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Abstract— Dynamic motions of humans and robots are widely
driven by posture-dependent nonlinear interactions between
their degrees of freedom. However, these dynamical effects
remain mostly overlooked when studying the mechanisms of
human movement generation. Inspired by recent works, we
hypothesize that human motions are planned as sequences
of geodesic synergies, and thus correspond to coordinated
joint movements achieved with piecewise minimum energy.
The underlying computational model is built on Riemannian
geometry to account for the inertial characteristics of the body.
Through the analysis of various human arm meotions, we find
that our model segments motions into geodesic synergies, and
successfully predicts observed arm postures, hand trajectories,
as well as their respective velocity profiles. Moreover, we show
that our analysis can further be exploited to transfer arm
motions to robots by reproducing individual human synergies
as geodesic paths in the robot configuration space.

I. INTRODUCTION

Humans exhibit outstanding manipulation and locomotion
capabilities while performing a variety of tasks e.g., jumping
to reach a highly-situated object, or climbing stairs holding a
cumbersome item. In order to generate such skillful motions,
the central nervous system (CNS) is able to efficiently
plan optimal trajectories in the task space, while coping
with the high redundancy of the configuration space of the
human body. In that regard, understanding the underlying
mechanisms of human motion generation is key to provide
robots with human-like abilities. Indeed, uncovering the CNS
internal optimization principles may contribute to the genera-
tion of efficient, well-coordinated robot motions, which may
additionally be interpretable and predictable by humans.

Various models have been developed in the literature to ex-
plain the underlying principles of human motion generation.
They are commonly based on the optimization of underlying
features (e.g., jerk [1], acceleration [2], torque change [3],
or combinations of criteria [4]), eventually incorporated in
a feedback control loop, to achieve the movement goal (see
e.g., [5] for a review). However, these models do not account
for the dynamical effects inherent to multi-linked mechanical
systems such as humans[] and robots. In fact, dynamic
movements of such systems are driven by strong posture-
dependent non-linearities and couplings among joints. These
nonlinear interactions correspond to the inertial and Coriolis
terms in the well-known dynamic equation of motion. In that
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'From a biomechanical perspective, human bodies are multi-linked me-
chanical systems with multiple joints.

sense, human and robot motions cannot suitably be treated
using classical linear, i.e., Euclidean, methods.

The use of geometric methods has been investigated from
early on as an alternative to account for the inherent non-
linearities of the human body. For example, various studies
suggested that geometric representations play a key role
in the brain, e.g., to encode perceptual spaces [6] and
sensorimotor relationships [7], [8]. Geometric methods have
also been exploited to better understand the underlying
mechanisms of motor control. Handzel and Flash [9] were
early to apply tools from differential geometry to account for
the intrinsic nonlinear structure of multi-linked systems and
the resulting nonlinear couplings between their associated de-
grees of freedom (DoFs). In particular, the authors analyzed
hand trajectories in task space under the lens of affine and
equi-affine geometries [9], [10], and later proposed a model
combining these different geometries which unifies several
invariant properties of human motions [11].

The aforementioned works focused on resolving the redun-
dancy present in task space, or in other words, on selecting
optimal end-effector trajectories. However, as previously
mentioned, the CNS also has to cope with the redundancy
of the highly-nonlinear human configuration space. In this
context, Riemannian geometry provides suitable tools to
describe the phenomena occurring in nonlinear spaces. As
shown by Bullo and Lewis [12], the configuration space of
any multi-linked mechanical system can be identified with
a Riemannian manifold, i.e., a smooth curved geometric
space incorporating the structural and inertial characteristic
of the system. On this basis, Biess et al. [13] suggested
that arm movements are produced by following geodesics,
i.e., minimum-muscular-effort or equivalently shortest paths,
in the configuration space manifold. Importantly, they also
showed that the spatial and temporal parts of movements
are decoupled, and thus can be determined separately. Their
model successfully predicted the joints and hand trajectories
of point-to-point motions involving 4 DoFs of the human
arm. Planar reaching motions involving 2 DoFs of the
arm were also investigated under the lens of Riemannian
geometry in [14]. In their follow-up work [15], Biess et al.
reconciled the minimum-jerk and minimum-torque-change
models by proving their mathematical equivalence when
derived within the Riemannian framework. Their theory was
further generalized to the entire human body by Neilson
et al. [16], who introduced the so-called geodesic synergy
hypothesis. Specifically, they described geodesics in the
configuration space as movement synergies — coherent co-
activation of motor signals [17] — which are selected by the
CNS to overcome the redundancy at the joint level. They



additionally conjectured that complex whole-body motions
result from a composition of geodesic synergies. However,
the hypotheses of [16] remain to be experimentally validated.

Inspired by insights from [13], [16], we hypothesize that
human motions are planned as sequences of geodesic syner-
gies, i.e., coordinated joint movements achieved with mini-
mum muscular effort. Specifically, we model the spatial and
temporal aspects of human motion planning using tools from
Riemannian geometry similarly to [13], [16] (see Section
for a short background) and introduce a novel segmentation
method which decomposes motions into geodesic synergies
(Section [[I). We subsequently validate our hypothesis by
providing a complete analysis of various everyday human
arm motions, thus investigating the plausibility of our model
beyond point-to-point [13] and point-to-manifold [4] move-
ments. Our analysis not only shows that geodesic paths
account for observed hand paths, arm postures, and speed
profiles along the segmented synergies, but also validates that
complete motions can indeed be reconstructed as sequences
of geodesic synergies (Section [[V). Finally, we exploit our
Riemannian motion planning framework to transfer, or re-
target [18], human movements to humanoid robots. As ex-
plained in Section [V] human arm motions are segmented into
sequences of geodesic synergies, which are then reproduced
as geodesic paths in the robot configuration space.

The contributions of this paper are threefold: (i) we
provide a thorough analysis of complex human arm move-
ments viewed as sequences of geodesic synergies; (ii) in
doing so, we propose a novel Riemannian motion seg-
mentation method; and (iii) we introduce a novel per-
spective on the motion retargeting problem by demon-
strating that motions can be transferred as sequences
of geodesic synergies. A video accompanying the paper
is available at https://sites.google.com/view/
riemannian—analysisretargeting/.

II. THEORETICAL BACKGROUND

In this section, we introduces the mathematical tools
that are later exploited to analyze human motions under
the lens of Riemannian geometry and to retarget them to
robots. We refer the interested reader to, e.g., [19], [20], and
to [12] for in-depth introductions to Riemannian geometry,
and geometry of mechanical systems, respectively.

A. Riemannian Geometry of Mechanical Systems

A n-dimensional manifold M is a topological space which
is locally Euclidean. In other words, each point in M has
a neighborhood which is homeomorphic to an open subset
of the n-dimensional Euclidean space R™, also called a
chart. The manifold M is smooth if differentiable transitions
between charts can be defined. The configuration space Q of
a multi-linked mechanical system can be viewed as a smooth
manifold with a simple global chart. Points on this manifold
correspond to different joint configurations q € Q El

Motions of mechanical systems are obtained through
smooth changes of joint configurations, i.e., by following

2For floating base systems, g can be augmented with the base pose.

smooth trajectories g(t) in the configuration manifold Q. In
general, trajectories on a smooth manifold M are represented
geometrically by one-dimensional parametric curves q(t)
with q : [a,b] - M, and a,b € R. The time differential
%h:a = q is a velocity vector tangent to the manifold at
g(a) = qo. Namely, it belongs to the tangent space 7q4, M
which is the set of the differentials at gy of all smooth curves
on M passing through gy. The disjoint union of all tangent
spaces TqM forms the tangent bundle 7M.

A Riemannian manifold is a smooth manifold equipped
with a Riemannian metric, i.e., a smoothly-varying inner
product acting on 7M. Given a choice of local coordi-
nates, the Riemannian metric is represented as a symmetric
positive-definite matrix G(q), called a metric tensorﬂ which
depends smoothly on g € M. The configuration manifold
Q of mechanical systems can be endowed with the so-called
kinetic-energy metric [12]. Specifically, the metric tensor
G(q) is equal to the mass-inertia matrix of the system at
the configuration ¢ € Q. In that sense, the mass-inertia
matrix, i.e., the Riemannian metric, curves the space so that
the configuration manifold accounts for the nonlinear inertial
properties of the system. Consequently, the Riemannian met-
ric leads to local, nonlinear expressions of inner products and
angles. Specifically, the Riemannian inner product between
two velocity vectors u, v € Tq, M at gg € M is formulated
as a function of the metric tensor

(u,v)q, = (u, G(qo)v) =u'G(go)v. (1)
Moreover, the Riemannian norm is ||v||q, = 1/ (v, ¥)q,. and
the angle 6 € [0, 7] between the two vectors u, v satisfies

<u7 v)qo . (2)
[ellgol[v]lq

The notions of curve length and energy also need to be
adapted to the Riemannian setting, as explained next.

cosf =

B. Geodesics

As stated by Newton’s first law of motion, the kinetic
energy of any mechanical system is conserved in the absence
of external forces. This implies that the mechanical system
follows minimum-energy trajectories unless acted on by
an external force. For Euclidean systems, e.g., point-mass
particles, these trajectories correspond to move along straight
lines at a constant velocity. Due to the space curvature
induced by the Riemannian metric, minimum-energy tra-
jectories of multi-linked mechanical systems instead follow
geodesics, i.e., generalization of straight lines on manifolds.

The kinetic energyﬂ of a multi-linked mechanical system
is the multi-dimensional generalization of the kinetic energy
of a particle. For a joint velocity g € 74Q at a configuration
q € Q, it is given by
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3The Euclidean manifold corresponds to G(q) = I Vq € M.

4The kinetic energy is generally used as a geometrical quantity on
Riemannian manifolds, even when they are not linked to a physical system.
For the sake of clarity, our presentation follows a physical point of view.
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Fig. 1: Illustration of the configuration manifold Q, along with the
exponential, logarithmic map, and parallel transport. Trajectories on
the manifold correspond to smooth changes in joint configurations.
Observe that velocities at different points g exist in disjoint tangent
spaces. Thus, parallel transport is required to compare them.

In the absence of external forces, the total energy along a
curve g(t) is thus obtained as F = f; k(t)dt. The energy
function E is minimized by a geodesic curve, which follows
from the application of the Euler-Lagrange equations to (3)).
Namely, geodesics solve the following system of second-
order ordinary differential equations (ODE)

> 9@ + D Tijedsdr = 0, )
J Jk

where ik Ligedide = ci(q,q) represents the influence
of Coriolis forces, I'yj, = 3 ‘?f;’k’ %gl;;“ — 8(5(’(1’;“
Christoffel symbols of the first kind, and ¢; and g;; denote
the k-th and i, j-th component of g and G. In other words,
geodesic trajectories are obtained by applying the joint
acceleration ¢(t) solution of (@) at each configuration g(t)
with velocity ¢(t) along the trajectory. Similarly to straight
lines in Euclidean spaces, the kinetic energy k(t), and thus
the velocity, is conserved along a geodesic. Moreover, one
can easily prove that curves minimizing the energy function
E are also locally minimum-length curves, where the length
of a curve is defined on Riemannian manifolds as

b
¢(q(t)) = / 1(8) g0t )

Therefore, similarly to straight lines in Euclidean space,
geodesics are minimum-energy and minimum-length,
constant-velocity curves on Riemannian manifolds.

) are the

C. Operations on Riemannian manifolds

As previously explained, geodesics are the solution to the
linear system of second-order ODEs (@), and are completely
determined by their initial conditions g(0) and ¢(0). This
allows us to define the so-called exponential map Exp,, (qo)
at any point gy € Q as the solution at time t = 1 of
the geodesic ODE starting at go with velocity gg. This
corresponds to solving an initial value problem (IVP). Given
another point q; € @, the inverse operation, called the
logarithmic map Log, (q:), computes the initial velocity ¢o
such that Exp, (go) = gi. Namely, it solves the boundary
value problem (BVP) of (@) with initial and final conditions
q(0) = qo and g(1) = g;. Consequently, the logarithmic
map is usually harder to compute than the exponential map.

Since joint velocities at different points on the manifold
exist in disjoint tangent spaces, they cannot be directly

compared and must first be transported into a common
tangent space. Specifically, given a curve 7(t) along which
to transport a vector q, the parallel transport operation
corresponds to solving the following system of ODEs

> 9i(@i; + Y Tijiydn = 0. (6)
J Jk

The parallel transport of g from 7;((1) Q to 7:,(17) Q is denoted
P (a) = (b) (q) Note that (6) is remarkably similar to (@):
Indeed, the initial velocity g € T4Q is parallel-transported
along the geodesic it generates. Figure || illustrates the
aforementioned operations. In this paper, we first exploit the
parallel transport to compare velocities along an observed
motion to segment it into geodesic synergies. We then exploit
the logarithmic map for planning individual synergies.

III. HUMAN MOTIONS AS SEQUENCES OF
GEODESIC SYNERGIES

One of the most important characteristics of humans is
their ability to move and act in their environment. In that
sense, uncovering the underlying mechanisms of human
motion generation is paramount for understanding the global
functioning of the human brain and body. In this section, we
first develop the hypothesis that human motions are planned
as sequences of geodesic synergies. We then introduce the
corresponding computational model, which is exploited for
analyzing real human motions in Section [[V]

A. Sequences of geodesic synergies

Several experiments demonstrated that simple point-to-
point, e.g., reaching, motions are successfully predicted by
following geodesics in the human configuration manifold
endowed with the kinetic-energy metric [13], [14], [15].
The corresponding joint coordinations are called geodesic
synergies or geodesic movement synergies [16]. Although
single geodesic synergies are sufficient to plan simple short
point-to-point movements, they may not allow the planning
of complex movements. Indeed, complex movements can be
seen as sequences of simpler motion units. For example,
when a human waves a hand in greeting, the hand is
first lifted, then several left-to-right and right-to-left waving
motions are executed before bringing back the arm along the
body. As these units account for different parts of the overall
movement, they may rather be planned as different geodesic
synergies which are then sequenced into a complete motion.
To validate our hypothesis, we verify if observed human arm
motions can be reconstructed as piecewise geodesic. To do
s0, two main challenges must be tackled, namely, (i) how to
segment motions into different geodesic synergies, and (ii)
how to model the individual synergies.

B. Riemannian motion segmentation

As explained in Section the direction of the velocity
is conserved along geodesic curves. We here exploit this
feature to design a novel Riemannian segmentation method
for human motions. Namely, consider that the g-th geodesic
synergy started at time tl(.g ) at the initial configuration



( € Q and initial velocity q(g ) IS T< y Q. We assume that
the next points g; of the observed J01nt motion belong to the
same synergy as long as the velocity direction is conserved.
In other words, if the velocities qjg) and ¢; point to the
same direction, q; belong to the g-th synergy. Otherwise,
a new synergy is initialized. Importantly, as qf") and g,
belong to two different tangent spaces, q}g ) must be parallel
transported to 74, Q in order to be compared to ¢;. The
proposed Riemannian motion segmentation is summarized in
Algorithm [} Note that the segmentation only considers the
angle between velocity vectors, as their norm may vary along
a geodesic synergy. As detailed next, although each segment
follows a geodesic path in the configuration manifold, the

speed at which these paths are traversed may not be constant.

Algorithm 1: Riemannian motion segmentation

Input: Observed human arm trajectory {q;}7_,,
threshold Ag

Output: Segmented synergies with {tz(-g ), t;g )}5:1
1 Initialize the first synergy at tz(-l) =0;
2 while ¢t < T do
3 Parallel transport qf” to g; by solving (6)),
set q(q) P ROE (qu))
4 Compute the angle 6 between q(g ) and a: 2.
if 0 > Ay then

6 L Start a new synergy: t(g) t, tl(gH)

=t+dt.

C. Computation of geodesic synergies

Given the Riemannian segmentation of an observed human
motion, we are then interested in planning the individual
geodesic synergies that constitute the different segments. To
do so, we follow the computational models of [13], [16] to
determine the spatial and temporal aspects of each synergy.

More specifically, the spatial aspect of a geodesic synergy
refers to the geometric path followed in the configuration
manifold Q, which can also be seen as the specific coor-
dination between the different joints along the movement.
According to the hypothesis that human arm motions follow
minimum-muscular-effort paths, each synergy spatially cor-
responds to a geodesic in Q. Therefore, given the observed
initial and final joint configurations qg )7q§cg) € Q, the
spatial path g(s) of the g-th geodesic synergy is obtained
by computing the logarithmic map from q(g ) to q(g )

As previously mentioned, the velocity of the motlon is
constant along a geodesic. However, most human movements
require some acceleration, e.g., when moving away from
a still posture. As shown in [13], such accelerations can
be introduced by modifying the speed at which the spatial
path g(s) is traversed, i.e., by reparametrizing the geodesic
as q(s(t)). This is referred to as the remporal aspect of
the geodesic synergy. It is important to notice that this
reparametrization does not change the direction of the veloc-
ity along the geodesic — the spatial path remains the same

—, but instead modifies its norm ||G(s(t))]|q(s(¢))» Which may
not be constant anymore®} The temporal path of the g-th
geodesic synergy is obtained by setting its initial and final ve-
locities to the observed velocities q§9 ,q}g ), thus accounting
for possible accelerations along the synergy. Following [16],
we define the temporal path s(t) as the minimum-energy time
course along the geodesic. This corresponds to minimizing
the integrated squared acceleration
7(9)
§2(t)dt, @)
t=0

subject to the boundary conditions s(0) = 0, s(T
50) = 114" | 0. 3(T9) =

T = tgcg ) t(g ) denote the length (3)) and total duration of
the g-th geodesw synergy, respectively.

IV. RIEMANNIAN MOTION ANALYSIS

In this section, we investigate if human arm motions may
be planned as sequences of geodesic synergies. To do so, we
present a detailed analysis of several everyday human arm
motions based on the computational model of Section

9)) =0l
||q(g)|| @ where ((9) and

A. Data description and processing

For our analysis, we consider several human movements
from the KIT whole-body human motion database [21ﬂ
namely one reaching, one throwing, one pointing (suc-
cessively up, horizontally, and down), and two waving (in
greeting) motion As all these movements mostly involve
the joints of one arm, and thus we restrict our analysis to
the 7-DoFs of the left or right human arm.

All motions in the database were recorded with a marker-
based optical motion capture system. The motions were then
mapped to the Master Motor Map (MMM) model [21] —
a reference model of the human body including statistical,
kinematic, and dynamic properties, such as the center of mass
and inertia tensor per segment adapted from [22]. As in [21],
the mapping from the markers to the joint configurations
of the MMM model was achieved by minimizing the error
between recorded and virtual marker positions obtained on
the model with forward kinematics. In comparison to the
previous work, criteria inspired by [23] were included in
order to reduce the joint velocity, acceleration, and jerk. The
optimization was conducted with the sequential quadratic
programming algorithm of NLopt [24]. The obtained joint
trajectories are considered as ground truth for our analysis.
The joint velocities were computed as the analytical deriva-
tive of a second-order approximation of the joint angles over
time obtained with a Savitzky—Golay filter (window-length of
21 samples). The mass-inertia matrix G(q) of the human was
computed by applying the composite rigid body algorithm of
RBDL [25] on the MMM model. The algorithm was adapted
to calculate the first and second derivatives of the mass-
inertia matrix, required to solve the system of ODEs (@).

5The velocity norm remains constant only if s is an affine function of ¢.

Shttps://motion-database.humanoids.kit.edu/

"Motions identified in the database as take_book_from_shelf_right_arm_01,
throw_rightO1, point_at_right03, wave_leftO1, and waving_neutral04.
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(a) Pointing motion (b) Pointing segmentations and reproductions

(c) Waving motion (d) Waving segmentations and reproductions

Fig. 2: Segmentation and trajectories for (a)-(b) pointing and (c)-(d) short waving motions. (a,c) - top to bottom: Ground-truth human
motion, and reproductions with the Riemannian, Euclidean, and IK models. The posture of the model is shown at times (a) t = {1.4,4.6}s
and (¢) t = {2,4}s. The Riemannian synergies are depicted by alternated colors on the ground-truth motion. (b,d) - 2 top rows: Riemannian

(l l) and Euclidean (

) segmentations with the observed hand trajectory (=) along a relevant axis. Segments are denoted by alternated
colors. (b,d) - 2 middle rows: Ground-truth (=) and predicted hand paths with the Riemannian (==), Euclidean (- =), and IK (

) models

along two axes. (b,d) - 3 bottom rows: Ground-truth and predicted trajectories for the shoulder, elbow and wrist joints gs,-, ¢E,z, qW,-

B. Analysis

Here we examine the predictions of the Riemannian model
and compare them with the results of a Euclidean approach.
In the latter, the motions are segmented using a classical
zero-velocity crossing approach [26] in which a new segment
is added if more than 3 joint velocities cross 0 within a
window of 50ms. The individual segments are then predicted
by assuming a Euclidean metric on the configuration space,
for which minimum-energy trajectories are straight lines
temporally traversed as in (7).

The Riemannian segmentation is illustrated in Figs. 23]
and [2c| (top) on the ground-truth pointing and short waving
motions, respectively. We observe that the core parts of the
motions, e.g., lifting, putting down the hand, or waving left-
to-right, are usually planned as one or two long geodesic
synergies, while the transitions are encoded by several small
ones. Interestingly, this relates to the results in [14], which
suggest that point-to-point motions are further apart from
geodesics at the beginning and end of the movement than
during its core part. This can be explained via the Rieman-
nian segmentation, which shows that a larger quantity of
smaller geodesic synergies are required at the transitions,
including at the start and end of the motion. As shown by
Figs. 2b] and 2d] (2 top rows), the Riemannian approach
results into more segments than the Euclidean one. Inter-
estingly, there is usually a correspondence between long

geodesic synergies and long Euclidean segments. This is
particularly obvious, e.g., for the waving motion (Fig. [2d)
from t=1 to 4s.

The configurations predicted by the Riemannian and Eu-
clidean models for a shoulder, an elbow, and a wrist joint are
depicted in Figs. 2B and 2d| (3 bottom rows) for the pointing
and short waving motions, respectively. As a baseline, we
compute the joint configurations from the ground-truth task-
space trajectories using a standard Jacobian-based velocity
controller, which we refer to as IK model. The corresponding
hand trajectories are displayed for the most relevant dimen-
sions in the 2 middle rows, and illustrated along with the
MMM model in Figs. [2a] and

We observe that both motions are successfully recon-
structed with sequences of geodesic synergies. Impor-
tantly, the Riemannian model accurately predicts the spatial
(Fig. 24| and temporal (Fig. 2b] 2d) properties of the
motions at both joint- and task-space levels. In contrast, the
Euclidean model predicts straight lines in joint space, which
often do not match the observed curved joint trajectories.
Consequently, the resulting hand paths often differ from
the ground-truth ones. This is particularly visible, e.g., in
the top and left of Fig. 24 where the human points up
and horizontally. Notice that similar observations have been
made for 4-DoFs short point-to-point motions, which were
better predicted with single geodesics than with Euclidean



TABLE I: Mean joint-angle error w.r.t. ground-truth motions. The
means are computed over the complete trajectories.

Riemannian | Euclidean IK
reaching 0.036 0.427 0.393
throwing 0.029 0.120 0.864
pointing 0.047 0.188 0.488
waving (short) 0.049 0.095 0.470
waving (long) 0.038 0.074 0.393

TABLE II: Mean hand-pose error w.r.t. ground-truth motions. IK is
not considered as it perfectly tracked the ground-truth hand poses.

Position Orientation
Riem. Eucl. Riem. Eucl.
reaching 0.009 | 0.094 | 0.014 | 0.181
throwing 0.007 | 0.035 | 0.012 | 0.053
pointing 0.008 | 0.047 | 0.015 | 0.076
waving (short) | 0.012 | 0.029 | 0.017 | 0.040
waving (long) | 0.009 | 0.026 | 0.015 | 0.040

paths [13]. Importantly, the results presented in this section
generalize these observations to complex motions composed
of several geodesic synergies. It is worth emphasizing that
the Riemannian model also outperforms the predictions of
the Euclidean model when both segmentations are similar,
see e.g., Fig. 2d for t = 1.3 to 2s and ¢ = 3.4 to 4.4s.
As expected, the hand trajectories obtained with IK coincide
precisely with the observed ones. However, the underlying
joint postures often differ from the ground-truth motion.
Indeed, due to the redundancy of the human arm, the same
hand poses can be obtained from different joint trajectories.

The aforementioned observations are validated quantita-
tively for all the considered motions in Tables [l and
We observe that the Riemannian model reliably predicts the
observed human arm postures and hand trajectories, and thus
always outperforms the Euclidean model.

V. RIEMANNIAN MOTION TRANSFER

Understanding the underlying mechanisms of human mo-
tion generation is relevant not only to improve our overall
comprehension of the human brain and body, but to generate
efficient, well-coordinated, human-inspired robot motions. In
general, transferring human movements to robots requires
solving the correspondence problem [27], i.e., finding a
mapping between the different embodiments. Such mappings
were manually defined for similar kinematics [21] or learned
automatically from data [28]. To bypass the complexity of
these mappings, several works instead focused on transfer-
ring the functional part of the motion by mapping end-
effector trajectories [29] or manipulability patterns [30].

In this section, we propose to further exploit our Rie-
mannian computational model to similarly transfer human
movements to humanoid robots without the need of complex
kinematic mappings. We assume that the key points of a
motion are given by the start and end of the underlying
geodesic synergies. Therefore, we use the Riemannian seg-
mentation introduced in Section [[II-B] to extract geodesic

(b) Transfer of geodesic synergy

(a) Proposed transfer framework

Fig. 3: (a) Nlustration of the proposed transfer framework. (1) A
human motion is segmented onto geodesic synergies. (2) The start
and end points of each synergy are transferred onto the robot task
space. Small synergies are merged together. (3) Each synergy is
reproduced as a geodesic in the robot configuration manifold.

(b) lustration of the transfer of a geodesic synergy from the human
to the robot configuration space. Top: A geodesic in the human
configuration space leads to a trajectory in task space going from
x( to x1. Bottom-left: The direction from the current pose 1 to the
desired one s is computed in task space and pulled back onto gy
in the robot joint space. Botfom-right: The gradient in joint space
is then obtained through the parallel transport of qy.

synergies from an observed human motion. Each extracted
human synergy is then reproduced as a geodesic in the robot
configuration manifold, as explained shortly. Therefore, each
transferred synergy constitutes a minimum-energy trajectory
accounting for the robot’s own inertial properties [31], while
the overall sequence of geodesics conserves the main charac-
teristics of the original human motion. The proposed transfer
framework is illustrated in Fig. [3a] and evaluated for one
human arm motion analyzed in Section

A. Computation of geodesic synergies in the robot task space

Most purposeful human motions are generated to produce
a desired hand trajectory. Therefore, when transferring an
human motion to a robot, the key points of the trajectory
must be replicated in its task space 7. Given the Riemannian
segmentation of a human motion, this corresponds to finding
geodesic synergies in the robot configuration manifold, so
that they connect the start and end of the human synergies
in task space. Here, we consider the hand positions and
orientations, i.e., 7 ~ R3xS3, with S? the quaternion space.

Given the desired initial and final hand poses =, a:}g ) e
R3 x 83 of the g-th geodesic synergy, we aim at finding a spa-
tial path g(s) in the robot configuration manifold satisfying
fk(go) =z and fk(q)) = mgf’), where fk(-) denotes the
robot forward kinematics function. As the geodesic synergies
are executed one after an other, we can assume that the initial
condition fk(qy) = ml(-g) is already satisfied (for ¢ = 1,
an initial configuration may be obtained with, e.g., IK).
Therefore, given an initial configuration qp, we aim at finding
the initial velocity gy which minimizes the error between
the hand pose along the corresponding geodesic at t = 1,
ie., 1 = fk(q1), and the desired hand pose asz). This
corresponds to solving the following optimization problem
I?

minQ [Log,, (xy) with x; = Equo(qo), (8)

do€Tq,



where the Riemannian distance between :135‘.9 ) e R3 x &3
is equal to the norm of the logarithmic map. Although
the problem (8) does not yield an analytical solution, it
can be efficiently solved using an iterative gradient descent.
Notice that a Euclidean algorithm can be used, as g always
belongs to the same tangent space T4, Q. The gradient of ()
is computed using the chain rule by first calculating the
derivative of the Riemannian distance as

d||Log,, (')

Ollbogs, (I g;;lw(l L Log,, (z\), 9)
then pulling back the desired change from task space to joint
space by using the pseudo-inverse of the Jacobian JT, and
approximating the derivative of the exponential map using
the parallel transport operation as shown in [32], so that

dllLo (9)y(2

e )L Py (2.9 a0 Lo, a17)
(10)
The corresponding procedure is illustrated in Fig. [3b} After
computing the spatial path of a geodesic synergy (8), its tem-
poral path is defined by the minimum energy time course (/)
along the obtained geodesic, as for human motions. Note that
the boundary conditions of (7) ensure the equality of the
velocity magnitudes at the start of a synergy and at the end
of the previous one, thus preventing sharp velocity changes.

B. Results

Here we evaluate the proposed framework by transferring
the short waving motion analyzed in Section to the 8-
DoFs arm of the humanoid robot ARMAR-6 [33]. In order to
account for the difference of length between the human and
robot arms, the hand poses are encoded in the shoulder frame
and scaled in function of the total arm length. Moreover, we
discard very small synergies and merge small ones together,
so that they cover a distance higher than a given threshold in
joint space. As shown in Fig. @b}7op, this process conserves
the long synergies encoding the core parts of the motions,
while simplifying the transitions.

The joint configurations obtained for a shoulder, an elbow,
and a wrist joint when transferring the waving motion to
ARMAR-6 are depicted in Fig. fib] (3 bottom rows) and
visualized in Fig. #a The corresponding hand trajectories
are displayed for the most relevant dimensions in the 2
middle rows of Fig. @b The joint configurations and hand
trajectories obtained with IK are depicted as a baseline.

We observe that the main features of the waving motion are
conserved by both the Riemannian transfer and IK. Although
the obtained hand poses look similar, the underlying joint
configurations slightly differ due to the fact that the Rieman-
nian transfer follows piecewise minimum-energy trajectories
along the motion. As expected the human and obtained robot
joint configurations differ. This can be explained by the
different kinematic and dynamic properties of the two agents.

VI. DISCUSSION

This paper presented a detailed analysis of human arm
motions under the hypothesis that human movements are
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Fig. 4: Transfer of the short waving motion to ARMAR-6.
(a) - top-to-bottom: Ground-truth posture of the human, corre-
sponding posture of the robot with the Riemannian model, hand
trajectories obtained with the Riemannian, and IK model. The joint
configurations are displayed at times ¢ = {2,2.35,2.7}s. (b) - top
row: Merged Riemannian segmentation (ME) with the observed
human hand trajectory (=) along a relevant axis. Synergies are
denoted by alternated colors. (b) - 2 middle rows: Human (=) and
robot hand paths transferred with the Riemannian (==), and IK (- -)
models along two axes. (b) - 3 bottom rows: Human and transferred
trajectories for the shoulder, elbow and wrist joints ¢s,z, ¢&,«, qW,z-

planned as sequences of geodesic synergies. Importantly, our
analysis showed that the core parts of human arm motions
(e.g., lifting, putting down the hand, or waving left-to-right)
can be efficiently represented by one or two geodesic syner-
gies. In contrast, transitions, including the start and end of
the motions, are usually encoded by several short synergies.
This can be explained by the various changes of trajectories
observed during the transitions, which contrast with the
smooth and fast movements characterizing the core parts
of human motions. Additionally, the proposed Riemannian
computational model successfully predicted the spatial and
temporal characteristics of the joint and hand trajectories
of observed human motions. In contrast, the equivalent
Euclidean model, generating minimum-energy trajectories in
Euclidean space, induced various prediction errors. There-
fore, our study confirms the high influence of the dynamical
properties of the human body for motion generation. It
further extends the results of [13], [14], [15] beyond point-
to-point motions and validates that complex everyday human
arm motions may be planned as sequences of minimum-
energy movements in the configuration manifold.

It is important to note that our analysis is based on the
normalized MMM reference model [21], whose proportions
and inertias are based on average measurements. Although



these properties are scaled in function of the height and
weight of each subject, they do not account for other subject-
specific measurements. Therefore, the mass-inertia matrix of
the MMM model may slightly differ from the one of the hu-
mans who executed the recorded motions. Additionally, small
differences between the joint configurations of the human
and the MMM model may arise due to the mapping from
the motion capture system to the MMM model. This may
result in slight differences in the Riemannian segmentation
and in the computation of geodesic synergies.

With the presented Riemannian transfer framework, this
paper introduced a novel perspective on the motion retar-
geting problem. Namely, our transfer framework naturally
generate energy-optimal motions with respect to the dynam-
ical properties of the considered agents. In this paper, we
exploited key points in task space to determine the geodesic
synergies for transferred motions. In our future work, we
will explore if the mapping of synergies from the human to
the robot configuration manifold can instead be learned for
specific tasks. Moreover, the proposed transfer framework
does not incorporate joint limits and self-collisions avoid-
ance. This may be achieved, e.g., by artificially modifying the
Riemannian metric around problematic joint configurations.

In this study, the presented analysis and transfer frame-
works were restricted to the 7 DoFs of the human arm.
As the considered motions mostly involve the movement
of a single arm, the influence of the remaining DoFs of
the body on the planned geodesic synergies remains limited.
However, many human motions involve the coordination of
multiple joints throughout the whole body, e.g., for bimanual
manipulation or loco-manipulation tasks [34]. As discussed
by Neilson et al. [16], whole-body motions may not be
solely explained by single geodesic synergies, but instead
by several synergies activated simultaneously. Thus, we
may hypothesize that whole-body motions are planned as
sequences of combined geodesic synergies. Future work will
therefore generalize the Riemannian framework presented in
this paper to analyze and transfer whole-body human motions
including combinations of geodesic synergies.
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