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Abstract— Building humanoid robots with properties similar
to those of humans in terms of strength, agility, and motion
versatility remains a challenge. To achieve human-like motion
behavior, an identification of the actuation requirements is
crucial. In this paper, we propose a novel approach that
automatically calculates the necessary actuator requirements
for a given upper-body humanoid robot kinematics perform-
ing motions retargeted from human motion data. First, we
introduce a unified representation of humanoid upper limb
kinematics to decouple the analysis from robot-specific features
to allow the comparison between different humanoid robot
kinematics. Second, we derive a novel performance index to
compare actuator requirements regarding velocity, acceleration,
and torque for different kinematics, which are needed for the
execution of retargeted human motions. We evaluate our ap-
proach by comparing the calculated actuator requirements and
performance indices of ten existing humanoid robot kinematics
in addition to a new robot design, using 40 recorded human
motions of different categories. The results demonstrate the
impact of robot kinematics on the joint actuator requirements
for achieving human-like motion.

I. INTRODUCTION

Humanoid kinematics and human-like motion trajecto-
ries and velocities are desired for intuitive human-robot
interaction and collaboration in environments created for
humans. Previous work on the design and maintenance of our
ARMAR robots ([1], [2], [3]) and in analyzing other robots
(e. g. [4], [5], [6], [7]) has shown that building humanoids
with properties similar to those of humans in terms of force
and agility remains, despite advances in actuator and sensor
technology, a major challenge. Humanoid robots have been
designed to perform tasks in different environments, how-
ever, less attention has been put on the actuation and kine-
matics requirements needed for achieving natural human-like
motion of these robots. To do so, it is important to consider
the execution of human-like motions [8] already in the robot
design process and not only during motion generation. While
considerable work and knowledge exist regarding the iden-
tification of actuator requirements for human-like walking
motions e. g. , based on the analysis of the gait cycle [9],
such requirements for a versatile set of upper-body motions
are still missing. Even if human joint actuation torques and
velocities are known, they first need to be transferred to
the corresponding robot arm kinematics. In this work, we
propose a system that can automatically calculate actuator
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Fig. 1: Joint actuation requirement calculation: 1. Normalization, 2.
Virtual spring-damper systems for motion retargeting, 3. calculation
of the robot joint torques with robot segment weights and with
object weights.

requirements regarding velocity, acceleration, and torque for
different robot kinematics based on human motions.

In our previous work, we introduced the Master Motor
Map (MMM) framework1 [10], which unifies the represen-
tation of human motion by decoupling the human motion
capture process from further post-processing tasks such as
motion analysis, retargeting and reproduction on a robot.
At its core, the MMM encompasses a reference model
of the human body with kinematic (joints and segment
lengths) and dynamic (segment mass, center of mass, and
moments of inertia) properties. In addition, the MMM defines
an anthropomorphic model, by which segment properties
(e. g. , length, mass etc.) are defined as a function with
global body parameters (e. g. , body height and weight). The
parameters of the MMM reference model are derived from
the biomechanics literature and motion recording studies.
Based on the MMM reference model, motion data captured
by different subjects and by different motion capture systems
can be normalized uniformly to the MMM human reference
body model. In this work, we first extend the concept of
this unified representation of the human body and motion to
a unified representation of humanoid robot kinematics. To
this end, we normalize different humanoid kinematics and

1https://git.h2t.iar.kit.edu/sw/mmm



provide model laws to scale human motion with respect to a
normalized MMM reference model (section III-A). In order
to develop and evaluate our approach for identifying actuator
requirements for human-like motions, we retarget motions of
uni- and bimanual human demonstrations to the normalized
robot kinematics to compute joint positions, velocities and
accelerations (section III-B), as well as joint torques using
the normalized dynamic properties of the MMM reference
model (section III-C). On this basis, we compute the normal-
ized or actual minimum actuator requirements for performing
such human motions on a certain humanoid kinematics
(section III-D).

Contribution: (i) We develop a method to calculate actua-
tion requirements for a humanoid robot kinematics based on
a set of human motions; (ii) We derive a novel performance
index based on normalized required actuator power for
retargeted human motions to compare different humanoid
kinematics. We show that our system allows us to evaluate
the actuator requirements for various upper-body humanoid
kinematics of different humanoid robots – as seen in Figure 7
– to perform human-like motion trajectories based on the
retargeting of human motions taken from the KIT Whole-
Body Human Motion Database2 [11]. We demonstrate that
we can take advantage of our novel framework in order
to evaluate a new design for humanoid robot arms based
entirely on quaternion joints [12], [13].

II. RELATED WORK

We provide an overview on the state of the art regarding
motion retargeting and robot kinematics comparison.

A. Motion Retargeting

Joint actuation requirements based on human motion are
rarely available for arm motions, especially for different hu-
manoid kinematics. In order to obtain actuator requirements
for humanoid robots based on the execution of human-like
motions, recorded human demonstrations must first be retar-
geted to the different robot kinematics. A general problem
with the transfer of human poses is that there is no single
solution for solving the inverse kinematics of multi-joint
movements due to the high redundancy in the human body.
In addition, not all end-effector positions can be achieved
for full-body poses, and not all robot segments can be in
the same position as the human counterpart if the segment
lengths are different. Various methods, optimizations and
constraints have been used in the literature to solve this
motion retargeting problem.

If the robot kinematics are very similar to human kine-
matics, analytical solutions can be used for motion imita-
tion [14]. The same applies when exact end-effector poses
are not important, allowing direct mapping of joint angles.

The joint angles for the robot can be directly calculated
from the kinematic model of the human. In most cases,
however, the end-effector poses are relevant because the
difference from human to robot kinematics is too large to

2https://motion-database.humanoids.kit.edu

ignore, and other constraints such as singularities have to
be considered. Various approaches based on inverse [15]
or forward kinematics with non-linear optimization, e. g. ,
quadratic programming [16], can be used to match the
end-effector pose while taking additional constraints such
as manipulability tracking, temporal smoothness or joint
limits into account. A disadvantage is that this requires
a mathematical description of forward or inverse kinemat-
ics. Other approaches use for example convolutional neural
networks [17], reinforcement learning [18] or unsupervised
learning [19]. However, there is no guarantee that learning-
based solutions can be applied to completely new robot
kinematics in the intended manner.

A different solution for multi-joint reaching motions with a
spring-damper system is proposed in [20]. Thereby, a virtual
spring-damper hypothesis is used to pull the endpoint to the
target. This leads to a simple structure of the control signals
without solving the inverse kinematics or the inverse dynam-
ics, and without planning an endpoint trajectory. However,
this method is dependent on proper initial poses.

In this work, we use a method similar to the virtual spring-
damper system of [20] in order to cover a wide variety
of different joint kinematics. Classical inverse kinematics
solvers provide support for a fixed set of joint types while
we can compose complex joints like parallel and cable
driven mechanisms from Simulink elements. Therefore, this
approach enables new kinematics, e.g., quaternion joints, to
be added in a very simple way, without the need for a math-
ematical description of the forward kinematics to quickly
evaluate new designs. We add multiple virtual spring-damper
systems with variable stiffness to achieve high similarity with
the reference human demonstration and ensure human-like
motions.

B. Kinematics Comparison

When reviewing and comparing different robot kinematics,
a performance index [21] to quickly evaluate one kinematic
design against another is needed. This can be done either
based on general criteria or application- or task-based.

General metrics are reachability and manipulability analy-
ses. The reachability distribution, a workspace representation
of the robot’s capabilities for the search of suitable robot base
poses [22], can also be used to compare different kinematics.
Manipulability ellipsoids [23] indicate the favored directions
of force or velocity at a given joint configuration. Various
indices can be computed for voxels in the robot’s workspace
to obtain a distribution of manipulability. The Yoshikawa
manipulability index [23] is based on the volume of the
manipulability ellipsoid, while the extended manipulability
measure [24] includes additional constraints. The condition
number of the Jacobian Matrix [25] is used as a measure of
kinematic accuracy as well as proximity to singularity.

Previous studies related to application-based performance
indices use very different approaches. For the evaluation of
humanoid hands, an index is presented in [26] that counts the
intersection volume of the working space of the fingertips.



If the desired manipulability ellipsoids for a task are
known, the closeness between the desired and actual manip-
ulability ellipsoids yields the task-specific quality function
for a redundant manipulator [27]. To match the desired
manipulability ellipsoids from human demonstration, a ma-
nipulability transfer framework is presented in [28] to learn
and reproduce manipulabilities for robot kinematics.

In evolutionary robotics (ER), robots perform a competi-
tion in a specific task in each evolution cycle to evaluate
fitness. The sensory apparatus, the morphology, and the
control of the robot evolve simultaneously in this process.
In [29], the fitness of simulated soft robots consisting of
different types of voxels is calculated based on the distance
traveled in four environments. The kinematic design, e. g. ,
of a manipulator [30], can also simultaneously evolve to per-
form task-specific object manipulations in physics simulation
based on the distance to a given reference object trajectory.
In ER, this performance index can also be environment-
driven [31] rather than manually selected. Simulating the
morphology and control to complete specific tasks with
targeting real robots is challenging, and therefore this type of
quality measurement is only performed for a small number
of limited tasks in simplified environments.

Since the desired robots should work in human environ-
ments with made-for-human tools, it is desirable to include
this in the assessment. One metric applied in motion retar-
geting that could also be adopted for kinematic comparison
is the quantification of human likeness. These metrics for
functional anthropomorphism can be Cartesian joint distance,
similarity of the convex hull, as well as the area of the
triangles between individual joints [32]. Other metrics are
for example spatial and temporal correspondences [33] or
comfort and effort of the human [34].

We propose a novel performance index based on actuator
requirements for retargeted human motion. The actuator
weight and size is approximately proportional to its max-
imum power, and the reduced arm weight further reduces
the required actuator power. This could have a large impact
on achieving human-like motion. To our best knowledge, no
other existing approaches provide a kinematics performance
index based on retargeted human motion.

III. APPROACH

The desired system should automatically calculate the nec-
essary actuator requirements for a given robot kinematic to
perform selected human motions. A general anthropomorphic
kinematics, segment length, and weight distribution of the
robots are required to produce meaningful results.

A. Normalization

In the MMM framework [10], a human demonstration is
mapped to the MMM reference model of the human body,
which is scaled by height and weight of the corresponding
subject. In order to map this subject-specific motion to a
differently scaled or to the normalized MMM model, the
execution speed of the motion has to be adjusted to account
for changes in the dynamic properties. Therefore, we extend

the conversion between kinematics in the MMM framework
to allow adapting the motion to be executed not only by the
MMM human body reference model but also by a general
robot kinematics. This allows the calculation of dynamics
on normalized models for uniform comparison of kinematic
designs and their transfer to robots of arbitrary size and
weight without recalculation.

The required equations for scaling, called model or simi-
larity laws, can be derived from dimensional analysis [35].
The approach originates from fluid mechanics, where data
from machines of different types and sizes is compared. For
the scaling of humans and robots, the characteristic key figure
is the Froude number Fr = v2

g·l = l
g·t2 , which is given by

the ratio of the inertial force to the force of gravity.
With the scaling factors for length λ = lsource/ltarget and

mass µ = msource/mtarget (and constant g), the scaling
laws for time t (Eq. 2), force F (Eq. 3), torque τ (Eq. 4),
and power P (Eq. 5) can be derived.

Frsource = Frtarget ⇒
lsource
t2source

=
ltarget
t2target

[ L
T 2 ] (1)

⇒ λ =
t2source
t2target

⇒ ttarget =
1√
λ
· tsource [T] (2)

Ftarget =
1

µ
· Fsource [M ·L2

T 2 ] (3)

τtarget =
1

µ · λ
· τsource [M ·L2

T 2 ] (4)

Ptarget =
1

µ ·
√
λ
· Psource [M ·L2

T 3 ] (5)

In our new representation, the robot kinematics are based
on their real counterpart regarding segment length, transfor-
mations between joints, and joint type. The size is scaled
to match the 1m MMM model arm lengths (torso center
to hand, with arms extended to the side in 45 deg angle).
Joint limits are only considered if they change the desired
kinematic behavior (e. g. change direction of elbow shift).
To standardize the segment weights of the robot arms for
comparability, we set the individual segment weights of the
robot to match the MMM reference model [10] scaled to
100 kg. This leads to a total weight of 8 kg per arm.

The described formulas are first used for mapping human
motions from the subject-specific to the normalized MMM
reference model described above. Via motion retargeting
in section III-B, the motions are then also transferred to
the normalized robot kinematics model. A transfer using the
same formulas can be applied to transfer the motions from
the normalized robot to real robots of arbitrary size and
weight to obtain the actual joint requirements (section III-
D). The applicability of the developed scaling laws was
tested with a simplified simulation (Figure 2). Normalized
human joint motion was executed on different 1 DoF arms
of different size. The normalized joint parameters (e. g. , joint
torque and joint power) should be equal as can be seen in



Figure 2. The change in arm thickness for the same length,
which occurs in humans and robots, is not covered by the
scaling laws, but has a negligible influence on the results.
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Fig. 2: Validation of scaling with model laws. Different bars with
constant density are actuated at a joint ( ) with a normalized trajec-
tory. Length and weight difference is compensated by normalization
leading to nearly identical curves. Different thickness lead to a small
systematic error of maximum 4%.

For a unified representation of the different robot kine-
matics, we use the description of kinematics illustrated in
Figure 3. Based on this description, a new robot kinematics
can be added to the system with the following parameters:
the joint types (Figure 4) in the joint centers j1 to j3, and
the activation of the rotational joints jC and jR0 to jR3.
The transformations TC and T0 to T3 describe the segment
lengths as well as rotations and offsets of the joints. Since
the focus of this work is on the upper-body motion, the
movement of the torso is modeled as a holonomic platform,
where additional DoF can be activated in the hip.

B. Human Motion Retargeting

The motions selected as input must be normalized MMM
motions. From the various motions in the KIT Whole-Body
Human Motion Database [11], a set representing the desired
robot task must be selected. Motion retargeting, aimed at
closely resembling human motions, is performed with a
virtual spring-damper system. The method ([20]) of hand
positioning is extended by approximating also the torso,
shoulder, and elbow positions by Cartesian spring damper
systems as seen in the retargeting step in Figure 1. The hand
orientation is directly taken from the MMM hand orientation.
The springs in the hand are much stiffer to prioritize the
hand position over the others, since it is more important
for most task executions. Stiffnesses and damping must be
chosen to achieve a balance between smoothness, accuracy,
and oscillations, with acceptable results for a wide range
of values. The effects close to singularities are reduced by
the inertia of the robot arm segments, which limit possible
accelerations. Gravity is not considered during retargeting to
avoid a constant error in the gravity direction. The retargeting
system is calculated with ode45, the MATLAB Simulink
implementation of a variable-step continuous explicit solver.
From the transfer of the motions, the positions, velocities
and accelerations for all joints are obtained.

C. Calculation of Joint Torques

The joint motions obtained from motion retargeting are
executed on normalized robot models. The joint torques are
obtained by numerical calculation of multi-body dynamics in
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Fig. 3: Kinematics of humanoid robots used in this work. Different
joints (left) and transformations (middle) can be specified. Axis
directions (right) based on MMM [10] model.

(a) cv (2 DoF) (b) quat (2 DoF) (c) roll (2 DoF) (d) xy (2 DoF)

(e) jC (f) jR0 to jR3 (g) Torso Rx,y (h) Torso Pz

Fig. 4: Joint types for kinematics in Table I: Const. velocity joint
(cv), quaternion joint (quat), Rz and rolling contact (roll), universal
joint (xy, xz), clavicula joint (jC), arm rotation (jR0 to jR3), rotary
torso joints (Rx, Ry) and prismatic torso joint (Pz).

MATLAB Simulink. In order to acquire comparable dynamic
models from the kinematic models, inertia corresponding to
those of the MMM model are added to the corresponding
robot segment positions. The calculation is separated into
robot joint torques with segment weights and with object
weights (Figure 1). The following combination allows sepa-
rate scaling of object and robot weights.

The accuracy of the numerical torque calculation was
validated with a grasping motion recorded on our humanoid
robot ARMAR-6. The recorded joint trajectory was used and
the calculated torque was compared to the measured one.
The result is shown in Figure 5. At the end of the grasping
motion, the robot configuration is close to a singularity,
which causes oscillations that can not be reproduced in rigid
body dynamics. This must be considered when selecting
actuators based on the calculated requirements. The mean
error between measured and computed torque is 1.8%.

D. Actuator Requirements and Performance Index

The actuator requirements regarding velocity and accel-
eration are obtained from motion retargeting, the torque
requirements from the normalized dynamic robot model. To
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Fig. 5: Measured torque ( ), and numerically calculated torque
( ) of the first right shoulder joint (j1a) of ARMAR-6 during
grasping motion.
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Fig. 6: Temporal trajectory of velocity and torque ( ) in the LIMS2
kinematics j1a joint together with the 99th percentile value ( )
used in robot comparison.

limit the influence of short peaks in the motions, each value
is limited to the 99th percentile of the values (see Figure 6).
Then, the power requirements for each actuator are calculated
by the multiplication of torque and velocity. The specified
motions lead to asymmetrical loads in the left and right arm.
Due to symmetry considerations, the maximum of both arms
is used.

For the simple comparison of different kinematics, a
performance index based on required normalized actuator
power is proposed. The joint power results from the product
of joint speed (jnω) and torque (jnτ ). The index is based
on the combined actuator power in one arm, where N is the
number of joints in one arm:

P =
∑N

n=0
jnω · jnτ (6)

The Power Requirement Index (PRI) is then the ratio of the
required actuation power of the robot to the reference model.

PRI =
Probot

PMMM
(7)

Since the actuator’s weight and size is approximately pro-
portional to its maximum power, this is a meaningful value.
Lower values mean that less power is required for the same
motion and are therefore better.

IV. REQUIREMENTS ANALYSIS

In the following, we identify the requirements for different
dynamic, human-like uni- and bimanual manipulation move-
ments for different robotic kinematics. For their comparison,
we apply the proposed performance index.

A. Robot Kinematics

10 different humanoid robot kinematics (see Table I, Fig-
ure 4 and Figure 7) are chosen for comparison: LIMS2 [36],

TABLE I: Specifications of Robot Kinematic Examples

jR j1 j2 j3 Torso * λ δ **

LIMS2 [36] jR3 xy roll quat Pz 0.48 7%
CENTAURO [37] jR1 xy xz xz Rx,Ry,Pz 0.40 22%
iCub [39] jR1 xy xz xy Rx,Ry,Pz 0.95 4%
David [4] jR1 xy xz quat Rx,Ry 0.39 15%
Justin [5] jR2 xy zx xy Rx,Pz 0.33 20%
HRP-4 [6] jR2 xy zx xy Rx,Ry,Pz 0.58 6%
Valkyrie [7] jR2 xy zx yx Rx,Ry,Pz 0.44 2%
ARMAR-III [1] jR1 xy xz xy - 0.43 5%
ARMAR-4 [2] jRC, jR1 xy xz xy Rx,Ry,Pz 0.50 5%
ARMAR-6 [3] jRC, jR1 xy xz xy Pz 0.31 11%
New Design jR3 quat quat quat Rx,Ry,Pz 0.47 9%
MMM [10] jR0 xy xy xy Rx,Ry,Pz 1.00 0%
* A holonomic platform is added to all kinematics
** δ: Sum of segment length deviation from MMM related to arm length

CENTAURO [37], iCub [38], David [4], Justin [5], HRP-
4 [6], Valkyrie [7], ARMAR-III [1], ARMAR-4 [2] and
ARMAR-6 [3]. We have chosen a diverse set of humanoid
robot kinematics with 7 or more DoF per arm. Humanoid
kinematics with all joints in a straight line ([6], [7]), are
accompanied with kinematics with a very long wrist ([37]),
different shoulder rotations ([37], [38], [3], [4], [5]), and
with different elbow displacements ([1], [2], [3]). Additional
kinematics with special joint types ([36], [4]) were also
selected. Next to the kinematics of existing humanoid robots,
we also added a New Design based on quaternion joints [13]
in all 3 joint centers. Quaternion joints offer advantages like a
large singularity-free range of motion and high manipulabil-
ity across their spherical motion pattern. They could also lead
to a more human-like movement of the robot arm: Although
human joints are often modeled by rotary joints, this does not
accurately mimic the human joint motion. This design was
not optimized against the PRI before. Finally, the kinematic
design MMM is used for comparison. The MMM kinematic
has no mechanical realization yet, and the joint positions and
orientations are taken directly from the MMM model.

The abbreviations for joint centers (jC, jR, j1, j2, j3, Torso)
refer to Figure 3. Additional z-axis rotation is available at
5 positions on the arm. The directions (x, y, z) refer to the
MMM model. The 2d joint types are the following: universal
joints with different axis (xy, xz), 1d rolling contact joint
combined with a orthogonal rotation (roll), 2d rolling contact
joint, also called quaternion joint (quat), and a constant
velocity joint (cv) defining azimuth and elevation. The 1 DoF
arm joints (clavicula joint (jR) and arm torsion joints (jR0 to
jR3)) are always revolute joints around the z-axis. Based on
this system and the transformations between the joints, most
humanoid robot arms with 6-8 degrees of freedom can be
constructed in the written Simulink program with one line of
text describing the parameters. The base is connected to the
world with a planar joint, enabling the motion of a holonomic
platform. The possible joints following are a prismatic joint
in z-direction (Pz) and revolute joints (Rx,Ry).

B. Human Motion Retargeting

40 motions from the KIT Whole-Body Human Mo-
tion Database [11] were selected and categorized into the
following 4 categories: Household H, Entertainment E,
Conversation C and Factory F. The first two categories have



Fig. 7: Rendering of a unified representation of 9 humanoid robots
with different kinematics performing a retargeted Conversation
motion.

TABLE II: Specifications of Selected Motions

Household Entertainment Factory Conversation

# 586 01 207 05 529 01 323 03
Object 0.3 kg 0 kg 0.3 kg 0 kg
Descr. Big sponge Drum Pick & place Point at left

# 589 01 316 01 663 02 323 03
Object 1 kg 0 kg biman. 4 kg 0 kg
Descr. Pour Air guitar Cast box Point at right

# 589 03 636 15 1071 70 09 597 01
Object 0.5 kg 0 kg 5 kg 0 kg
Descr. Pour & mix Guitar right Suitcase Lean over

# 944 638 16 1758 1p25 01 597 07
Object 0.5 kg 0 kg biman. 1.25 kg 0 kg
Descr. Put in bowl Violin right Manipulate Lean over

# 1235 04 651 01 1758 2p5 01 660 01
Object 0.5 kg 0 kg biman. 2.5 kg 0 kg
Descr. Book f. shelf Head and sh. Manipulate Gestures

# 1235 05 995 131 01 1758 5 01 660 02
Object 0.5 kg 0 kg biman. 5 kg 0 kg
Descr. Book f. shelf M. J. dance Manipulate Gestures

# 1259 46 1109 94 06 1759 1p25 01 1268 01
Object 0.5 kg 0 kg biman. 1.25 kg 0 kg
Descr. Hand over Indian dance Manipulate Control table

# 1269 02 1109 94 07 1759 2p5 01 1268 05
Object 0.1 kg 0 kg bim. 2.5 kg 0 kg
Descr. Throw left Indian dance Manipulate Control table

# 1283 01 1258 36 1759 5 01 1327 01
Object 0.1 kg 0 kg biman. 5 kg 0 kg
Descr. Throw right Circular Manipulate Wave both

# 1071 70 09 1288 05 1759 634 01
Object 0.1 kg 0 kg biman. 4 kg 0 kg
Descr. Carry & lift Left punch Manipulate Left wave

no additional weight at the hand, while the latter two add
objects to the hand with weights appropriate to the task. The
details of the categories can be found in Table II. These
motions from the database are already mapped onto the
subject-specific MMM reference model. The normalization
and retargeting is working on all selected robot kinematics.
To evaluate the chosen motion retargeting method, the mean

TABLE III: Mean retargeting errors separately for end-effector and
other joints for the four motion categories

∆ shoulder & elbow [mm] ∆ hand [mm]
H E F C H E F C

LIMS2 25.0 24.8 25.3 22.9 2.0 2.0 1.7 1.9
CENTAURO 30.5 34.3 28.5 31.3 1.5 3.3 1.1 1.7
iCub 9.8 10.8 9.5 10.7 0.9 1.6 0.6 1.1
David 40.6 43.0 40.5 39.1 2.8 3.6 2.4 3.3
HRP-4 10.7 12.7 10.4 11.1 0.6 1.4 0.5 0.7
Justin 33.1 35.3 30.6 32.4 2.1 2.7 1.8 2.0
Valkyrie 3.4 4.1 3.2 3.3 0.4 1.1 0.4 0.4
ARMAR-III 29.8 37.8 41.4 21.4 2.4 8.9 11.9 1.5
ARMAR-4 10.6 11.2 10.1 11.0 1.0 1.5 0.9 1.2
ARMAR-6 20.4 19.4 16.8 18.2 1.8 2.0 1.4 1.7
New Design 15.1 16.2 14.9 15.5 0.9 1.5 0.9 1.0
MMM 1.0 2.3 0.9 0.6 0.3 1.1 0.3 0.4

error between the motion on the normalized MMM reference
model and the retargeted motion on each robot kinematic is
computed. The results are shown in Table III.

C. Analysis

The actuation requirements of velocity, torque and acceler-
ation, the derived actuation power and proposed performance
index PRI were calculated for all combinations. The nor-
malized results are plotted in Figure 8 with their maximum
values in Table IV. All Units refer to 1m and 100 kg scale.
The abbreviations for joint based power requirement (jC,
jR, j1a, j2a, j3a, j1b, j2b, j3b) refer to the joint names
in Figure 4. For 2 DoF joints, the two degrees of freedom a
and b are added for the two part joints. The computed power
requirements and PRI are shown in Table V.

In all motion categories, the best kinematics requires only
about 40% of the drive power of the worst kinematics, indi-
cating the high importance of selecting suitable kinematics.
Most kinematics perform similarly in the different motion
categories. Some kinematics perform best in only one cate-
gory (Valkyrie in Factory) or require the highest drive power
in only one category (ARMAR-III in Factory). The various
requirements for each joint such as velocity and torque are
either all high (e. g. CENTAURO) or all low (e. g. Justin)
for a kinematic. However, certain kinematics (New Design,
LIMS2, David) have increased torque but reduced velocity
requirements in some joints which can be explained by the
transmission characteristics of rolling contact (quat) joints.
In general, the reasons for the performance of the various
robot kinematics and ways to improve them require further
investigation. Overall, the proposed analysis and computed
PRI (see Table V) shows that the new kinematic design
performs best in 3 categories and well in the last category.
However, its mechanical implementation is challenging.

V. DISCUSSION

This paper presented a system that automatically calculates
the actuator requirements for humanoid robot arms based on
retargeted human motion. It can be seen that the pipeline
for transferring human-like motion trajectories is suitable
for various bimanual humanoid arm kinematics. Our system
allows us to calculate the normalized joint torques, velocities,
and accelerations (Figure 7) for all arm joints. We show that
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Fig. 8: Normalized velocity ( ), acceleration ( ) and torque ( ) of all arm joints in corresponding order (jC, jR, j1a, j1b, j2a, j2b,
j3a, j3b) for 12 different kinematics and the four motion categories. Complete arm actuator power requirement in background ( ). The
values are normalized with the maximum of all robots for each respective joint. The individual scaling factors (maximum values) are
given in Table IV.

TABLE IV: Maximum values of velocity, acceleration and torque
for all joints and the four motion categories

H E F C

jCω [rad/s] 1.53 3.24 1.29 2.24
jCα[rad/s2] 54.2 127.1 92.8 417.9
jCτ [Nm] 7.60 11.79 12.72 8.11
jRω [rad/s] 10.38 23.99 11.33 6.90
jRα[rad/s2] 184.7 692.5 207.1 377.9
jRτ [Nm] 2.85 5.08 4.77 2.49
j1aω [rad/s] 8.71 24.21 5.28 6.19
j1aα[rad/s2] 158.0 673.4 181.6 540.7
j1aτ [Nm] 7.50 10.87 10.15 6.72
j2aω [rad/s] 7.30 21.54 5.54 7.76
j2aα[rad/s2] 258.2 850.0 456.7 904.3
j2aτ [Nm] 5.68 9.20 11.64 8.07
j3aω [rad/s] 5.55 11.58 3.36 4.26
j3aα[rad/s2] 148.0 394.7 179.2 379.1
j3aτ [Nm] 1.88 2.01 4.47 1.33
j1bω [rad/s] 6.15 9.60 3.21 5.17
j1bα[rad/s2] 70.9 231.4 85.5 221.5
j1bτ [Nm] 13.33 19.78 15.20 13.54
j2bω [rad/s] 16.33 30.98 12.59 15.03
j2bα[rad/s2] 310.2 952.9 227.3 588.3
j2bτ [Nm] 5.86 8.22 11.74 4.65
j3bω [rad/s] 13.02 31.42 11.71 14.65
j3bα[rad/s2] 307.5 962.0 265.0 685.7
j3bτ [Nm] 1.57 2.68 3.91 1.35

it is possible to perform human-like motion trajectories based
on the retargeting of human motions available in the KIT
Whole-Body Human Motion Database.

We demonstrate that we can take advantage of our novel
framework in order to evaluate existing kinematics and a
new design. The speed, acceleration, and torque requirements
(Figure 8 and Table IV) can serve as a basis for dimensioning
the joint actuation in future robotic systems. The Power

TABLE V: Power Requirement Index (PRI) and actuation power
P[W] for different humanoid robot kinematics

H E F C
P PRI P PRI P PRI P PRI

LIMS2 80 0.74 276 1.01 86 1.10 68 0.90
CENTAURO 155 1.43 480 1.76 175 2.24 116 1.54
iCub 99 0.91 381 1.40 78 0.99 92 1.21
David 111 1.02 322 1.18 93 1.19 71 0.94
HRP-4 84 0.78 340 1.25 77 0.98 78 1.03
Justin 77 0.71 268 0.99 76 0.98 67 0.88
Valkyrie 81 0.74 343 1.26 67 0.85 80 1.06
ARMAR-III 111 1.02 408 1.50 184 2.35 89 1.18
ARMAR-4 88 0.81 338 1.24 71 0.91 80 1.05
ARMAR-6 111 1.02 413 1.52 108 1.38 146 1.94
New Design 63 0.58 198 0.73 74 0.95 60 0.79
MMM 109 1.00 272 1.00 78 1.00 76 1.00

Requirement Index (PRI), a new performance index, was
introduced and applied to the new design based on general
considerations for improving robot dynamics. With the new
index, these considerations could be confirmed and the effect
quantified (Table V). We showed that under the chosen
assumptions of a constant segment weight distribution, the
kinematic structure of the robot has a significant impact on
the required joint actuation power. In the future, we will
extend the comparison of the kinematic parameters and joint
mechanism to their optimization. Acceleration is not yet
considered in the performance index, because its conversion
to additional motor torque depends on the actuator and gear
type as well as the gear ratio. It could be an important limit in
high-geared motors. Furthermore, consideration of additional
factors such as manipulability may be important for the
design of humanoid robots. Next, we want to build a robot
design assistant that aims to design real robots, taking into
account the concrete physical properties of existing actuators
to approach human motion in reality.
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[11] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour,
“The kit whole-body human motion database,” in IEEE Intl. Conf. on
Advanced Robotics (ICAR). IEEE, 2015, pp. 329–336.

[12] Y.-J. Kim, J.-I. Kim, and W. Jang, “Quaternion joint: Dexterous 3-dof
joint representing quaternion motion for high-speed safe interaction,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 935–942.

[13] C. Klas and T. Asfour, “A compact, lightweight and singularity-free
wrist joint mechanism for humanoid robots,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), 2022, pp. 457–464.

[14] W. Xu, X. Li, W. Xu, L. Gong, Y. Huang, Z. Zhao, L. Zhao, B. Chen,
H. Yang, L. Cao, et al., “Human-robot interaction oriented human-
in-the-loop real-time motion imitation on a humanoid tri-co robot,”
in International Conference on Advanced Robotics and Mechatronics
(ICARM). IEEE, 2018, pp. 781–786.

[15] N. Jaquier, L. Rozo, and S. Calinon, “Analysis and transfer of human
movement manipulability in industry-like activities,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
11 131–11 138.

[16] A. Di Fava, K. Bouyarmane, K. Chappellet, E. Ruffaldi, and A. Khed-
dar, “Multi-contact motion retargeting from human to humanoid
robot,” in IEEE/RAS Intl. Conf. on Humanoid Robots (Humanoids).
IEEE, 2016, pp. 1081–1086.

[17] K. Aberman, P. Li, D. Lischinski, O. Sorkine-Hornung, D. Cohen-Or,
and B. Chen, “Skeleton-aware networks for deep motion retargeting,”
ACM Transactions on Graphics (TOG), vol. 39, no. 4, 2020.

[18] T. Kim and J.-H. Lee, “C-3po: Cyclic-three-phase optimization for
human-robot motion retargeting based on reinforcement learning,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE, 2020,
pp. 8425–8432.

[19] J. Lim, H. J. Chang, and J. Y. Choi, “Pmnet: Learning of disentangled
pose and movement for unsupervised motion retargeting.” in British
Machine Vision Conference (BMVC), 2019.

[20] S. Arimoto and M. Sekimoto, “Human-like movements of robotic arms
with redundant DOFs: virtual spring-damper hypothesis to tackle the
Bernstein problem,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), May 2006, pp. 1860–1866.

[21] P. Zhang, Z. Yao, and Z. Du, “Global Performance Index System for
Kinematic Optimization of Robotic Mechanism,” Journal of Mechan-
ical Design, vol. 136, no. 3, p. 031001, 12 2013.

[22] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement
based on reachability inversion,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA). IEEE, 2013, pp. 1970–1975.

[23] T. Yoshikawa, “Manipulability of robotic mechanisms,” The interna-
tional journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[24] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann,
“Manipulability analysis,” in IEEE/RAS Intl. Conf. on Humanoid
Robots (Humanoids). IEEE, 2012, pp. 568–573.

[25] J.-O. Kim and K. Khosla, “Dexterity measures for design and control
of manipulators,” in IEEE/RSJ International Workshop on Intelligent
Robots and Systems. IEEE, 1991, pp. 758–763.

[26] H. Wang, S. Fan, and H. Liu, “An anthropomorphic design guideline
for the thumb of the dexterous hand,” in IEEE International Confer-
ence on Mechatronics and Automation. IEEE, 2012, pp. 777–782.

[27] B.-H. Jun, P.-M. Lee, and J. Lee, “Manipulability analysis of un-
derwater robotic arms on rov and application to task-oriented joint
configuration,” in Oceans’ 04 MTS/IEEE Techno-Ocean’04 (IEEE Cat.
No. 04CH37600), vol. 3. IEEE, 2004, pp. 1548–1553.

[28] N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-aware
manipulability learning, tracking, and transfer,” The International
Journal of Robotics Research, vol. 40, no. 2-3, pp. 624–650, 2021.

[29] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: evolving soft robots with multiple materials and a powerful
generative encoding,” ACM SIGEVOlution, vol. 7, no. 1, pp. 11–23,
2014.

[30] A. Meixner, C. Hazard, and N. Pollard, “Automated design of simple
and robust manipulators for dexterous in-hand manipulation tasks
using evolutionary strategies,” in IEEE/RAS Intl. Conf. on Humanoid
Robots (Humanoids), 2019, pp. 281–288.

[31] N. Bredeche and J.-M. Montanier, “Environment-driven embodied
evolution in a population of autonomous agents,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2010,
pp. 290–299.

[32] M. V. Liarokapis, P. Artemiadis, C. P. Bechlioulis, and K. J. Kyri-
akopoulos, “Directions, methods and metrics for mapping human to
robot motion with functional anthropomorphism: A review,” School
of Mechanical Engineering, National Technical University of Athens,
Tech. Rep, 2013.

[33] M. J. Gielniak, C. K. Liu, and A. L. Thomaz, “Generating human-like
motion for robots,” The International journal of robotics research,
vol. 32, no. 11, pp. 1275–1301, 2013.

[34] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Rossmann, and
G. Hirzinger, “Making planned paths look more human-like in hu-
manoid robot manipulation planning,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA). IEEE, 2011, pp. 1192–1198.

[35] E. Buckingham, “On physically similar systems; illustrations of the
use of dimensional equations,” Physical review, vol. 4, no. 4, p. 345,
1914.

[36] H. Song, Y.-S. Kim, J. Yoon, S.-H. Yun, J. Seo, and Y.-J. Kim,
“Development of low-inertia high-stiffness manipulator lims2 for high-
speed manipulation of foldable objects,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4145–4151.

[37] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M.
Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco, et al.,
“Centauro: A hybrid locomotion and high power resilient manipulation
platform,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1595–1602, 2019.

[38] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. J. Ijspeert, M. C. Carrozza, et al.,
“icub: the design and realization of an open humanoid platform for
cognitive and neuroscience research,” Advanced Robotics, vol. 21,
no. 10, pp. 1151–1175, 2007.

[39] D. Shah, Y. Wu, A. Scalzo, G. Metta, and A. Parmiggiani, “A
comparison of robot wrist implementations for the icub humanoid,”
Robotics, vol. 8, no. 1, p. 11, 2019.


	Introduction
	Related Work
	Motion Retargeting
	Kinematics Comparison

	Approach
	Normalization
	Human Motion Retargeting
	Calculation of Joint Torques
	Actuator Requirements and Performance Index

	Requirements Analysis
	Robot Kinematics
	Human Motion Retargeting
	Analysis

	Discussion
	References

