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Safe Reinforcement Learning of Robot Trajectories
in the Presence of Moving Obstacles

Jonas Kiemel1, Ludovic Righetti2, Torsten Kröger and Tamim Asfour1

Abstract—In this paper, we present an approach for learning
collision-free robot trajectories in the presence of moving obsta-
cles. As a first step, we train a backup policy to generate evasive
movements from arbitrary initial robot states using model-free
reinforcement learning. When learning policies for other tasks,
the backup policy can be used to estimate the potential risk of a
collision and to offer an alternative action if the estimated risk
is considered too high. No matter which action is selected, our
action space ensures that the kinematic limits of the robot joints
are not violated. We analyze and evaluate two different methods
for estimating the risk of a collision. A physics simulation
performed in the background is computationally expensive but
provides the best results in deterministic environments. If a data-
based risk estimator is used instead, the computational effort
is significantly reduced, but an additional source of error is
introduced. For evaluation, we successfully learn a reaching task
and a basketball task while keeping the risk of collisions low.
The results demonstrate the effectiveness of our approach for
deterministic and stochastic environments, including a human-
robot scenario and a ball environment, where no state can be
considered permanently safe. By conducting experiments with
a real robot, we show that our approach can generate safe
trajectories in real time.

Index Terms—Motion Control, Reinforcement Learning, Robot
Safety, Collision Avoidance

I. INTRODUCTION

IN recent years, model-free reinforcement learning (RL)
has become increasingly popular for generating robot tra-

jectories in real time. This trend is mainly driven by the
fact that model-free RL can be easily applied to a wide
range of robotic applications. Instead of using a differentiable
model of the system dynamics, well-performing actions are
identified during a training phase based on trial and error.
When performing movements with a real robot, however, it
is important to ensure that the selected actions do not cause
damage. One approach to avoid safety violations is to execute
an action only if the robot will remain in a safe state after
executing the action. However, when a robot is operating in
an environment with moving obstacles, determining whether
the subsequent state is safe becomes non-trivial: The exact
motion of the obstacles might not always be known in advance
and the kinematic constraints of the robot joints may limit
its ability to execute arbitrary evasive movements. In modern
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Fig. 1: Our approach shown for the Ball environment, where
balls are thrown towards the robot from random directions.

model-free RL, actions for a desired learning task are typically
generated by a task policy, which is parameterized by a neural
network. To prevent collisions during and after the training
phase of the task policy, we propose to additionally use a
backup policy trained on avoiding obstacles. As shown in
Fig. 1, the backup policy serves two purposes. First, an action
from the backup policy is executed if the task policy would
lead to an unsafe follow-up state. Second, a rollout of the
backup policy is used to assess whether the follow-up state
is safe. While the rollout can be carried out in a physics
simulator, we additionally evaluate the performance of neural
networks trained to estimate collision risks based on data from
previous rollouts. This becomes important when dealing with
stochastic environments and reduces the computational effort
required for real-time execution. The main contributions of the
work are:

• We propose an approach for learning safe goal-directed
motions in environments with moving obstacles while
considering the kinematic constraints of robot joints.
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TABLE I: Overview of related approaches that address instantaneous safety constraints by adjusting actions of an RL agent.

Action adjustment using Application scenario Main difference to our approach
• Pham et al. [1] Faverjon and Tournassoud’s method [2] Reaching task with an industrial robot Problem of conflicting constraints
• Fisac et al. [3] Reachability analysis Quadrotor control Model-based safety controller
• Wabersich et al. [4] Model-predictive control Pendulum swing-up, quadrotor control Model-based safety filter
• Kiemel et al. [5] Braking trajectories Reaching task with an industrial robot No consideration of moving obstacles
• Yang et al. [6] Backup policy trained via model-free RL Locomotion with a quadruped robot Model-based risk criteria
• Thananjeyan et al. [7] Backup policy trained via model-free RL Navigation and manipulation tasks Backup policy depends on task policy

• We investigate the impact of stochastically moving ob-
stacles, compare different methods to estimate collision
risks, analyze potential reasons for incorrect estimates,
and discuss measures to prevent them.

• We conduct a systematic quantitative analysis of the
presented approach by learning a reaching task and a
basketball task in three different environments. Experi-
ments with a real robot demonstrate that safe trajectories
can be generated in real time.

Our code is available at github.com/translearn/safeMotionsRisk.

II. RELATED WORK

The recent success of model-free RL in simulation environ-
ments has sparked a growing interest in research addressing
the challenges of safe reinforcement learning with real robots.
In model-free RL, safety constraints are typically formalized
using a constrained Markov decision process (CMDP) [8].
In this context, a distinction is made between cumulative
constraints [9], [10], which are defined with respect to a
penalty received over time, and instantaneous constraints,
which must be satisfied at each decision step. A survey of
various approaches to increase safety during and after the
training phase can be found in [11]. This work focuses on
addressing instantaneous constraints by adjusting risky actions
of an RL agent. An overview of existing approaches in this
field and their differences to the approach presented in this
work is provided in TABLE I.

Pham et al. [1] utilize Faverjon and Tournassoud’s
method [2] to avoid collisions with moving obstacles by
solving a quadratic program (QP). This approach, however,
does not ensure recursive feasibility, meaning that the QP
may not have a solution due to conflicting constraints. For
the specific case of collision avoidance in a two-dimensional
plane, Zhao et al. [12] addressed the problem of recursive
feasibility using barrier certificates. More generally, techniques
from model-based control can be used to increase safety when
using RL [13]–[15]. For example, Fisac et al. [3] utilize
Hamilton–Jacobi reachability analysis to avoid ground contact
with a quadrotor. Wang et al. [16] use barrier functions to
avoid collisions with static obstacles in the context of real-time
navigation. Wabersich et al. [4] utilize a safety filter based on
model-predictive control to swing-up an inverted pendulum
and to control a quadrotor in a simulation environment. The
safety filter modifies actions if no safely executable backup
trajectory with a specified time horizon is found otherwise.
While our approach is also based on the idea of safe backup
trajectories, we utilize a backup policy trained via model-free
RL to adjust risky actions. The use of a model-free backup
policy offers the advantage that no differentiable model of

the system dynamics needs to be specified [17]. Moreover,
generating an action with a backup policy represented by
a neural network requires little computational effort. In one
of our previous works [5], we utilized time-optimal braking
trajectories as backup trajectories [18], [19]. The approach
reliably prevents self-collisions and collisions with static
obstacles, but does not account for moving obstacles. To
overcome this limitation, we utilize model-free RL to train
a backup policy that actively avoids collisions with moving
obstacles which may behave stochastically. The use of model-
free RL is related to Yang et al. [6], where a backup policy
is trained to stabilize a quadruped robot, and to Thananjeyan
et al. [7], where backup policies are used for navigation and
manipulation tasks. In contrast to Yang et al. [6], our approach
does not make use of model-based risk criteria. Instead, the
risk of an action is determined by performing a background
simulation or by utilizing a data-based risk estimator [20].
Compared to Thananjeyan et al. [7], our backup policy does
not depend on the current task policy. As a result, the backup
policy can be used to learn different tasks without needing
to be updated. By utilizing a special action space for both
the task policy and the backup policy [21], we additionally
ensure that the resulting trajectories are jerk-limited no matter
which policy is selected. In our evaluation section, we provide
comparative results with two alternative approaches [1], [5]
that have been used in the context of industrial robotics.

III. PROBLEM STATEMENT

We assume that model-free RL is used to learn motions for a
robotic manipulator. During and after the training phase, self-
collisions and collisions with static or moving obstacles must
be avoided. In addition, the following kinematic constraints
must be satisfied by each robot joint at all times:

pmin ≤ θ ≤ pmax (1)

vmin ≤ θ̇ ≤ vmax (2)

amin ≤ θ̈ ≤ amax (3)

jmin ≤
...
θ ≤ jmax, (4)

where θ is the joint position.
As common for industrial robots, the base of the manip-

ulator is assumed to be fixed. In the most general case, a
motion determined by an action of an RL agent can be safely
executed if an infinite follow-up trajectory is known, such that
the composed movement satisfies the desired safety constraints
[18]. If no such trajectory exists, the action of the RL agent
needs to be adjusted. While reasoning over infinite trajectories
is impractical, the condition can be relaxed if safe goal states
exist. In this context, a safe goal state is a state in which a safe

https://www.github.com/translearn/safeMotionsRisk


KIEMEL et al.: SAFE REINFORCEMENT LEARNING OF ROBOT TRAJECTORIES IN THE PRESENCE OF MOVING OBSTACLES 3

Ti
m

e
st

ep
t

Task network

1 time step

Backup network

1 time step

Backup network

N−1 time steps

Ti
m

e
st

ep
t
+
1 Task network

1 time step

Backup network

1 time step

Backup network

≤ N−1 time steps

1. Background simulation to detect safety violations

No collision
detected

Task network

1 time step Ti
m

e
st

ep
t
+
1

Collision
detected

Backup network

1 time step Ti
m

e
st

ep
t
+
2

2. Motion execution

Fig. 2: Collision avoidance by ensuring the existence of a safe backup trajectory. See section IV-A for details.

follow-up trajectory is known. The most trivial case is a resting
state, provided that the robot is stopped in a region of the
environment where no moving obstacles are present. The better
a method performs in finding safe follow-up trajectories, the
less actions of the RL agent need to be adjusted. Restraining
the actions of the RL agent as little as possible is desirable to
avoid a negative impact on the learning performance.

If the obstacles in the environment do not move determin-
istically but according to a stochastic model, only stochastic
statements about potential collision risks are possible. As
a consequence, a trade-off between the exploration of the
environment and the risk of a collision has to be made. In our
work, we consider deterministic and stochastic environments
with and without safe resting states.

IV. APPROACH

A. Basic principle

The basic principle of our approach is illustrated in Fig. 2.
The figure shows two time steps of an environment in which
a robot has to avoid a ball thrown in its direction. Our goal is
to train a task policy, represented by a so-called task network,
without causing a collision. For this purpose, we make use of
a backup policy, represented by a backup network, that was
trained to avoid collisions beforehand. At both time steps t and
t+1, the first step is to compute a desired action using the task
network. Given the current state of the environment as input,
the output of the task network is a probability distribution
from which a desired action is sampled. However, before
executing the motion resulting from the selected action, the
backup network is used to generate a backup trajectory with
a duration of N time steps. The composed movement with a
duration of N+1 time steps is then checked for collisions in a
background simulation using a physics simulator. In the case
of time step t, no collision is found during the background
simulation. Consequently, the motion from time step t to t+1
is executed as defined by the action from the task network.
Contrary to this, a collision is detected during the background
simulation conducted at time step t+1. Thus, the action from
the task network is replaced by an action from the backup
network. Note that the resulting motion from time step t+ 1
to t + 2 was part of the collision-free trajectory simulated at
time step t.

Provided that
• the background simulation accurately reflects reality and
• a collision-free backup trajectory is found at least every

N + 1 time steps,
the method described above ensures that the resulting motion
of the robot is always collision-free. Ideally, N would be
infinite. In practice, N is limited by the computational effort
required for the background simulation. If obstacles do not
move deterministically, a single background simulation is no
longer sufficient to decide if an action is safe. To account
for stochastic environments, a so-called risk network can be
trained to predict the probability of a collision based on data
from previous rollouts of the backup policy. In this case,
a trade-off between the amount of adjusted actions and the
resulting average time to a collision emerges. The trade-off
can be controlled by selecting a suitable threshold value.

In the remainder of this section, we analyze potential failure
causes (IV-B), describe how the backup network is trained
(IV-C), clarify the risk estimation via risk networks (IV-D)
and explain the training of the task network (IV-D).

B. Failure mode analysis

In the following, we analyze conditions that can lead to a
collision even if a background simulation is performed. As
shown in Fig. 3a, a collision can occur if the initial state of
the environment is not safe. More precisely, this means that
a rollout of the backup policy from the initial state leads to
a collision. Collisions can also occur if the time horizon of
the background simulation is too short (Fig. 3b). A potential
mitigation is to extend the time horizon of the background
simulation N . However, a longer time horizon increases the
computational effort required for the background simulation.
A third possible failure cause becomes apparent when the
environment is non-deterministic. In the example shown in
Fig. 3c, a new ball is sampled once the previous ball missed
the robot. The direction of the new ball is selected randomly
and is therefore not known in advance. As a result, the ball
direction selected during the background simulation differs
from the actual ball direction. In stochastic environments, it is
possible to estimate the probability of a collision based on data
from previous rollouts of the backup policy. This can be done
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Fig. 3: Potential failure causes when performing a background
simulation to detect safety violations.

be training a so-called risk network via supervised learning.
When using a risk network, the computational effort no longer
depends on the time horizon N , so that real-time execution
becomes possible even if a long time horizon needs to be taken
into account. Risk networks can also be used to estimate the
risk of initial states. On the downside, it is important to note
that incorrect risk predictions by the risk network introduce
an additional source of error.

C. Training of the backup policy

To train the backup policy πB via model-free RL, we define
a Markov decision process (S,A, P,R). The backup policy is
represented by a neural network trained to map states st ∈ S
to actions at ∈ A such that the sum of future rewards is
maximized.

1) State space S: Each state st ∈ S is composed of two
parts: The first part stKi

describes the kinematic state of the
robot, and the second part stMo

defines the state of the moving
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Fig. 4: Action mapping (a) and distance reward (b).

obstacles in the environment. More precisely, stKi
consists of

the current position pt, velocity vt and acceleration at of each
controllable robot joint, normalized to their respective maxi-
mum values. Details on the environment-specific part stMo

are
given in section V-A.

2) Action space A: We utilize an action space introduced
in [21], which ensures that the kinematic joint limits (1) - (4)
are satisfied at all times. An action at ∈ A consists of one
scalar m ∈ [−1, 1] per controllable robot joint. As shown
in Figure 4a, the scalar m specifies a joint acceleration at+1

within a range of feasible accelerations [at+1min
, at+1max

].
To generate continuous acceleration setpoints, the current
acceleration at is linearly connected to at+1. Subsequently,
velocity and position setpoints for a trajectory controller are
computed through integration. By enforcing jerk limits for
each robot joint, we ensure that the resulting trajectory is
smooth no matter which action is selected.

3) Reward function R: We compute the immediate
reward rt for an action at as follows:

rt = α ·Rdt+1Mo
+ β ·Rdt+1St

+ γ ·Rdt+1Sc
+RTB

, (5)

where α, β and γ are weighing factors. The reward com-
ponents Rdt+1Mo

, Rdt+1St
and Rdt+1Sc

depend on dt+1Mo
,

dt+1St and dt+1Sc , the minimum distances to moving obstacles,
static obstacles and self-collisions at t + 1. The shape of the
function used to compute Rdt+1Mo

, Rdt+1St
and Rdt+1Sc

is
shown in Fig. 4b. In the figure, the variable d corresponds
to dt+1Mo

, dt+1St or dt+1Sc , while dTh is a fixed threshold
value. For distances smaller than dTh, the reward increases
as d increases. As a result, Rdt+1Mo

, Rdt+1St
and Rdt+1Sc

encourage the robot to keep a distance from moving obstacles,
static obstacles and self-collisions, respectively. The last term
RTB

is a termination bonus which is always zero except when
the episode terminates without a collision.

4) Termination: An episode is terminated after T time steps
or earlier if a collision occurs. Note that the immediate reward
is never negative, discouraging an early termination.

5) Sampling of initial states: Once trained, we do not
update the backup policy. For that reason, it is important
to cover a wide range of initial states during the training
of the policy. To do so, the moving obstacles are initialized
in a random configuration. After that, random joint positions
are sampled until a collision-free robot position is found. To
find feasible initial joint velocities and accelerations, we first
choose random values within the specified kinematic limits
(2) - (3) and compute the range of feasible joint accelerations
[a t+1min

, a t+1max
] as explained in section IV-C2. If the range

is empty, the sampling process is repeated.



KIEMEL et al.: SAFE REINFORCEMENT LEARNING OF ROBOT TRAJECTORIES IN THE PRESENCE OF MOVING OBSTACLES 5

D. Data-based risk estimation

1) Data generation: The first step towards training a data-
based risk estimator is to generate a dataset from rollouts of the
backup policy. For that purpose, we utilize a physics simulator
and initialize the environment in a random state st as described
in section IV-C5. We then select a uniformly random action at
and simulate the next time step until st+1. Starting from st+1,
a rollout of the backup policy with N time steps is simulated.
If a collision occurs during the N + 1 simulated time steps,
a risk signal ct is defined to be 1.0, otherwise 0.0. For each
rollout, we store the tuple (st, at, st+1, ct).

2) Training of risk networks: We evaluate two different
types of risk networks, both trained with a binary cross-
entropy loss using supervised learning. State-action-based risk
networks are trained to predict the risk ct given st and at,
whereas state-based risk networks use st+1 to predict ct. The
use of data-based risk estimators makes it possible to account
for the stochastic behavior of moving obstacles. Specifically,
a risk network can learn to output a risk prediction between
0.0 and 1.0 depending on the probability of a collision.

E. Risk-aware training of the task policy

As for the backup policy, the training of the task policy
is based on model-free RL and a Markov decision process.
A state st ∈ S consists of three parts stKi

, stMo
and stTa

.
While stKi

and stMo
correspond to the state components used

for the backup network, the third part stTa
encodes additional

task-specific information. An action at ∈ A is composed
of atKi

and atTa
, where atKi

determines the movement of
the robot joints and atTa

is an additional task-specific action
component. If the risk ct predicted by the risk network exceeds
a predefined risk threshold cTh, the action component atKi

is replaced by an action from the backup network, which is
denoted as aBtKi

. Since both the task network and the backup
network utilize the same method to map actions to movements,
the kinematic joint limits (1) - (4) are satisfied no matter
which policy is executed. The reward function for the training
of the task policy depends on the desired learning task. A
concrete example for a reaching task is given by equation (6)
in section V-D.

The procedure of the risk-dependent action adjustment is
shown in Fig. 5. We analyze and compare four different
methods to estimate the risk ct. The first option (A) is to use
the state-action-based risk network. The other three options
rely on the state-based risk network. In the case of (B1), the
current state is used for the risk prediction. A disadvantage
of this method is that it tends to adjust actions too late, i.e.
when the robot is already in a risky state. This drawback
can be avoided by checking the risk of the following state
st+1 instead. However, the state st+1 is usually not fully
known in advance. While the kinematic part st+1Ki

can be
computed using the action from the task network, the state
of the moving obstacles st+1Mo

is either considered constant
(B2a) or forecasted (B2b), e.g. with a Kalman filter. Note that
when checking the risk of the following state st+1, the risk of
the transition from st to st+1 is not explicitly considered.
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Fig. 5: The figure illustrates the action generation with the
task network, four different ways (A, B1, B2a, and B2b) to
estimate the corresponding risk, and the risk-dependent action
adjustment using the backup network.

(a) Space (b) Human

Fig. 6: Two environments used for our evaluation.
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V. EVALUATION

A. Evaluation environments

We evaluate our approach in three different environments: A
space environment and a human environment, shown in Fig. 6,
and a ball environment shown in Fig. 1.

1) Space (deterministic): A space station and an asteroid
orbit the robot in a deterministic manner. The environment-
specific part of the state stMo

indicates the position of both
objects on their orbit.

2) Ball (stochastic): In this environment, a ball is thrown
towards the robot. The environment is stochastic as the initial
position and the direction of the ball are selected at random.
Once the ball is thrown, it moves along a parabolic trajectory
due to gravity. The environment-specific part of the state stMo

includes the position and the velocity of the ball. A new ball
is thrown, as soon as the previous one missed the robot.

3) Human (stochastic): In this environment, a human
moves his hand to a target point without considering the
motions of the robot. The environment is stochastic since the
position of the target point is selected at random. The state
component stMo

indicates the kinematic state of the human
arms but not the desired target point of the human.

In all environments, a collision occurs on average after three
seconds if a task policy selects random actions without making
use of a backup policy (see Table II).

TABLE II: Results for random actions without our method.

Environment Time until Self- Collision Collision with
collision collision with table moving obstacles

• Space 2.6 s 30% 30% 40%

• Ball 3.3 s 38% 45% 17%

• Human 3.4 s 38% 41% 21%

B. Training of the backup policy

To train a backup policy for each environment, we use the
on-policy RL-algorithm PPO [22] and a feedforward neural
network with two hidden layers. The time between decision
steps is set to 0.1 s. During training, each episode is terminated
after T = 20 time steps or earlier if a collision occurs. As
shown in Table III, the fraction of collision-free episodes
increases significantly during training. Note that the fraction
cannot reach 100% since the robot is sometimes initialized
in states where no evasive motion exists. The rightmost
column of Table III shows the time until a collision if the
robot is initialized such that no collision occurs during the
first 2.0 s. In the space and the human environment, very
high values are achieved. In these environments, the backup
policy can guide the robot into a region of the workspace
where no collisions with moving obstacles occur. In the ball
environment there is no such region. As a result, a collision
occurs on average after 85 s.

TABLE III: Training results of the backup policy.

Environment Episodes without collision within 2.0 s Time until
Untrained agent Trained agent collision

• Space 38% 91% > 40 000 s

• Ball 48% 91% 85.4 s

• Human 51% 94% > 40 000 s

TABLE IV: Random actions with background simulations.
Time until collision, Action adjustment rate, Collision with
table or self-collision, Computation time per simulation time

Environment N = 0 N = 1 N = 5 N = 20 N = 30

0.0 s 0.1 s 0.5 s 2.0 s 3.0 s

Space 2.7 s 6.8 s 170.4 s >2000 s >2000 s

4.3% 6.7% 7.5% 7.5% 7.5%

57% 32% 0% 0% 0%

38% 48% 119% 235% 303%

Ball
• Stochastic 3.6 s 10.4 s 64.1 s 160.3 s 116.3 s

3.4% 4.7% 5.5% 7.1% 8.4%

78% 43% 6% 4% 9%

27% 42% 119% 239% 290%

• Deterministic 3.8 s 10.9 s 68.7 s 164.7 s 181.6 s

3.2% 4.7% 5.5% 7.5% 8.5%

82% 43% 0% 0% 0%

27% 43% 103% 235% 316%

Human
• Stochastic 3.7 s 11.1 s 62.9 s 72.3 s 64.5 s

3.2% 4.5% 4.5% 4.5% 4.5%

76% 53% 13% 13% 11%

57% 89% 205% 474% 673%

• Deterministic 3.7 s 11.3 s 700.6 s >2000 s >2000 s

3.2% 4.8% 4.6% 4.3% 4.5%

74% 67% 0% 0% 0%

53% 77% 266% 524% 702%

C. Using background simulations to detect collisions

For each environment, we conduct experiments using ran-
dom actions and a single background simulation with different
time horizons N . The results are shown in Table IV. The
so-called action adjustment rate indicates the proportion of
random actions that are replaced by actions from the backup
policy. We select the initial states of each environment such
that a safe backup trajectory with a time horizon of N = 30
exists, eliminating the failure case from Fig. 3a. In the
stochastic environments, we also perform experiments under
the assumption that the environment behaves deterministically,
which additionally rules out the failure case from Fig. 3c.
For N = 0, only the current time step is simulated. In this
case and for N =1, the time until a collision increases only
slightly. We conclude that a longer time horizon is required to
perform an evasive movement with the robot. For N ≥ 5, self-
collisions and collisions with the table hardly occur anymore,
meaning that moving obstacles are the dominating reason
for collisions. In deterministic environments, collisions with
moving obstacles occur less frequently when a longer time
horizon is chosen. In stochastic environments, however, this
is not necessarily the case, as the informative value of a
single background simulation decreases over time. The higher
the time horizon of the background simulation, the greater
the computational effort. In our experiments conducted with
an Intel i9-9900K CPU, the computation time exceeded the
simulation time for N ≥ 5. Consequently, real-time execution
requires either more computational power or the usage of
computationally efficient risk estimators.

Table V shows a comparison with [5], where braking
trajectories are used as backup trajectories. On average, the
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Fig. 7: The relation between the average time to a collision and the action adjustment rate for a task policy selecting random
actions using four different ways to estimate the risk with a risk network as illustrated in Fig. 5.

braking trajectories require N = 2.9 time steps to bring the
robot joints to a full stop. Once the robot is stopped, self-
collisions and collisions with static obstacles do no longer
occur. Consequently, all collisions in the experiments shown in
Table V are caused by moving obstacles. However, compared
to our backup policy trained using model-free RL, the braking
trajectories do not evade moving obstacles. As a result, the av-
erage time to a collision is low when using braking trajectories
as backup trajectories.

TABLE V: Comparative results using braking trajectories [5].
Environment Time until Adjustment Time Collision with

collision rate horizon N moving obstacles
• Space 13.9 s 9.7% 2.9 100%

• Ball 21.3 s 8.2% 2.9 100%

• Human 31.9 s 7.1% 2.9 100%

D. Using risk networks to estimate the risk of a collision

The risk networks used for our evaluation are trained based
on previous rollouts of the backup policy with a time horizon
of N = 20. Once the risk networks are trained, the risk
threshold cTh can be used to control the average time to
a collision. With cTh = 1.0, no actions are adjusted by the
backup policy. With cTh = 0.0, all actions are adjusted leading
to a rollout of the backup policy (see Table III). By running
experiments with different risk thresholds, the relation between
the action adjustment rate and the time to a collision can be
determined. Based on this relation, it is possible to compare
different methods for estimating the risk of an action. Fig. 7
shows the relation for a task policy selecting random actions
when initializing the environments as described in section V-C.

TABLE VI: Training results for a reaching task with state-
action-based (A) / state-based (B2b) risk estimation.

Initial action Target points Time until Final action
adjustment rate per second collision adjustment rate
Space
• 14.0% 1.01 / 0.94 423 s / 887 s 9.1% / 8.8%
• 16.5% 0.93 / 0.90 428 s / 1647 s 10.0% / 8.8%
Ball
• 15.0% 0.70 / 0.71 69 s / 69 s 18.2% / 17.7%
• 30.0% 0.52 / 0.51 89 s / 83 s 29.4% / 31.1%
Human
• 6.5% 0.79 / 0.70 96 s / 114 s 10.0% / 12.7%
• 7.5% 0.49 / 0.63 191 s / 139 s 16.3% / 16.8%

In all cases, the state-based risk network with full forecasting
(B2b) yields the highest time to a collision at a given action
adjustment rate. However, the state-based risk network with
full forecasting requires knowledge about the next state of the
moving obstacles, which is not needed when using the state-
action-based risk network (A). For our evaluation, we assume
that the next state of the moving obstacles can be forecasted.

As shown in Table VI, we used PPO [22] to train task
policies for a reaching task using the state-action-based risk
estimation (A) and the state-based risk estimation (B2b). The
backup policy and the risk networks were used during training
and evaluation. For the reaching task, the task-specific state
component stTa

encodes the position of a randomly sampled
target point and the task policy is rewarded for quickly
reaching the target point:

rt = dtTa
− dt+1Ta

, (6)

where dtTa
and dt+1Ta

are the distances between the end
effector of the robot and the target point at time step t and
t + 1, respectively. For each experiment, we used a fixed
risk threshold cTh so that a specified action adjustment rate
was obtained at the beginning of the training process. In
Table VI, we additionally indicate the final action adjustment
rate obtained after training. While the resulting task perfor-
mance and the average time to a collision depend on the task
policy learned during the training process, we identified the
following tendencies in our experiments: Selecting a higher
initial action adjustment rate also increased the average time
to a collision for trained agents. On the other hand, the training
performance, measured by the number of target points reached
per second, decreased when selecting a higher initial action
adjustment rate. In the space environment, the state-based risk
estimation led to significantly fewer collisions than the state-
action-based risk estimation. In the other two environments,
both risk estimation methods led to similar training results.

E. Benchmarking with a QP-based method

We compare our approach with a QP-based method [1]
used during training and evaluation. To keep the number of
QP constraints low, we simplify our space environment by
removing the table and ignoring self-collisions. In addition, we
model the moving obstacles and the end effector of the robot
as a sphere. Table VII shows the results of the comparison. It
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TABLE VII: QP baseline in a simplified space environment.

Untrained agent Trained agent
Adjustment Time until Target points Time until

rate collision per second collision
• QP method 12.3% 35.6 s 0.70 2216.6 s

• State-action (A) 7.1% 855.2 s 0.82 4325.2 s

can be seen, that our method leads to fewer collisions while
adjusting fewer actions. Moreover, the trained agent learns to
reach a larger number of target points per time.

F. Learning a basketball task

In addition to the reaching task, we use the same backup
networks and the state-action-based risk networks to learn a
basketball task, where the robot is rewarded for placing balls
into basketball hoops moving around the robot. To this end,
the task-specific action component atTa

controls the speed at
which a ball should leave a tube attached to the robot. As
shown in Table VIII and in our video, the robot manages to
learn the task while keeping the risk of a collision low.

TABLE VIII: Training results for a basketball task.

Untrained agent Trained agent
Hoops scored Time until Hoops scored Time until

per second collision per second collision
• Space 0.007 831.5 s 1.84 > 20 000 s

• Ball 0.010 78.4 s 1.38 86.2 s

• Human 0.008 1258.1 s 1.19 > 20 000 s

G. Sim-to-real transfer and real-time capability

Our method produces jerk-limited trajectories that can be
tracked by a real robot without overloading the robot joints.
In addition, the task policy, the backup policy and the risk
estimation require only a small amount of computing power
as they are based on neural networks (see Table IX). In our
video, we demonstrate a successful sim-to-real transfer of a
reaching policy in the space environment using a KUKU iiwa
robot. For the experiment, the space station and the asteroid
are assumed to move as during the training phase.

TABLE IX: Computation time per simulation time.

Risk network State-action State
A B1 B2a B2b

• Space 8.7% 8.6% 8.6% 8.8%

• Ball 10.7% 10.5% 11.1% 10.9%

• Human 18.5% 17.6% 18.2% 18.6%

VI. CONCLUSION AND FUTURE WORK

We presented an approach to learn robot trajectories in
the presence of moving obstacles while keeping the risk of
collisions low. We confirmed the effectiveness of our approach
by successfully learning a reaching task and a basketball
task in three different environments and demonstrated real-
time capability by running a policy trained in simulation
on a real robot. An interesting direction for future research
is to investigate measures to reduce the action adjustments
caused by the backup policy, e.g., by searching for a safe
action close to the desired action of the task policy. It would
also be interesting to investigate the impact of uncertainty in

sensor measurements as an additional source of stochasticity.
Furthermore, we are interested in applying our approach to
other robotic systems and other safety constraints, for instance
by learning to control a bipedal robot without falling over.
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