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Abstract— Generating robot motion trajectories instanta-
neously in the moment unforeseen sensor events happen is
very essential for many real-world robot applications. Using
a previous work on online trajectory generation as a basis,
this paper proposes an alternative approach that also takes
dynamic models into account. The former class of algorithms
does not take into account dynamically changing acceleration
capabilities based on maximum actuator forces/torques. This
paper extends target velocity-based algorithms of the previous
approach by taking into consideration the entire system dynam-
ics when generating trajectories online within one control cycle
(typically 1ms or less). The extension considers the acceleration
capabilities of a robot at every discrete time step assuming
constant values for the maximum actuator forces/torques,
thus allowing the generation of adaptive trajectory profiles
during the motion of the robot. Several real-world experimental
results using a seven-degree-of-freedom lightweight robot arm
underline the relevance of this extension.

I. INTRODUCTION

Integrating sensors in robot motion control systems and us-
ing sensor signals at several levels — for perception, for high-
level task and motion planning, for discrete or continuous
task transitions, and for low-level trajectory generation and
feedback control — is essential for all domains of robotics. A
major obstacle that prevents robots from accomplishing real-
world tasks is their inability to physically interact with, and
effectively manipulate, the most common objects generally
found in human environments. Robots generally employ pre-
cision to perform a manipulation task. Humans, in contrast,
employ compliance through tactile and force feedback to
overcome their imprecision, allowing them to resolve un-
certainties associated with the task. The lack of compliance
and force control has been indeed a major limiting factor
in the ability of robots to interact and manipulate in human
environments.

Considering robots with compliant motion control capa-
bilities (e.g., [1], [2]), different — task-dependent — reaction
behaviors [3] are desired in the moment a collision is
detected. In the moment a potential collision is detected,
high control gains are desirable in order to let the robot move
away from the objects that it is about to collide with [4]. To
achieve the best immediate reaction behaviors for avoiding
collisions, controllers have to be switched and trajectories
have to be generated instantaneously in order to allow smooth
and continuous motions during discrete switching events.
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Fig. 1: Overview: online trajectory generation algorithms
[5]–[7] are combined with offline methods [8]–[10] to take
into account time-varying acceleration capabilities.

In this paper, we consider a robot with multiple degrees of
freedom (DOF) with constant maximum joint forces/torques.
The kinematic and dynamic model of the system is known,
and we take the concepts of [5]–[7] as a basis, so that
trajectories can be generated online from arbitrary states of
motion. While the existing algorithms [5]–[7] assume con-
stant acceleration values over entire trajectories, we propose
a new concept that

1) generates robot motion trajectories from arbitrary
initial states of motion within one low-level control
cycle (≈ 1 ms) and

2) takes into account jerk-limits and dynamics not
only locally but globally over the entire trajectory.

The acceleration capabilities based on the dynamics have
depending boundaries between each single axis, while the
acceleration constraints used for the online trajectory gener-
ation have to be linearly independent. The new concept takes
this into account and converts the depending capabilities
into linearly independent constraints. Trajectories that will
bring at least one of the actuators into force/torque saturation
are computed instantaneously in the moment unforeseen
sensor signals or events happen. As a result, robots can
employ their full dynamic capabilities immediately and react
instantaneously (cf. Fig. 1). This method can be applied
to purely position-controlled mechanisms and to variable-
stiffness systems.

II. RELATED WORK

In [11]–[14], overviews on robot motion planning algo-
rithms are given. Most related to this work are the online



trajectory generation (OTG) concepts of Broquère et al. [5],
Haschke et al. [6], and Kröger et al. [7]. All three approaches
allow generating robot motion trajectories from arbitrary
initial states of motion, however, they are not capable of
using dynamic models for their planning procedures, so that
varying acceleration capabilities are not taken into account.

Based on the approach of Hollerbach [15], Bobrow et al.
[8], Shin et al. [10], and Pfeiffer et al. [9] independently
developed a technique for time-optimal trajectory planning
for arbitrarily specified paths.

Here, robot dynamics are described in dependence on a
parametric path representation, so that a maximum acceler-
ation is calculated for each point of the trajectory.

Dahl et al. [16] suggested an online trajectory adaptation
method to improve the path accuracy of pre-planned robot
motions. Using the basic algorithm of Bobrow/Pfeiffer/Shin
[8]–[10], their method adapts the acceleration along the path,
and furthermore the parameters of the trajectory-following
controller are adapted online, so that underlying trajectory-
following controllers become adapted depending on the
current motion state.

An offline numerical approach has been shown in Wu
[17], which assumes a given path and also limits the jerk.
The method does not allow start and target velocities and
accelerations to be unequal to zero.

The real-time adaptive motion planning framework by
Vannoy et al. [18] and elastic strips framework by Brock
et al. [19] are key to implement reactive motion control
behaviors in robot control systems. These works use splines
to represent calculated trajectories; it is the task to calculate
respective sets of spline knots and trajectory parameters
during runtime.

Instead of generating motion trajectories, a concept pro-
posed by Haddadin et al. [20] uses virtual springs and damp-
ing elements as input values for a Cartesian impedance con-
troller. Other recent online trajectory generation approaches
were published by Guarino Lo Bianco et al. [21]. Based on
the work of De Luca et al. [4], a time-scaling method is
proposed that takes into account dynamic models of robot
systems. Formulated as a control problem, the works of
Khansari-Zadeh et al. [22] illustrates a new trajectory gen-
eration method allowing immediate reactions to unforeseen
sensor signals. Zanchettin et al. [23] show a very similar
concept and applies it to human-robot interaction scenarios.

III. ONLINE TRAJECTORY GENERATION (OTG)

This section briefly summarizes the functionality and
nomenclature used for the target velocity-based OTG of
[7]. The new target velocity-based dynamic OTG will be
described based on this.

Figure 2 illustrates the input and output values: At a
discrete instant ti, the algorithm receives the command to
calculate a synchronized motion trajectory, which transfers
the motion state from Ξi to Ξi,trgt within the shortest pos-
sible time while not exceeding the given motion constraints
Bi.

Fig. 2: Input and output values of the target velocity-based
Type IV OTG algorithm (cf. [7]).

We assume a time-discrete system with ti = ti−1 +
tcycle and i ∈ {1, . . . , N} where tcycle represents
the cycle time. Time-discrete values have in comparison
to time-continuous values an additional subscript i. The
position of a robotic system with K DOFs at time ti is
qi = (1qi, . . . , kqi, . . . , Kqi)

T , the time derivations are
indicated by a dot on top. A complete motion state at
time ti is described by the matrix Ξi = (qi, q̇i, q̈i) =
(1ξi, ..., kξi, ...,Kξi)

T . kξi stands for the k-th row of the
motion state matrix Ξi. The desired target motion state at
time instant ti is contained in Ξi,trgt = (q̇i,trgt, q̈i,trgt), a
target position can not be defined for the target velocity-based
OTG algorithm.

The kinematic motion constraints at a time ti are denoted
asBi =

(
{q̈i,min, q̈i,max}, {

...
q i,min,

...
q i,max}

)
and constrain

the motion state Ξi ∀ i ∈ {1, . . . , N}. All variables
combined are the input parameters of the OTG algorithm

W i = (Ξi,Ξi,trgt,Bi) . (1)

The target velocity-based OTG algorithm computes Ξi+1,
which is the motion state on the kinematically time-optimal
trajectory that will be used as a command value for under-
lying controllers at ti+1. All DOFs will reach its desired
velocity Ξi,trgt simultaneously. For more details about the
algorithm, please refer to [7].

While the values of the elements of the kinematic mo-
tion constraints Bi can be changed at every instant ti,
the algorithm assumes that Bi is constant. This way, the
dynamic capabilities of robot system cannot be deployed,
and conservative values for Bi have to be chosen to compute
executable trajectories. In order to fully deploy the time-
varying maximum acceleration capabilities, OTG algorithms
have to take into account dynamic models. Our goal is
to generate dynamically time-optimal trajectories that are
provided within one control cycle, that is, within tcycle.

IV. DYNAMICS AND PROBLEM DESCRIPTION

The standard form of the equations of motion in joint
space is given in Eqn. (2.37) of [24]:

M(q) q̈ + c(q, q̇) q̇ + τ g(q) = τ (2)



(a) Zoom to
one single
configuration.

(b) Acceleration capabilities for a Configuration
Range in joint space.

Fig. 3: Acceleration capabilities in joint space for one and
several configurations.

the vector q contains the joint positions, M(q) is the mass
matrix, c(q, q̇) are the Coriolis/centrifugal torques, τ g(q)
are the gravity torques and τ are the actuator torque. Using
Eqn. (2) leads to the inverse dynamic model

q̈extr =M(q)−1 (τ extr − τ g(q)− c(q, q̇) q̇) (3)

where the extreme actuator torques τ = τ extr are mapped to
the extreme joint accelerations q̈ = q̈extr. The corner values
q̈ extr can be found through combination of the extreme
torque values kτextr of each individual actuator:

∀ k ∈ {1, . . . , K} : kτextr ∈ (kτmin, kτmax) (4)
with kτmin ≤ kτ ≤ kτmax (5)

We assume that elements of τmin and τmax are constant
and do not depend on q̇. In order to illustrate the joint
acceleration capabilities, Fig. 3 considers a simple two-DOF
planar robot with two revolute joints. Fig. 3a shows how the
maximum torques (blue) map to the maximum accelerations
(red). The extreme torque combination (1τmax, 2τmax)

T

is shown by the blue arrow pointing to one corner of the
blue rectangle. The blue arrow maps to the red arrow,
which stands for the equivalent extreme acceleration corner.
The green arrow indicates the direction of the current joint
velocity. Figure 3a is an excerpt of Fig. 3b, where also the
mapping for other joint position configurations at the same
velocity is given.

A. Acceleration Parallelotopes

The mass matrix maps actuator forces to accelerations,
while the Coriolis/centrifugal and the gravity torques cause
an offset. Figure 4 visualizes this: For 1D, a line segment
is mapped to another one. for 2D, the torque rectangles are
mapped to a parallelogram with a shifted origin compared to
the torque-box origin. For 3D, the shape of the acceleration
capabilities is called parallelepiped. For the general case of
n-dimensions, the shape is called parallelotope (PT).

If the origin of the acceleration coordinate system is inside
the PT, the manipulator could theoretically accelerate in
all directions with values anywhere between zero and the
extremal values described by the PT bounds. Any chosen
acceleration direction can also be extended to its negative

Fig. 4: Visualization of parallelotopes.

direction. If the sum of Coriolis/centrifugal and gravity
torques surpasses the available actuator torques, the origin
moves outside the PT. In this case, the robot can only
accelerate in one of the directions laying inside a truncated
cone. The minimal and maximal acceleration values of a
direction vector inside the cone have the same sign. The apex
point of the cone is the origin of the acceleration frame, the
cap point is the first intersection of the central ray with the
PT, the base point is the second intersection with the PT. In
the further discussions we assume, that actuator torques are
always high enough, so that the origin of the acceleration
frame is always inside the PT.

V. TARGET VELOCITY-BASED DYNAMIC OTG

A. One-Dimensional Path Representation

The target velocity-based OTG provides an initial motion
trajectory which is used when simplifying the analysis of
the acceleration capabilities of a multiple DOF robot to a
one-dimensional path problem. According to [8], a multidi-
mensional joint position trajectory q(t) can also be described
in dependency to the one-dimensional path variable s(t):

q(t) := r(s(t)) (6)

The path describes the arc length of a continuous position
progression and is defined by:

s(t) =

∫ t

t0

||q̇(t)|| dt (7)

The target velocity-based OTG computes a second-order,
piecewise defined velocity progression q̇(t), which does not
allow to solve the integral in Eqn. (7) in an analytical way.
Fortunately, only the derivations of s(t) are needed, as will
be shown later. The dependency to time is dropped in the
following to improve legibility. Differentiating Eq. 6 with
respect to time yields

q̇ =
∂r(s)

∂s
ṡ = rs(s) ṡ (8)

rs(s) describes the first partial derivation of r(s) by s. The



second derivation leads to

q̈ = rs(s) s̈+
∂rs(s)

∂s

∂s

∂t
ṡ

= rs(s) s̈︸ ︷︷ ︸
tang.acc.

+ rss(s) ṡ
2︸ ︷︷ ︸

norm.acc.

(9)

where the acceleration consists of a tangential component
along the path and a normal component perpendicular to the
path. The expression rss(s) is the second partial derivation of
r(s) by s. To prove this statement, we differentiate Eqn. (7)
by time:

ṡ = ||q̇|| (10)

Combining Eqn. (10) with Eqn. (8) leads to:

q̇ =
q̇

||q̇||
||q̇|| = rs(s) ṡ (11)

This shows that the velocity consist of a unit vector tangential
to the path:

rs(s) =
q̇

||q̇||
=
q̇

ṡ
. (12)

rs(s) times s̈ results in the tangential acceleration of Eqn. (9)
and the vector rss(s) describes the change along the path s
and is therefore always perpendicular to rs(s). rss(s) is a
vector normal to the path.
rss(s) is calculated using Eqn. (9):

rss(s) =
q̈ − rs(s) s̈

ṡ2
(13)

For the second derivation of s follows

s̈ =
∂ṡ

∂t
=
∂||q̇||
∂t

=
∂
√∑K

i=1 iẋ2

∂t

=

∑K
i=1 iẋiẍ√∑K
i=1 iẋ2

=
q̇ · q̈
||q̇||

(14)

s̈, rs(s) and rss(s) all have ṡ in their denominator. In the
special case, that q̇ == 0 and therefore ṡ == 0, we have
to consider L’Hospital’s Rule to find a feasible solution. The
full derivations can be found in Sec. 4.1.2. of [25]:

a) Case 1: q̇ → 0 and q̈ → 0:

lim
ẋ,ẍ→0

s̈ = 0 (15)

lim
ẋ,ẍ→0

rs(s)
0<i

...
x<∞
=

...
x(q)

||...x(q)||
(16)

lim
ẋ,ẍ→0

rss(s) = 0 (17)

b) Case 2: q̇ → 0 and q̈ 6= 0:

lim
ẋ→0

s̈ = ||ẍ|| (18)

lim
ẋ→0

rs(s)
0<iẍ<∞=

q̈

||q̈||
(19)

lim
ẋ→0

rss(s) = 0 (20)

B. Combining Path Representation with Dynamics

We combine the one-dimensional path-representation with
the inverse dynamics model to derive the extremal accelera-
tions for a path described by the variable s̈. From this point
on we shorten rs(s) to rs and rss(s) to rss. We substitute
q̈ from Eqn. (9) into Eqn. (2)

M(q) (rs s̈+ rss ṡ
2) = τ − τ g(q)− c(q, q̇) q̇ (21)

Using α := M(q) rs and β := τ g(q) + c(q, q̇) q̇ +
M(q) rss ṡ

2 abbreviates Eqn. (21) to

α s̈ = τ − β (22)

The three variables τ , α and β only depend on q, q̇, ṡ,
rs and rss. q and q̇ can be acquired from sensor inputs in
the first instant the acceleration capabilities are calculated
and after that, it can be calculated in every time step using
the analytical descriptions of the polynomials generated by
the OTG algorithm. ṡ, rs, rss are calculated in every time
step using the values of q and q̇. We write the k-th row of
Eqn. (22), which stands for the k-th DOF:

kα s̈ = kτ − kβ (23)

In a next step, we take into account the torque capabilities,
which leads to K individual inequalities, one for each DOF:

kτmin − kβ ≤ kα s̈ ≤ kτmax − kβ (24)

Note that kα 6= 0, because the mass matrix M(q) is
always positive definite and rs is the non-zero path vector.
Therefore, Eqn. (24) can be written as:

kl ≤ s̈ ≤ kh , kl =

{
kτmin− kβ

kα
for kα > 0

kτmax− kβ

kα
for kα < 0

kh =

{
kτmax− kβ

kα
for kα > 0

kτmin− kβ

kα
for kα < 0

(25)

Equation (25) describes the range of joint accelerations s̈
for which a single actuator can hold the manipulator on its
joint path without violating the k-th constraint. To fulfill all
the constraints,

s̈ ∈ [kl, kh] for ∀k (26)

has to be fulfilled. Only if the absolute velocity is too
high, the intervals [kl, kh] will have no intersection for ∀k.
Otherwise there will be an intersection of all the intervals.
It follows that an admissible acceleration is any tangential
acceleration s̈ that does not violate Eqn. (24) for ∀k, that is:

s̈min ≤ s̈ ≤ s̈max, s̈min = maxk kl

s̈max = mink kh (27)

We transform s̈min and s̈max back into the n-dimensional
space to get the two intersections with the PT:

q̈min/max,path = s̈min/max rs + rss ṡ
2 (28)

For a given motion state Ξ, these two values express how
much the robot could accelerate/decelerate on the current



path while still staying on it. We transform these values in
absolute minimal and absolute maximal acceleration values
for ∀k ∈ (1 . . .K):

kq̈min,abs = min(kq̈min,path, kq̈max,path) (29)

kq̈max,abs = max(kq̈min,path, kq̈max,path) (30)

C. Merging Algorithm

In order to plan trajectories for every axis from start to
end, there has to be a period of acceleration and a period
of deceleration. kq̈min/max,abs represent only the limitations
of the current motion state, but do not work well for the
planning of a complete motion trajectory. A 2D example
in Fig. 5 illustrates the problem. Zero acceleration is at
the origin q̈1/2. The tangential acceleration is prolonged in
both directions till the line intersects with the boundary. The
intersection is q̈min/max,path (cf. Eqn. (28)). In a 3D or
higher dimensional case, the prolonged (hyper)line would
intersect with two of the (hyper)planes of the parallelotope
(PT). The brown dashed rectangle shows the absolute accel-
eration limits q̈min/max,abs. q̈min/max,abs are both positive
for all its coordinates, this is why the brown rectangle
does not include the origin. The values are not useful for
planning, since they would need to be at least extended
in the negative direction in order to include the origin.
This at least needed boundary is shown as a green dashed
rectangle. The discrepancy between what is given and what
is at least needed is shown as a grey area. The newly formed
green rectangle consists mainly of acceleration capabilities,
almost no deceleration capabilities are given. A very small
deceleration limit renders the execution time far too long and
is therefore not optimal at all.

Fig. 5: Acceleration capabilities for a given motion state.

The “potentially” available acceleration/deceleration capa-
bilities of the PT need to be considered, even though most
of it is not needed for the current motion state.

The following gives a more detailed overview for the
merging algorithm, the complete algorithm can be found in
Sec. 4.3. of [25]:

1) Using the current motion state Ξi, calculate the path
derivations ṡ, s̈, rs, rss.

2) Extend each coordinate axis in negative and positive
direction until they intersect with the boundaries. To
do this, we substitute the acceleration vector q̈ in
Eqn. (21) with the axis vector νl. νl = el νl, where el
is a unit vector along each axis with l ∈ (1, . . . ,K).
νl describes the scalar value of the vector along axis
l. The rest of the calculation is analogous to Sec. V-B.
It results in q̈min/max,axes.

3) If q̇ = 0 ∧ q̈ = 0: q̈min/max = q̈min/max,axes
4) Else: Calculate the extremal path accelerations

q̈min/max,path according to Sec. V-B.
For both q̈min/max,path, find the absolute values of
their coordinates, sort and rank their coordinates in
descending order. For the case, that both points have
on the same coordinate axis with the same sign their
largest value, we store the larger one as a constraint on
that axis and take a further look into the point, which
was smaller on that coordinate axis. Let’s call the larger
point A and the smaller point B. For B, we look at its
second largest coordinate and compare it with the same
coordinate axis of A. If both points have on that axis
a value with the same sign and the coordinate of A is
larger than the one of B, we look at the third largest
coordinate of B in the same way again. We repeat this
till they have either not the same sign or they have the
same sign and the coordinate of B is larger than the one
of A. We use the found value of point B as the second
constraint. If the coordinates of B were always smaller
than the ones of A, the point B is not used. The found
one or two constraining integer values from A and B are
taken as fixed constraints. The remaining coordinates
of A or B are compared coordinate by coordinate with
q̈min/max,axes and always the larger value is taken.
This is done to ensure, that the merged boundaries
always encompass q̈min/max,path. The merged result
is q̈min/max.

5) The optimized acceleration constraints q̈min/max are
used as acceleration constraints for the target velocity-
based OTG.

Figure 6 takes up the example from before to show
the concept of the Merging Algorithm. Extending the axes
starting from the origin with the dotted purple lines to the
PT results in two intersections per axis, which are the “axes
acceleration limits”. We compare the tangential acceleration
values with the axes acceleration limits and generate the
finally used acceleration constraints, shown by the dotted
green box. The key principle used herefore is the fact that
we only need to limit kq̈min/max,path each by its largest
coordinate value. For the other coordinate values, the axes
acceleration limits can be used. This principle works for any
number of DOFs. The gain in potentially usable acceleration
capability is shown by the grey box.

D. Dynamics, Merging Algorithm and OTG Combined

In the past, the acceleration constraints q̇i,min/max used
by the target velocity-based OTG were roughly estimated.
A possible approach to improve this would be to calculate



Fig. 6: Application example for the merging algorithm.

at the time a new target motion state Ξi,trgt is chosen the
acceleration constraints q̈min/max for the current motion
state Ξi according to Sec. V-C. We choose only a small
fraction of these constraints values as constant input to
the target velocity-based OTG to ensures that the acceler-
ation trajectory generated will always be executable without
tracking-errors, even if the motion goes through a robot
configuration which has only relatively small acceleration
capabilities. We do not settle with this rather pragmatic
approach, instead provide a new algorithm that consider the
dynamics throughout the motion. In the following will be
shown how we use the procedure of Sec. V-C for the cal-
culation of acceleration constraints and combine them with
the target velocity-based OTG. We provide two approaches
for the new target velocity-based OTG.

The general use case for a trajectory generator is the
following: An unforeseen event happens at ti, and the system
is in a motion state Ξi from which we have to generate a
new trajectory in order to reach a user-given value Ξi,trgt =
{q̇i,trgt, q̈i,trgt = 0} in the shortest possible time. The
target velocity-based OTG (cf. Sec. III) will bring the current
velocity as fast as possible to the target velocity by choosing
the shortest possible position trajectory to the target velocity
state. This version is useful if the system has to do an
emergency brake or if it has to get to a specific velocity
as fast as possible when approaching a workspace.

1) First Approach: We calculate the acceleration con-
straints for the start motion state and based on that generate
an initial motion trajectory using the target velocity-based
OTG. The DOF κ determines the execution time of the
complete trajectory, all other DOFs are adjusted accordingly.
We read out from the initial motion trajectory the next motion
state after one cycle time and calculate the new accelera-
tion constraints for it. We compute the ratios between the
current acceleration constraints and the initial acceleration
constraints for every DOF. Using the smallest ratio value we
adjust the acceleration constraint of the DOF κ at the current
step. We then call the target velocity-based OTG only for the
DOF κ. We take from this trajectory the next motion state
and only use the position value to look up the time η when

the original trajectory would have reached this position for
the DOF κ. For all other DOFs, we read out the new position
values from the original trajectory using the time η. Using
these new position values and the system cycle time, we
calculate the new velocities and accelerations. We compute
the acceleration constraints for this new motion state and
based on that calculate the ratios again. We repeat this until
the target velocity is reached. Further details on the exact
procedure can be found in Sec. 5.1. of [25]. This approach
is not stable, as it is shown in Sec. VI.

2) Second Approach: This algorithm optimizes an ini-
tially calculated motion trajectory by adjusting it at every
time step, if needed. The optimization is based on the
acceleration constraints calculated at every motion state.
The used path is computed by an initial run of the target
velocity-based OTG algorithm. This algorithm will not find
the global optimum, but it will optimize in real-time the
initially given trajectory to account fully for the dynamic
acceleration constraints of the system. The steps are detailed
in the following:

1) Define i = 0
2) For the values qi and q̇i of the current motion state

Ξi, calculate the joint space dynamic parameters of
the system as described in Sec. ??. The “Rigid Body
Dynamics Algorithm” of Featherstone [24] is used.

3) For the current motion state Ξi, calculate new values
for the minimum and maximum accelerations q̈i,min,
q̈i,max as described in Sec. V-C.

4) Call the Type IV target velocity-based OTG algorithm.
This will provide a trajectory (incl. path) for all K
DOFs to reach q̇i,trgt and q̈i,trgt = 0 at the same
time instant.
• Input values:

– motion state: Ξi

– current motion constraints: q̈min, q̈max,...
q 0,min,

...
q 0,max,

– target motion state: q̇0,trgt
• Output values: new motion state

– next motion state: Ξi+1

5) Optional: If the trajectory is executed on a robot
system, Ξi+1 will be send to the controllers.

6) Increment i
7) Check if q̇0,trgt is reached. If not, go back to step 2.
8) Ξi+1 describes the motion state at which q̇i,trgt is

reached.

E. Summary

The robot dynamics are described along a one-dimensional
motion path. Based on this, the acceleration is split into a
tangential and normal component, which again is used for
calculating the path depending acceleration capabilities. The
planning principle of the OTG does not allow to directly use
the acceleration capabilities gained from the path depending
method as acceleration constraints. A merging algorithm
is proposed which takes the results of the acceleration



capabilities along a path into proper acceleration constraints
that can always be used with the target velocity-based OTG.

The first target velocity-based dynamic OTG approach
calculates in a first step for all DOF an initial trajectory and
then optimizes it at every time step using the target velocity-
based OTG only for one DOF, the one that determines the
execution time. The input constraints of the target velocity-
based OTG are calculated taking into account the accelera-
tion constraints for every DOF. The one-dimensional output
result of the OTG is feed to an inverse lookup of the original
trajectory in order to determine the new motion state of the
remaining DOFs. The second target velocity-based dynamic
OTG approach uses for all DOFs the current acceleration
constraints in every time step as input for the OTG.

VI. EXPERIMENTAL RESULTS

A. Simulation

The first target velocity-based dynamic OTG approach of
Sec. V-D.1) showed unstable behavior when simulating it
in Mathematica. Only after a few time steps, the algorithm
suddenly destabilizes and the values go astray. Fig. 7 shows
this behavior for three DOFs. The first row of the figure
shows the target velocity-based OTG run for 73 time steps
and the second row shows what the first approach of the
target velocity-based dynamic OTG does in the same time
frame. After 60 steps, axes 1 and 4 start to go astray from
the target velocity-based OTG trajectory. This would not
necessarily be a problem as long as the target velocity would
finally be reached. But the target velocity-based dynamic
OTG breaks up after 73 steps because at that step the
allowable maximum acceleration is breached for axis 4.
The target velocity-based OTG trajectory reaches the target
velocity after 175 steps without exceeding the constraints.
This behavior also happens when varying the input values
randomly, it always destabilizes before reaching the target
velocity. Several smaller adjustments had been made to
the algorithmic procedure, but none of them stabilized the
algorithm.

Fig. 7: Target velocity-based dynamic OTG first approach
issues.

That is why we chose to work on the second approach for
the target velocity-based dynamic OTG. As you can see in
Fig. 8, the initial target velocity-based OTG trajectory shown
in the first row uses the acceleration constraints calculated at
start, while the target velocity-based dynamic OTG adjusts
the trajectory during the whole motion. The target velocity-
based OTG would breach the acceleration constraints after
about 50 steps while the target velocity-based dynamic OTG
stays within the upper and lower acceleration constraints.
These acceleration constraints are explicitly shown in Fig. 9.

Fig. 8: Target velocity-based dynamic OTG second approach:
Comparison of the initial OTG trajectory and the target
velocity-based dynamic OTG trajectory.

Fig. 9: Target velocity-based dynamic OTG second approach:
target velocity-based dynamic OTG values within minimal
and maximal acceleration constraints.

B. Robot Experiments

We were able to show in simulation that the second
approach of the target velocity-based dynamic OTG stays
within the limits and runs stable. We then implemented
the algorithm in C++ to run it at a rate of 1 kHz on a
“Lightweight Robot” [1]. The dynamic model of the robot
was identified through experiments and calculations (cf.
Sec. 6.1.4 and Sec. B.2. in [25]). To demonstrate a realistic
scenario, the robot received a metal disk as a payload with
a weight of 4.2 kg. In order to demonstrate the capability of
the second approach, we moved the robot from one point to
another and then manually activate the target velocity-based
dynamic OTG at a random instant. We first accelerate to
q̇ = (123, 86, 11, −28, 6, 29, 52)T ◦/s and then have the
target velocity-based dynamic OTG bring these three joints
back to zero-velocity. This is shown in Fig. 10.

VII. CONCLUSION

This paper combines target velocity-based online tra-
jectory generation with robot acceleration capabilities. An
acceleration can be split along its motion path into a normal



Fig. 10: Target velocity-based dynamic OTG second ap-
proach: Experimental results running the target velocity-
based dynamic OTG on the controller of a KUKA
Lightweight Robot.

and a tangential vector component. Extending the tangential
acceleration vector so that it intersects with the acceleration
capabilities described geometrically as a parallelotope results
in the acceleration limits for any given motion state. In
order to obtain suitable acceleration constraints for online
trajectory generation, the real acceleration capabilities were
converted to useful linearly independent values. The com-
bination of the acceleration constraints with the existing
target velocity-based OTG resulted in a target velocity-based
dynamic OTG, which was successfully implemented. The
target velocity-based dynamic OTG shows in experiments
that it fully uses the acceleration capabilities of a robot.

APPENDIX

The video attachment shows a series a online gener-
ated sample trajectories that are executed by a KUKA
Lightweight Robot IV. The robot is controlled at a rate
of 1 kHz through the Fast Research Interface. Addi-
tional demonstration videos may be found at http://
research.katzschmann.eu.
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A. Albu-Schäffer, and G. Hirzinger. Real-time reactive motion gener-
ation based on variable attractor dynamics and shaped velocities. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3109–3116, Taipei, Taiwan, October 2010.

[21] C. Guarino Lo Bianco and F. Ghilardelli. Third order system for
the generation of minimum-time trajectories with asymmetric bounds
on velocity, acceleration, and jerk. In Workshop on Robot Motion
Planning: Online, Reactive, and in Real-time at the IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages 137–143,
Vilamoura, Portugal, October 2012.

[22] S.-M. Khansari-Zadeh and A. Billard. A dynamical system approach
to realtime obstacle avoidance. Autonomous Robots, 32(4):433–454,
May 2012.

[23] A. M. Zanchettin and B. Lacevic. Sensor-based trajectory generation
for safe human-robot cooperation. In Workshop on Robot Motion
Planning: Online, Reactive, and in Real-time at the IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages 62–66,
Vilamoura, Portugal, October 2012.

[24] R. Featherstone and D. E. Orin. Dynamics. In B. Siciliano and
O. Khatib, editors, Springer Handbook of Robotics, chapter 2, pages
35–65. Springer, Berlin, Heidelberg, Germany, first edition, 2008.

[25] R. Katzschmann. Master thesis: Dynamic online trajectory genera-
tion. http://research.katzschmann.eu (accessed: Mar. 22,
2013).


