its beginning.

3.3 Push intensity
Our main intention is to identify and verify a feature that
can be efficiently extracted from the IMU data and that al-
lows for an early prediction of the push-recovery strategy
that the human will chose in a specific trial. A decision
strategy based on this feature derived from the human ob-
servation can than serve as a basis for efficient strategy se-
lection on a robot. We investigate how we can use the in-
tensity of the push as such a feature.
A direct measure for the push intensity would be the push
peak fore or peak body acceleration. However, as can be
seen in Figure 3, both the push force and body acceleration
take a significant amount of time to build up. This is why
the intensity of the push cannot be measured immediately
after the push is detected. While one way of quantifying the
push intensity would be waiting until a maximum acceler-
ation is reached, this seems not to be a feasible approach.
By the time the maximum acceleration is reached it might

Figure 5 All 79 trials from the dataset, colored by the
strategy observed during the experiments. The dashed
lines indicate the separation by the estimated direction
(dirctions of pi and −pi both indicate a push from the
back). The vertical lines are the borders that best separate
the two labels in the three categories (push from back,
front, side). The push intensity was estimated over the
first 18 acceleration samples (180ms) of a push.

well be too late to properly react, even if it was clear then
what the proper reaction to the push would have been.
Therefore, instead of the acceleration itself, we consider
the the derivative of the acceleration magnitude with re-
spect to time, or jerk, Ṁa. Considering the time deriva-
tive seems feasible, since a steep increase in acceleration
indicates a large maximum value, a strong push and there-
fore the execution of a stepping strategy. Similarly, a slow
increase in acceleration indicates a weak push that might
likely not require a step to be recovered from. The jerk it-
self, as the derivative of a measured quantity, is relatively
noisy and therefore not straight forward to interpret (see
Figure 4). To get a reliable estimation of the jerk value dur-
ing the first moments of the push we approximate the jerk
by fitting a least-squares linear regression to Ma over the
first nr samples after the start of the push. The slope of this
regression line serves us as an easy to compute and inter-
pret 1D feature that indicates the intensity of the applied
push.
Upper and lower boundaries for the number of considered
samples nr have to be considered. A low number is de-
sirable as it would allow to calculate the intensity feature
shortly after the start, leaving more time for the execution
of the push-recovery. However, with too few samples in
consideration, the estimation is less robust against outliers
in the data. With too many samples, the estimation of push
intensity might become available too late, or acceleration
samples that occurred after the peak are considered, which
leads the linear regression to produce unreasonable results.
To evaluate if this jerk estimate is a valid feature for push
recovery strategy prediction, we computed it for each trial
in our dataset, varying the parameter nr between 5 and 20



Table 1 Intensity based separation results for the pushes
in our dataset, separated by direction.

Push direction Correct strategy assignment
front 14 out of 18 (78%)
left and right 33 out of 40 (83%)
back 15 out of 20 (75%)

samples (i.e. using data between the detection of the push
and the following 50 ms to 200 ms). We then find the bor-
der in terms of computed push intensity that separates the
trials best into the two categories stepping (on the side of
higher intensities) and no stepping (on the side of lower in-
tensities). The best separation is the one that makes the
smallest numbers of wrong assignments. Both intuition
and our collected data indicate that push-recovery strate-
gies vary with the direction in which the push occurs. Due
to the feet being spaced at shoulder-width, larger pushes
can be accepted without the need for stepping when they
are applied from the sides than from either front or back,
where the foot size limits the effective dimension of the
support polygon. Taking into consideration these kinematic
differences that cause different push-recovery strategy se-
lection in the cases of the push being applied from the front,
the back or the sides, we set three individual decision bor-
ders for those three cases. We found that for our reference
dataset, the best separation results can be achieved with the
number of acceleration samples considered for push inten-
sity estimation nr set to 18. With this number, decision
borders that lead to smallest amount or wrongly predicted
strategies are found. The decision boarders in this case are
located at 1.25, 1.81 and 1.31m/s3, for pushes from the
front, the sides and the back, respectively. Table 1 summa-
rizes the prediction results shown in Figure 5.

3.4 Push direction
For a robot to plan and execute a push recovery routine, it
is essential to know the direction of the applied push. Only
then is it possible to react in the right way, e.g. taking a
step to the right when pushed from the left. Mathemati-
cally, computing the direction of a vector from its compo-
nents is straightforward. Given the horizontal components
ax and ay of the acceleration vector of a body, the horizon-
tal direction of the acceleration can be computed with the
two-argument inverse tangent function atan2(ax,ay). The
atan2 outputs an angle in the range from −π to π . One way
of making use of this is to compute the sample-wise accel-
eration direction using atan2(ax,ay) for the same samples
that are used to compute the push intensity as described in
section 3.3. To reduce the dimension of the result to 1D,
the mean value of the results is computed. This simple
approach works well, except for push directions close to
180◦, where atan2 has a discontinuity (switching from π

to −π), causing the average to be somewhere in between,

(a) Recorded data of a trial with a push applied from the back. Note
how the sample-wise computed acceleration direction switches be-
tween π and −π during the push.

(b) The result of the direction estimate for 78 push trials using the
mean value of sample-wise direction computation over the first 18
samples, colored by the actual direction. Pushes from the back can-
not be correctly detected using this method.

Figure 6 Difficulties with detecting the push direction of
pushes applied from the back when using the mean value
of sample-wise computed acceleration direction.

but not where it should be (close to π or −π). This is illus-
trated with a sample push from the back and all pushes in
the dataset in Figure 6.
To avoid this problem, we use a technique similar to the
one used for push intensity estimation described earlier:
We fit a least squares linear regression to the first nr sam-
ples of the horizontal acceleration components and extract
the regression line slopes ȧxr and ȧyr. The push direction is
then computed based on these two values as

dp = atan2(ȧxr, ȧyr) (3)

This method is robust against the discontinuity in atan2()
and correctly assigns the direction (π or −π) to all pushes
from the back in the reference dataset. Only one push that
was applied from the front is wrongly assigned a direction
value in the 0.25π to 0.75π region, that indicates a push
from the right. The results of the direction estimation for



Figure 7 Results of push direction estimation using the
slope of linear regression lines to the horizontal accelera-
tion components as input. Note how pushes from the back
are correctly classified.

all 78 pushes in our reference dataset are illustrated in Fig-
ure 7. Each datapoint represents one trial and is colored
by the actual direction from where the push was applied.
The dashed horizontal lines are spaced π/2 apart and mark
the boundaries of the areas in which the pushes should lie
(ideally at 0, −π/2, π/2 and ±π for pushes from the front,
left, right and back, respectively).

4 CONCLUSION
4.1 Summary and discussion
In this study we aimed at finding ways of extracting useful
information for bipded push recovery from a torso mounted
IMU. We performed 78 push-recovery trials with a hu-
man subject in which we collected acceleration data and
also recorded the type of strategy that the subject chose for
push-recovery, either one that involves stepping or one that
does not involve stepping. We aimed at extracting three
pieces of information from the IMU data:

4.1.1 The point in time when the push begins
We compute the linear acceleration magnitude from the
three acceleration components after we remove the influ-
ence of gravity. In a window that spans from the most re-
cent acceleration sample back over a fixed number of older
samples we compute the difference between the minimum
and the the maximum acceleration magnitude value. If this
difference is greater than a certain threshold, we conclude
that a push started at the beginning of the inspected inter-
val. We found that it is enough to take the 5 most recent
IMU samples into consideration to reliably find the start of
a push in our dataset. As we sample the IMU with a fre-
quency of 100 Hz, this means that a push can be detected
50 ms after it began.
The evaluation of this push detection mechanism was per-
formed only qualitatively, as there is no reference algorithm

or ground truth to compare it against. We visually verified
for all our trials that the linear regression line computed for
intensity estimation starts at the beginning of the acceler-
ation magnitude peak that indicates the applied push. An
example of this can be seen in Figure 4.
The benefit of this push detection algorithm lies in its sim-
plicity. Every computation involved in the push-recovery
of a robot must be able to run in real-time, which motivates
simple algorithms. The disadvantage lies in the two param-
eters, the number of considered samples and the detection
threshold, that require experimental tuning.

4.1.2 The direction in which the push is applied
Estimating the direction of the applied push is equal to the
problem of computing the direction of the torso acceler-
ation. Two problems complicate this calculation: Firstly,
the acceleration measurement is noisy so that some degree
of smoothing or averaging needs to be applied. Secondly,
when computing the direction from the horizontal acceler-
ation components using the inverse tangent atan2 and av-
eraging afterwards, the results are spurious for pushes ap-
plied in directions close to 180◦due to the discontinuity in
the inverse tangent. To get a reliable estimate of the push
direction we fit linear regression lines over the first hori-
zontal acceleration samples after the push was detected and
compute the inverse tangent of the slopes of these lines.
We computed this direction feature for every push in our
dataset. For evaluation purposes we plotted the trials col-
ored by the direction of the push along with lines that in-
dicate the areas in the plot that indicate the four directions
fron, right, left and back. Only one the direction estimate
for one trial in our dataset lies in the wrong area of this plot
(see Figure 7).

4.1.3 The intensity of the push
We hypothesized that the measure of intensity that we
found can be an indicator for the push recovery strategy
that the human subject will chose. Verifying this assump-
tion was the main goal of our experiments. For this pur-
pose we first defined a measure for the push intensity. We
quantify the intensity of the push by the slope of the linear
regression line to the magnitude of the torso’s acceleration.
This can be interpreted as a measure for the torso jerk. The
jerk itself is relatively noisy and therefore difficult to work
with, whereas the proposed estimate represents an easy to
interpret 1D feature of the acceleration measurement dur-
ing the push.
Our hypothesis was that this measure of push intensity
early during the trial is an indicator for the type of push re-
covery strategy the human will chose. We found that, when
considering the first 180 ms of acceleration data since the
detected beginning of the push, the trials can be separated
along the intensity-axis with a total of 79% trials being on
the correct side - the pushes that provoked the subject to
take a step on the side of higher intensity and the ones that
did not require a step on the side of lower intensity (see
Figure 5 and Table 1). To achieve this result we divided the



trials into three categories: those that involve steps from
the back, the front an the sides. This seems feasible as the
kinematics of the human and humanoid body require differ-
ing push recovery actions for pushes applied from different
sides. We conclude from these results that it is possible to
decide on a push recovery strategy based on the proposed
push intensity estimation. We did not intend to train a gen-
eral classifier as the exact value for intensity-based sepa-
ration of pushes into the categories requires stepping and
does not require stepping is not easy to generalize, espe-
cially not between different subjects/embodiments. How-
ever, we believe that the proposed measure can be a valu-
able component in push-recovery planning and execution,
together with other sensory input available on a robot and
that the observations we made will also be valid on hu-
maonid robots, as their kinematics and dynamics are inher-
ently similar to those of the human body.

4.2 Future work
In future work we plan to reproduce our experimental
trials in the dynamic simulation of a full-size humanoid
robot and further verify that push-recovery strategy selec-
tion based on the estimated push intensity from the torso
acceleration during the first 180 ms of the push is a useful
method.
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