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Abstract— We introduce a multi-functional robotic gripper
equipped with a set of actions required for disassembly of
electromechanical devices. The gripper consists of a robot arm
with 5 degrees of freedom (DoF) for manipulation and a jaw
gripper with a 1-DoF rotation joint and a 1-DoF closing joint.
The system enables manipulation in 7 DoF and offers the ability
to reposition objects in hand and to perform tasks that usually
require bimanual systems. The sensor system of the gripper
includes relative and absolute joint encoders, force and pressure
sensors to provide feedback about interaction forces, a tool-
mounted camera for screw detection and precise placement of
the tool tip using image-based visual servoing. We present a
data-driven method for estimating joint torques based on the
output voltage and motor speed. Further, we provide methods
for teaching disassembly actions based on human demonstra-
tion, their representation as movement primitives and execution
based on sensory feedback. We provide quantitative results
regarding positioning and torque estimation accuracy, disassem-
bly success rate and qualitative results regarding the successful
disassembly of hard disc drives.

I. INTRODUCTION

Recycling of raw materials from electronic devices at the
end of their lifetime is crucial for the sustainable supply of
materials to our technical world and in recent years sustainability
has become an important objective of the EU and other
organizations [1]. However, recycling processes for these
products are often based on a destructive separation of parts
and components [2], which results in material mixtures. This
increases the problem of separation of valuable and hazardous
compounds and can prevent the recovery of material in its
original quality. Manual dismantling is cost-intensive and
might bring workers in contact with hazardous substances in
electronic waste. From a robotics point of view, dismantling is
a challenging task due to the fact that a robot system has to be
able to handle unknown object structures and perform complex
manipulation actions.

In contrast to the assembly in manufacturing, where industrial
robots are already being used intensively, the dismantling
of disposed devices is merely performed by robots. The
disassembly process faces robots with a large variety of product
models from different manufacturers, which in addition might
be damaged or in unclean condition. This requires a number of
complex manipulation actions, precise execution, the usage
of multiple tools, and the ability to adapt to new devices and
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Fig. 1: The KIT multi-functional gripper levering a magnetic component
of a hard disk drive.

to recover from failures. To increase flexibility concerning
type and order in disassembly we propose a multi-functional
robotic gripper design that is able to execute a wide range of
disassembly actions instead of a disassembly line with multiple
single robots with specialized end-effectors.

In this paper, we present the realization of the first physical
prototype of our KIT multi-functional gripper (Fig. 1) as
well as methods for kinesthetic teaching and autonomous
disassembly. The gripper is based on our previously presented
concept of the KIT Swiss knife gripper [3] with optimizations
of the kinematics, sensors and embedded systems and has
been designed for dismantling operations that normally require
bimanual manipulation but are performed with a single arm
and exchangeable tools.

II. RELATED WORK

Various approaches have been proposed for increased
automation in recycling. Some works present specialized
robots for certain tasks like automated disassembly of snap-fit
covers [4] or unscrewing [5]. In [6], the unscrewing during
disassembly for the recycling of electric vehicle batteries is
performed by a robot in a workspace shared with a worker. In [7],
a system composed of the small industrial robot manipulator
Mitsubishi RV-M1 [8], a camera and range sensor is used for
partial disassembly of desktop computers. The manipulator
has 5 DoF, a jaw gripper and is capable of 1.2 kg payload.



With Apple Inc. trying to reduce its ecological footprint [9],
several disassembly robots [10]–[13] for the iPhone or its
subcomponents were developed. Other works use full-size
industrial robots like KUKA KR 240-2 [14] or ABB IRB
140 [15] combined with additional tools for multiple disassembly
steps with one robot. Biwidi et al. use a system with an industrial
robot arm, a force/torque sensor, a disassembly tool and a
workspace for automatic tool change for dismantling of electric
vehicle motors [14]. Chen et al. describe a multi-head tool for
robot-based disassembly with a drill, grinder, and screwdriver
mounted to a standard robot arm and combined with an external
flip table [15]. Different approaches to disassembly are presented
by Poschmann et al. [16]. The authors state that ”disassembly
has not been in the focus of mainstream robotics research
so far” and some of the works in this survey also prefer a
destructive approach. The partially destructive disassembly of
LCD screens in [17] is performed by an industrial robot arm
with a circular saw attached.

While the mentioned works above either rely on a multi-stage
disassembly line [10]–[12], focus on partial disassembly [4]–
[7] or use large industrial robots [14], [15], our work aims
at providing an integrated and compact robot capable of
all required actions of a complete disassembly process of
electromechanical devices such as HDDs. This provides
maximum flexibility and has the potential to address large scale
autonomous disassembly of non-homogeneous device types.

Also, other multi-functional grippers targeting a general
action set with no special reference to recycling can be found
in literature, mentioning [18]–[21] as examples. To the best
of our knowledge, no other existing robot can solve the
complete disassembly task including tool change and in-hand
manipulation with one multi-functional and low-cost robot.

III. MECHATRONIC DESIGN

In this section, we present the mechanical design together
with electronics, sensors and torque estimation to perform
complex disassembly tasks in the context of recycling.

A. Kinematics and Mechanical Design

In our previously presented concept, the KIT Swiss knife
gripper [3], we described the concept for a multi-functional
gripper for bimanual manipulation with a single arm and dis-
cussed the advantages for disassembly tasks over a conventional
approach with a disassembly line. Several experiments with
a first prototype of the gripper showed, however, that the
proposed SCARA arm kinematic in our previous work with
4 DoF is not sufficient for the execution of all disassembly
actions of a HDD. In particular, an additional DoF was needed
for actions like levering in a vertical median plane, e. g. to
remove the magnets in the HDD. Thus, the kinematics of the
gripper was extended resulting in a robot arm with 5 rotational
DoF. Together with the jaw gripper (1 DoF rotation and 1 DoF
closing), 7 DoF are provided for disassembly actions.

The kinematic chain of the gripper is a tree structure with
two sub-chains starting from the base segment that includes a
magazine for exchangeable tools (Fig. 2, F©) and provides a
mechanical interface to either connect to a stationary mounting
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Fig. 2: Essential internal components of the gripper.

TABLE I: Specifications of the KIT gripper.

Weight 3 kg
Height 26 cm
Footprint 30 cm × 24 cm
Speed 0.5m/s
Payload 2 kg
Max. power consumption 120W

or an additional robot arm that is not investigated further in
this paper. The first sub-chain consists of the gripper arm with
5 rotational DoF starting with a yaw joint followed by 3 pitch
joints and a tool rotation joint. The second sub-chain consists
of jaw gripper rotation and closing joints. The actuation of the
jaw gripper is realized by a globoid worm drive and levers.

The arm yaw rotation is actuated with a DC motor [22]
in combination with a harmonic drive (CSF-8-30-1U-CC-F1
100:1), see 1© in Fig. 2. All other joints, ( 2©, 3©, 5©, 6©, 7©,
8©) are actuated with DC motors [22] and planetary gears

(231:1 and 243:1). Only the rotation of the jaw gripper is
realized off-axis in combination with a timing belt. Flat spiral
springs are connected in parallel to joints to counteract torques
induced by gravity ( 2©, 3©, 5©) and to mitigate the effects of
backlash in the planetary gears.

The lever mechanism for the closing of the gripper jaws
is actuated by a laser sintered (IGUS iglidur I6-PL) globoid
worm drive with two worm wheels of custom design. With
this construction, the jaw gripper offers a grasping force of
more than 100N at a weight of the subassembly of 760 g.
Specifications of the gripper are summarized in Tab. I.

To provide the best accuracy we aimed at maximizing the
stiffness of the mechanical structure while keeping the design
cost low. Therefore, we use a sandwich design consisting out
of laser cut sheet aluminum and a selective laser sintered
(SLS) polyamide structure in between. High stiffness of the
base segment is achieved using SLS poyamid with an internal
support structure optimized using numerical simulations.

The tool head includes the axially rotatable suction cup that
can function as a tool adapter as well as a miniature camera for
macro tool view and LED lighting. A vacuum pump (BOXER
20K , 4© in Fig. 2) in combination with two miniature 3-2 way
solenoid valves provide pressure and vacuum for the suction
cup. A rotary air transmission ( C©) between the gearbox and
the tool holder ( D©) feeds the air to the rotating suction cup.



B. Electronics and Sensors

The electronics of the gripper follows a modular concept
with multiple hardware units interconnected by a real-time
data and power bus. Each robot segment includes a local
control unit that is complemented by a segment specific add-on
board for specific sensor and actor interfacing as shown in
Fig. 3. The local controller units are based on a common
controller/communication base-PCB that is shared across all
four segments of the robot and an additional segment specific
add-on board. This hardware architecture reduces cable routing
across moving joints while single components of the system
can be easily modified for changes in the sensor and actuator
design during robot development. The controller units are
interconnected by an 8-pin ribbon cable that includes the data
bus lines and 100 W, 48 V supply voltage.

Fig. 3: Modular hardware controller unit: The common basis PCB
provides the processing unit and bus interface while the add-on boards
interface segment specific sensors and actuators.

The gripper is equipped with several sensors needed for
feedback and control. All motors include incremental encoders
that allow precise velocity and position control. 24 bit absolute
encoders (RLS d.o.o., [23]) in five joints ( 1©, 2©, 3©, 5©, 8©)
provide a more than sufficient resolution. The pressure in the
suction system is sensed by a ±15 psi pressure sensor ( III©,
Honeywell [24]). Two strain gauge based force sensors ( VI©,
ME-Meßsysteme GmbH [25]) measure the axial force exerted
by the tool. Additional torque sensing for all motors without
the need for expensive torque sensing is provided by torque
estimation, described in the following section.

C. Torque Estimation

Direct torque sensing using a dedicated sensor provides the
highest accuracy, however, it comes with disadvantages of high
demand for space in the design, weight and significant costs.
Thus, we developed a method for estimating the torque of the
motors based on the known relation between motor current and
torque. Since an exact measurement of the current in motor
with pulse width modulation (PWM) control is difficult, we
estimate the torque from motor speed n obtained from the
incremental encoder and PWM motor voltage U . Using a linear
model, the torque τmotor of a DC motor can be approximately
described using the two motor specific constants amotor and
bmotor:

τmotor = (U · amotor − n)/bmotor (1)

where amotor is referred to as the speed constant and bmotor

the speed-torque gradient. These parameters are provided by

Fig. 4: Data points of a Maxon DCX22-GPX26 motor-gearbox in the
3D space of PWM-value, torque (τ ) and motor speed (n); Different
experiments in blue and green; Linear model in red.

the manufacturer or can be obtained experimentally. However,
this linear model neglects non-linear terms including friction in
the gearbox and bearings as well as motor drivers non-linearity,
which leads to reduced accuracy of the model. In [26], the
torque was estimated using a detailed motor model that is
parametrized using manual system identification. In our work,
we follow a data-driven approach for learning a model that
allows torque estimation. To this end, we apply neural networks
to predict such additional terms. We collected data on a test
stand (Fig. 4) and in addition on the jaw closing joint and
the tool rotation joint directly on the robots. We achieved
the best results using a neural network with 4 hidden layers
including 32-8 nodes per layer. Based on this, a pseudo zero-
torque control was implemented allowing manual guiding of the
gripper arm and jaw rotation joint for kinesthetic teaching based
programming of manipulation actions (see subsection IV-B). In
section V, we present evaluation results of the torque estimation
for the jaw closing joint and tool rotation joint.

IV. PROGRAMMING AND EXECUTING ACTIONS

In this section, the programming and execution of the
disassembly actions of the gripper are introduced. We also
describe the employed software framework (subsection IV-A)
and the robot-assisted kinesthetic teaching (subsection IV-B).
In subsection IV-C we describe, how disassembly actions
are represented and subsection IV-D shows the use of visual
servoing to compensate for mechanical positioning errors while
unscrewing.

A. Software Control Architecture

The software architecture of the KIT gripper is implemented
in the robot development environment and control framework
ArmarX1. The control structure consists of three layers: a real-
time capable low-level unit running at 1 kHz with hardware-
specific joint controllers and hardware-independent multi-joint
controllers for Cartesian control or trajectory execution, a mid-
level layer with an abstraction of the underlying controllers and
a multi-purpose component for detection of unplanned collisions
and joint torque peaks, and a high-level layer which implements
disassembly tasks as sequences of actions implemented using

1See armarx.humanoids.kit.edu and [27]

armarx.humanoids.kit.edu


statecharts [28] with both symbolic action information and
parameters needed for the execution. The control architecture
offers interfaces to ROS to allow the integration and use of the
gripper in different robotic setups.

B. Robot-Assisted Kinesthetic Teaching

One challenging aspect of kinesthetic teaching in the context
of disassembly is that many primitive actions cannot easily
be demonstrated by a human teacher, such as unscrewing or
changing tools, since the involved actuators (especially the
bit actuator and the pump) can only be controlled through
software. To solve this problem, a robot-assisted kinesthetic
teaching component making use of pseudo zero-torque control
was developed. Apart from recording data, this component
triggers and activates certain actuators depending on sensor
data and the state of the gripper. This is required for certain
actions e. g. if a force is sensed at the Tool Center Point (TCP)
and if the TCP is in a designated area of interest. We identified
three different areas of interest, namely at the HDD tray, at
the jaw, and at the tool magazine. If, for example, the human
demonstrator wants to pick up a specific tool, it is sufficient to
guide the arm to the tool magazine area and slightly push the
TCP into one of the tools, which automatically triggers the
pump to pick up the bit. The component is implemented as a
finite state machine (FSM), with states such as pick tool X,
place tool X, pick HDD, place HDD, unscrew, and lever to
model the kind of assistance, as well as guiding, to indicate no
assistance. The FSM is outlined in Fig. 5.

Fig. 5: Finite State Machine: States are represented by nodes, state
transition conditions by edges. Explanation of conditions: TCP –
Certain tool or HDD is attached to the TCP (or none); jaw – HDD is
clamped by the jaw (or none); area – TCP is in a certain area of
interest; contact – TCP senses contact.

The recorded data includes for each timestamp all joint
angle positions, forces applied on the TCP, as well as semantic
information such as attached tool, HDD in jaw, and FSM-state.
Especially the FSM state is later useful, as it semantically
segments the recorded demonstration into labeled parts that are
important for learning certain primitive actions (e.g., unscrewing,
picking tool, . . . ). The parts of the demonstration labeled as
guiding can be used to extract trajectories from uninterrupted
human disassembly recordings which are useful for learning
the corresponding movement primitives of the consecutive
action. Further, multiple recordings of segmented and labeled
disassembly demonstrations for a specific product can be used
to extract task constraints (e.g., temporal constraints of certain

(a) Pick (b) Drop (c) Tool change

(d) Lever: mode 1 (e) Lever: mode 2 (f) Flip and shake

(g) Unscrew (h) Push (i) Cut

Fig. 6: Disassembly actions of the gripper: pick, drop, tool change,
lever, flip, shake, unscrew, push and cut.

actions) and to learn task models to describe human strategies
in executing disassembly tasks.

C. Representing Disassembly Actions

The semantically segmented demonstrations of disassembly
tasks obtained from kinesthetic teaching data are used to learn
movement primitive for disassembly actions. These movement
primitives are learned from multiple demonstrations and are
represented using the Via-points Movement Primitives (VMPs)
formulation, see [29]. VMPs provide a compact probabilistic
representation and allow the adaptation of the learned motions
to different via-points while ensuring the extrapolation to new
areas in the space, especially in the case of a small number
of demonstrations. In our case, we use a maximum of 3
demonstrations for learning a disassembly action.

The initial action parameters are derived from the demonstra-
tions. These include the suction location, screw, and levering
poses and the time slots for activating the gripper LED
lighting, the pump, and the bit rotation. The learned VMPs of
each disassembly action and the corresponding initial action
parameters, preconditions, and effects that are extracted from
the demonstrations (see [30], [31]) are stored as one instance
in an action descriptors (ADES) database [32]. The following
disassembly actions are learned from kinesthetic teaching and
stored in the ADES database: pick, drop, lever, tool change, flip,
shake, unscrew, push, cut, and reposition of the device. These
actions cover most of the disassembly tasks in the context of
recycling HDDs.

During execution (see Figure 6), the actions are retrieved and
dynamically parameterized according to the current scene. The
action parameterization is enabled by the perception system



using RGB-D data (see [33], [34]), which is not part of this
work. The suction cup is used to perform picking, dropping, and
automatic tool change actions. An automatic visual calibration
procedure of tool tip position and orientation using a marker is
performed to improve the precision of unscrewing and levering
actions. Our system is able to choose out of a variety of
actions of the same action type from the database depending
on the current task parameters. Figure 6d and Figure 6e show
two potential levering actions for the purpose of removing
the magnet, that can be inferred situational to achieve better
generalization to unseen devices.

The ability to reason the required action type can be achieved
by using a symbolic plan (see [30], [31]), that includes
the capability of updating the probability of each action by
measuring the action effects and the success rate to improve
the plan in the next execution.
D. Visual Servoing for Unscrewing Actions

Unscrewing actions require placing the tool inside the screw
head and thus a high positioning accuracy, which cannot be
achieved by open loop control. Therefore, we use the tool
mounted camera to locate screws and the tool tip in the image
and apply image-based visual servoing to guide the tool tip to
the screw head.

1) Screw Detection: For the detection of screw positions we
rely on a combination of screw localization and classification.
In contrast to a direct pixel-wise segmentation of screws, we
initially search for possible candidates for screws positions and
in a following step these candidates are classified. The circular
outline of screws enables to detect their positions in the images
by applying Circle Hough Transform (CHT) (Fig. 7). We use
the OpenCV implementation which allows to parametrize the
detection parameters including minimum mutual distance as
well as minimum and maximum radius. Thereby overlapping
circles can be filtered out and only approximately screw sized
circles are found in the image.

To decide if the detected circular image contour is a screw
or any other circular object like e. g. holes, we designed a
binary classification algorithms using a convolutional neural
network. To train the network we recorded a dataset of images
with possible screw position candidates. The dataset consists
out of 1,791 images of actual screws and 2,488 images of other
circular objects. The best classification results were obtained
with a network consisting out of three convolutional layers
with 16, 32 and 64 features followed by two fully-connected
layers which output 64 and 1 features. The accuracy after
training with 50 batches reaches a maximum of 95.3% training
accuracy and 93.6% evaluation accuracy. To track the positive
classified screw positions in the image, we track the detected
coordinates in consecutive images and apply low-pass filtering
the classification results. These positions are used by the
image-based visual servo controller to reduce the position error
between detected screw and the tool position.

2) Visual Servoing Unscrewing: Inserting the tool tip into
the screw requires the error to be less than 1mm, which cannot
be achieved from an initially guessed target pose. To achieve
sufficient accuracy in placing the tool tip, we implement a
visual servoing process.

Fig. 7: Detected screw position in the tool mounted camera image
showing a HDD.

First, the gripper gets into contact with the surface detected
by the force sensor and moves the screw gradually to the
calibrated location of the tool tip in the image frame. To realize
the motion, the gripper can either directly slide the tool tip on
the complicated surface of the hard disk, which can lead to the
tool tip getting stuck, or move the tool tip first up and then
towards the screw without contact, which cannot guarantee that
the tool tip is right above the screw before insertion action. We
combine both strategies with a distance threshold. When the
tool tip is close enough, the gripper slides it towards the screw,
otherwise, it raises the tool tip and moves towards the screw
without contact. The process has a success rate above 80%.

V. EVALUATION

To evaluate the gripper design we determine critical
parameters like torque estimation accuracy of tool joint and jaw
closing joint as well as mechanical accuracy. We evaluate the
repeatability of the joint angle accuracy of the jaw rotation joint
and the tool position accuracy. We also conducted extensive
disassembly experiments with HDDs, which show high success
rates and thus a sufficient accuracy of our system.

A. Mechanical Accuracy
The accuracy of reaching the same position and orientation

is important for several tasks. The total error etotal of reaching
the same position and orientation is composed of a mechanical
error emech and a control error econtrol. The mechanical error
is the difference between the robot model and the real robot
and caused by errors in the length of the mechanical parts and
errors in joint position sensing as well as elasticity in the robot
structure. The control error is the difference between goal and
reached robot model position. For the exact measurement of
the rotation angle, a laser pointer is attached to the jaw gripper.
The laser points on a millimeter grid in a distance of 4m. The
laser can be measured with an accuracy better than 0.25mm
which results in an angular resolution of 0.003◦. We measure
the accuracy of reaching the same position of the tool tip on a
plane in between the gripper jaws which corresponds to the
repeat accuracy of reaching a screw with a bit on a HDD. For
the test setup, we grasped a translucent plate with a millimeter
grid on it. On a macro photo taken from below, the position of
a torque bit on the plate can be measured with a resolution of
0.05mm. The mean absolute errors for the rotation of the jaw
gripper from 19 data-points and the position of the tool tip
from 30 data-points are given in Tab. II.

B. Torque Estimation Accuracy

We used two of the identically built gripper models to train
and test on the same as well as a different model. As ground



TABLE II: Positioning errors.

emech econtrol etotal
Parallel gripper rotation 0.013◦ 0.034◦ 0.066◦

Tool tip position 0.20mm 1.12mm 1.15mm

TABLE III: Torque estimation errors in the KIT gripper.

Trained KIT gripper 1 KIT gripper 1
Tested KIT gripper 1 KIT gripper 2

eest elinear eest elinear

Jaw torque 0.140Nm 1.070Nm 0.370Nm 0.960Nm
Screw torque 0.018Nm 0.069Nm 0.056Nm 0.086Nm

truth for the torque estimation an a force/torque sensor (ATI
mini 45) with a resolution of 0.125N in Fz direction and
0.001Nm in Tz direction was used. We evaluate the torque
estimation accuracy for the jaw gripper and for the tool rotation.
The estimation of exerted grasping force is important for a
stable but non-destructive grasp. A mock-up of a HDD with
the FT-sensor in the middle plane for measuring grasping
force was used. The torque in the levers of the jaw gripper
was calculated from the measured force. The estimation of a
tool torque is important for screwing and unscrewing tasks as
well as levering. The mean average error for the linear model
(elinear) and for the torque estimation (eest) for both tool
rotation and the closing of the parallel jaw gripper is given in
Tab.III. The estimated torques and ground truth values during
grasping of an object and (un-)screwing are shown in Fig. 8.

C. Disassembly Success Rate

To evaluate the capabilities of the system, we repeatably
perform a sequence of disassembly actions for a hard drive with
a fixed action sequence and predefined action parameters. Note
that planning, action effects, and ADES are not part of this
work and are out of the scope of the evaluation. We conducted
10 repeated disassembly experiments with the same HDD and
collected data about 180 disassembly actions in total. For each
trial, 8 categories of disassembly actions were involved (see
Figure 9), and each of which can be executed multiple times,
e. g. we executed the unscrew action 5 times per trial. When
an action failed, we waited until the planned time for this
action ended up and manually resumed the disassembly tasks.
The average execution time of each trial was 16.3min, and
thereby provides a satisfying result but is out of competition
with human performance. In total, 10 actions out of 180 failed,
9 of them being unscrew actions, and the remaining one is
caused by some parts stuck in the case during the shake action.
To improve the unscrewing success-rate, higher perception
accuracy of screw and tool position would be beneficial, as
well as a more reliable detection method to ensure the tool tip
is placed correctly. However, our current perception system
can detect screws that are not removed successfully, and the
planner will decide to try again or switch to a more probable
action. In future work, we aim at the evaluation of complete
system integration including high-level planning. With our
current design, we achieve high success rates of the disassembly
actions that give evidence of our chosen concept and let expect
a future increase in performance.

(a) Parallel jaw, trained and tested on
same gripper.

(b) Parallel jaw, trained and tested on
different grippers.

(c) Srewing and unscrewing, trained
and tested on same gripper.

(d) Srewing and unscrewing, trained
and tested on different grippers.

Fig. 8: Torque estimation for tool and parallel gripper joint.

Fig. 9: Success rate and execution time in seconds of each disassembly
action. The success rate is listed on the top of the graph. The line in
the middle of each box plot is the median value and the white circle
shows the mean value.

VI. CONCLUSION

We present a concept and complete physical realization of a
multi-functional gripper for disassembly tasks. Three copies of
the gripper were build, evaluated and are used for experimental
disassembly. The sensor setup allows precise proprioception of
the robot state, which is enhanced with torque estimation by a
neural network. The tool head offers a tool holder combined
with a suction cup, sensors and a camera. The gripper is capable
of executing a set of disassembly actions including grasping,
tool change, levering and unscrewing. The actions are learned
from human demonstration and can be adapted to new tasks.
We evaluated the mechanical accuracy and tested the gripper
abilities in the context of disassembly tasks of HDDs. We show
our results in an attached video. Future work will address the
transferability of the learned disassembly actions for HDDs to
other devices of similar size.

We believe our prototype is a step towards the use of
robots for automated disassembly of electronic devices and can
contribute to a more sustainable use of resources.
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