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Distance-Aware Dynamically Weighted Roadmaps
for Motion Planning in Unknown Environments

Adrian Knobloch, Nikolaus Vahrenkamp, Mirko Wächter and Tamim Asfour

Abstract—The paper presents and evaluates a Distance Aware
Dynamic Roadmap (DA-DRM) algorithm as an extension of the
Dynamic Roadmap (DRM) approach. In contrast to previous
work, the algorithm is capable of planning collision-free tra-
jectories while considering the distance to obstacles, even in
unknown environments which are perceived by the robot’s depth
camera system. The algorithm makes use of a voxel distance
grid which is updated based on perceptual information acquired
from the robot’s perception system. The distance information is
considered as a cost factor during the roadmap search and it is
considered in a post-processing step that is used for trajectory
smoothing. We evaluate the DA-DRM algorithm in simulation
and in a real-world experiments with the humanoid robot
ARMAR-III. In addition, we compare our algorithm against the
DRM and the RRT-Connect algorithm. The results demonstrate
the performance of our algorithm in terms of keeping a safety
distance to obstacles, trajectory smoothness as well as the ability
to generate solutions in narrow free space.

Index Terms—Motion and Path Planning Collision Avoidance

I. INTRODUCTION

THE efficient generation of collision-free trajectories for a
robot in partly known or even unknown environments is

a challenging task. In contrast to motion planning approaches,
which assume a perfect world knowledge, approaches for real
world applications should be able to consider unknown obsta-
cles and dynamically changing environments. Hence, planning
algorithms which are capable of integrating perceptual input
are indispensable in open-ended environments. When consid-
ering human-robot interaction scenarios, the predictability of
the robot’s movement is an additional requirement that leads
to higher confidence and acceptance by humans.

Thus, a motion planning algorithm should be aware of the
distance to obstacles to allow generating trajectories with a
safety distance to obstacles to avoid collisions which may
occur due to sensor and actor inaccuracies or to unreliable
hand-eye calibration in grasping and manipulation tasks.

We present a motion planning algorithm capable of generat-
ing collision-free trajectories based on perceived depth images
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Fig. 1. The scene (top) is used to generate the point cloud shown in the
bottom using the depth camera of the ARMAR-III. The adapted roadmap
graph is shown in workspace (bottom). The edge costs which are associated
with obstacle distance are shown in different colors (low: blue; high: red).

without the need of computer vision algorithms for object
detection and localization. In addition, the planned motions of
the Distance Aware Dynamic Roadmap (DA-DRM) algorithm
considers the obstacle distance in order to avoid movements
that result in unnecessary low distances to the environment.

II. RELATED WORK

Motion planning has been a highly addressed research topic
in robotics in the last decades and a wide variety of algorithms
have been developed. The most common types of planning



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

algorithms are Rapidly-exploring Random Tree (RRT)- and
Probabilistic Roadmap (PRM)-based approaches. The RRT is
single-query motion planning algorithm which was developed
by Kuffner and LaValle [1] and served as the basis for many
extensions and variations. RRT-based approaches have the
advantage that no preprocessing is needed and that they can
be applied in high-dimensional configuration spaces, and in
various domains. In contrast to such single-query methods,
PRM-based approaches are multi-query algorithms. These
algorithms require pre-calculated data to plan a collision-
free trajectory, but due to the preprocessed data, PRMs can
be queried very efficiently. The standard PRM approach [2]
needs collision informations during the preprocessing stage
in order to generate the roadmap. Since these informations
cannot always be provided in real-world applications, several
algorithms have been developed to address this issue. One
possibility is to plan a trajectory for the static part of the
environment using a PRM and then adapt this trajectory to the
dynamic parts [3]. Another approach, which even works for
completely unknown environments is the Dynamic Roadmap
(DRM) algorithm ([4], [5]). As shown by Kallmann and
Mataric [6], DRMs can be used with a point cloud repre-
sentation of the actual scene. This DRM algorithm has been
used in various works, in particular to improve the efficiency
of the approach to make it applicable for online usage ([7],
[8], [9], [10], [11], [12]). A critical issue of RRT and PRM
based approaches is the quality of the planned trajectories in
terms of smoothness and length. Several methods have been
proposed to deal with these issues. For PRM-based algorithms,
the quality of the trajectories could be improved by improving
the roadmap itself ([13], [14]). Other approaches optimize the
trajectory in an post-processing step. This can be achieved by
randomly creating shortcuts on the path [15] with elastic band
algorithms [16], or the CHOMP approach [17].

III. DISTANCE-AWARE DYNAMIC ROADMAPS

We present a distance-aware dynamic roadmap algorithm,
the DA-DRM, which is based on the DRM algorithm [4] and
which is is able to directly work with point clouds. In the
following, we briefly describe the basic DRM approach and
our extensions which result in the new DA-DRM algorithm.
Finally, we present a post-processing step for the DA-DRM
algorithm, which smooths the generated trajectories while
considering the obstacle distance information generated during
planning.

The DRM algorithm is divided into two steps: an offline
roadmap generation step and the online trajectory generation
step. The roadmap generation consists of the following steps:
1) configuration sampling, where we use preferred sampling
around configurations in the main working area as extension,
2) generation of the DRM graph using k-nearest neighbour
search, and 3) establishment of the mapping between the
voxelized workspace and the nodes and edges of the graph
Using the resulting roadmap, the online trajectory generation
is achieved by the following steps: 1) Calculation of the
occupied workspace voxels, where additionally voxels next
to the occupied voxels and their distance to the blocked part

(a) Coverage of the workspace for
configurations sampled using a uni-
form distribution.

(b) Coverage of the workspace
for configurations sampled using a
seeded normal distribution.

Fig. 2. The roadmap coverage of a 3-joint robot. Each point represents the
TCP position of one configuration, where the sampled configurations are blue
and the seed configurations are red.

are calculated, 2) removing of blocked roadmap edges and
additionally updating the weight of edges near to the blocked
part of the environment, and 3) trajectory generation with A?

search on the weighted graph

A. Structure and Generation of the DRM

Since DRMs are based on PRMs, a weighted graph G =
(V,E) is needed, where V consists of joint configurations ci
of the robot’s configuration space (C-space). A configuration
is an ordered set of joint values ci = (c0i , c

1
i , . . . , c

N
i ), where

each value corresponds to a specific joint and N the number of
degrees of freedom. Guided by the observation that the whole
workspace of the robot is not always of interest for many
tasks (e.g. the area behind the robot), we bias the roadmap
generation to be around some initial seeding points, which
are selected manually in workspace areas of interest. For this
purpose, a normal distribution N (µ, σ2) is used to sample the
workspace around initially chosen seed values s0, s1, . . . , sk:

cji = N (sji mod k, σ
2)

As shown in Fig. 2, this results in less configurations behind
the robot. The edges of the graph are generated by choosing
the k-nearest configurations for each configuration cj . Such an
edge ei = {cj , ck} ∈ E describes a trajectory from one config-
uration to the another. This trajectory is the linear interpolation
between the two configurations. Since the interpolation is
symmetric, the edges are assumed to be undirected. This also
increases the amount of possible paths through the roadmap,
but requires the weight to be equal for each edge and the
reverted edge. The weight of an edge is the distance between
the two configurations. To this end, the extended workspace
distance metric dwm presented by Kunz et al. [18] is used:

dwm(ci, cj) =
√
dw(ci,m)2 + dw(m, cj)2 ,

where the configuration m is the midpoint on the linear inter-
polation of ci → cj . This metric is further evaluated against
C-space metrics dc and workspace metrics dw in ”Distance
metrics for path planning with dynamic roadmaps” [13]. Voelz
and Graichen come to the conclusion that the distance metric
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(a) (b) (c) (d)

Fig. 3. The DA-DRM algorithm consists of three stages: 3(a) → 3(b): Calculation of the occupied workspace voxels using point cloud data; 3(b) → 3(c):
Adapt the DA-DRM graph to the current state of the environment; 3(c) → 3(d): Search the cheapest path through the graph

dwm provides better results than the dc and dw distance
metrics.

A DRM also contains a voxel mapping φ : Wv → V ∪ E.
The voxelized robot workspace Wv is a three dimensional
grid containing x× y× z voxels, each with fixed dimensions,
where x, y and z are limited by the reachable area of the robot.
The function φ saves the workspace to c-space mapping (W-C
mapping) and returns for each voxel v ∈ Wv all nodes and
edges, which collide with it.

B. Trajectory generation

The planning process for DRMs is divided into three
planning steps, which are visualized in Fig. 3. In the first step,
the point cloud, captured by a depth camera, is processed.
Therefore, each point is mapped to the corresponding voxel
of the robot’s voxelized workspace Wv . Each voxel of this
voxelized workspace is then, in the second step, mapped to a
list of nodes and edges using the W-C mapping function φ.
These nodes and edges are disabled to adapt the graph to the
environment. The third step is the actual planning step, where
an A? algorithm is used to generate the trajectory.

For the DA-DRM algorithm, we extend the second step. In
addition to the disabling of all blocked nodes and edges, the
weight w(ei) of all edges ei ∈ φ(A), which are close to the
blocked part of the environment, is adjusted.

Therefore, the adjacent voxel a ∈ A ⊂ Wv of all blocked
voxel B are processed and updated with their distance to the
blocked part:

dv(a) = minb∈B(voxelBetween(a, b) ∗ voxelEdgeLength),

where voxelBetween(a, b) describes the number of voxels
between a and b (excluding a and b). As shown in Fig. 4, only
the next r voxel are updated for each blocked voxel, while r
has to be large enough to fully cover the safety distance dmin:

(r − 1) ∗ voxelEdgeLength ≥ dmin

This distance value dv is then used to update the weight
of the corresponding edges ei ∈ φ(A), which are determined
by the W-C mapping. To do so, for each edge the minimal
distance dmin

v (e) = min(dv(φ
−1(e))) of all corresponding

voxels is considered. The weight is computed by taking into
account a minimum safety distance dmin and a penalty factor
p > 1:

wnew(ei) = w(ei) ∗ pd(ei), with

d(ei) =

{
0 if dmin

v (ei) > dmin

dmin−dmin
v (ei)

voxelEdgeLength otherwise

The factor p specifies which edges should be selected during
the trajectory creation. While a high value for p blocks the
safety area completely, a lower value allows the cutting of
edges for smoother trajectories.

This results in a graph, in which all edges, which are close
to objects are more expensive than edges, which are far away
from the objects, as shown in Fig. 1. As a result, the roadmap
edges which haven’t been updated are favored during planning.
If this is not possible, the edges, which are as far as possible
away from the blocked parts of the environment are used.
Hence, the resulting trajectory follows the safety distance if
possible.

C. Post Processing

A trajectory generated by a DRM or PRM usually includes
unnecessary movements, sharp edges, and clipped transitions
from one edge to the other. This is a result of the creation
process of the graph, where only short edges are added in the
basic algorithm. To counteract these artifacts, the trajectory
should consist of long smooth parts. Similar to the approach
proposed in Geraerts and Overmars [14], such smoothing can
be achieved by adding additional long edges to the graph.
However, this leads to a significant increase of the graph

Fig. 4. All adjacent voxels (colored based on their distance) of the blocked
voxels (black) are updated according to their distance to the blocked part. For
a voxel size of 40mm × 40mm × 40mm, the voxel distances are: red: ≥
0mm, violet: ≥ 40mm, blue: ≥ 80mm
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size. Therefore, the shortcuts are only created during a post
processing step by which some nodes of the trajectory are
removed and the adjacent nodes are directly connected.

To find all nodes that can be removed without violating
the safety distance or creating a collision, the distance grid
represented by the function dv is used. Using this grid and
the W-C mapping φ, each node n can be flagged with its
distance to the objects in the environment. If none of the voxels
a ∈ φ−1(n) is in the calculated area of adjacent voxels A, we
assume that a voxel a ∈ φ−1(n) exists, which is only nearly
out of this area:

dmin
v (n) =

{
r ∗ voxelEdgeLength if φ−1(n) ∩A = ∅
min(dv(φ

−1(n))) otherwise

In addition, we compute for each node ni ∈ t the effect
of removing it from the trajectory t. The resulting trajectory
t′ is computed and the maximum displacement of the robot
arm in workspace dispmax(t, t

′) is determined. This is done
iteratively and the node is removed during this process if
possible.

Algorithm 1 Shortcut the trajectory to smooth the execution.
1: function SHORTCUTTRAJECTORY(nodeDistance as nd,
dmin, t = (n0, n1, . . . ))

2: t′ ← t
3: for ni ∈ t do
4: t′tmp ← t′ \ {ni}
5: d← DISPmax(t

′
tmp, t)

6: affectedPart ← {PREVIN(t′tmp, ni+1), . . . , ni+1}
. Get all nodes, which are removed from the original
trajectory t and the nodes, where the shortcut is between.

7: distances← {nd(n) : n ∈ affectedPart}
8: min← MIN(distances)
9: if min − d < dmin ∧ ¬HASSELFCOLLISION(t′tmp)

then
10: t′ ← t′tmp

11: end if
12: end for
13: return t′

14: end function

IV. EVALUATION

The evaluation of the DA-DRM algorithm is conducted
using the ARMAR-III robot [19] and the ArmarX framework
[20]. The results of our DA-DRM algorithm are compared
against the DRM and the RRT-Connect [21] algorithm. In the
following, we first evaluate the online part of the DA-DRM
algorithm. Therefore, the DA-DRM, the DRM and the RRT-
Connect algorithm are executed with fixed parameters in
different scenes. After this, different roadmaps are compared
in terms of calculation time and usability with the DA-DRM
algorithm.

To compare the DA-DRM algorithm with the DRM and
the RRT-Connect algorithm, two parameters are considered.
First, the quality of the generated trajectory is evaluated,
which is defined by the smoothness and the feasibility of

the trajectory. These are measured in a simulated environment
using a model of the ARMAR-III robot. Second, we evaluate
the creation time of the trajectories. This is done both in
simulation as well as on real-world experiments based on point
cloud representation of the scene.

A. Experimental setup

The evaluation is done using the ArmarX framework, which
provides a simulation environment in which the scenes, shown
in Fig. 5, are created. In the first three scenes the robot stands
in front of a table with the arms hanging beside his body.
This start configuration as well as the target configuration are
randomized in a range of 0.1 radian for all joints, to get a better
coverage of different situations. These scenes differ by the
objects on the table. The first scene only contains one object
to grasp (Fig. 5(a)), which shows a very simple situation. As
a more complex scenario, the second scene contains multiple
objects (Fig. 5(b)), where the robot has to plan around. The
third scene (Fig. 5(c)) uses a plant as barrier.

The fourth scene (Fig. 5(d)) contains three randomly placed
cuboids, which are also perceived by the simulated depth
sensor. These cuboids are always placed between randomly
chosen start and goal configurations. For these configurations
it is ensured that they do not violate the safety distance.

The algorithms are implemented using the ArmarX frame-
work, while the DA-DRM and the DRM algorithms are based
on the same source code. Both, the DRM and the DA-DRM
algorithm use a roadmap with 16384 nodes and each node
is connected to its 20 nearest neighbors. The voxel in both
roadmaps have a size of 40mm × 40mm × 40mm. Since
both, the DRM and the DA-DRM only use point-cloud data,
the RRT-Connect is also executed on this data. Due to the
jerky trajectories generated by the RRT-Connect algorithm,
a random shortcut post-processor is used additionally for
the RRT-Connect evaluation runs. Furthermore, we define an
upper bound of calculation time and assume a failure if the
runtime for an algorithm exceeds 1000ms.

For Scene D, see Fig. 5(d) the RRT-Connect and the DRM
are also evaluated using a collision checker, which only allows
configurations keeping the safety distance. This is done only
for the last scene, because for the first three scenes the goal
configuration would violate the safety distance.

For the first three scenes, each algorithm is run 250 times
and for Scene D 50 different settings are chosen in which each
algorithm is run 5 times. For every run the calculation time,
the distance in C-space and workspace, and the minimal dis-
tance to all surrounding objects are captured. The workspace
distance is measured at the Tool Center Point (TCP) of the
arm and the C-space distance is calculated as the Euclidean
distance of all joint angles in radian along the path:

d =
∑

(a,b)∈Path

euclideanDistance(a, b)

=
∑

(a,b)∈Path

√ ∑
i∈Joints

(ai − bi)2

In addition to this experiment, where only data from a
simulated sensor is used, the DA-DRM algorithm is executed
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(a) Scene A (b) Scene B (c) Scene C (d) Scene D

Fig. 5. The scenes used in simulation to compare the algorithms and exemplary TCP trajectories generated with the DA-DRM algorithm are drawn.

250 times using the real-world point cloud as shown in Fig. 6
with the robot standing in front of the table. The robot
is positioned like in the first experiment and the start and
goal configurations are randomized by 0.1 radian as well. In
contrast to the first experiment, the point cloud is captured
on the real robot. Both experiments are run on an Intel(R)
Core(TM) i7-7700 CPU running at 3.6GHz which is supported
by 16GB of DDR4-2400 RAM.

B. Results

The first experiment, which is run fully in simulation, com-
pares the DA-DRM with the RRT-Connect and the standard
DRM. First the quality of these algorithms is compared. A
good trajectory connects the start and goal configuration with
a short distance for the TCP and minimum joint movements.
This first reduces time and energy needed to execute the
trajectory and second looks more appealing (i.e. human-like).
A second factor for a good trajectory is the feasibility since
inaccuracies in the sensor and actor system may require that
the trajectory provides a safety distance to obstacles.

For the experiments a safety distance of dmin = 70mm is
assumed. Fig. 7 depicts the minimal obstacle distances along
the paths for scenes A to C. For each percentage of the path,
the mean value is printed along with the standard derivation
over the 250 runs. In all scenes, the trajectories generated

Fig. 6. The point cloud used to evaluate the algorithm on real world data.
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(b) Scene B
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Fig. 7. The minimal distance and standard deviation along the trajectory. The
red bar visualizes the safety distance, which should be kept.
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Algorithm failed minimal average
DA-DRM 1.6 % 3.00mm 108.20mm
DRM 0.4 % 0.003mm 28.81mm
DRM 70mm 54.8 % 70.43mm 107.81mm
RRT-Connect 5.6 % 0.001mm 36.25mm
RRT-Connect 70mm 81.2 % 70.45mm 143.70mm

Fig. 8. The minimal distances to the environment evaluated for Scene D
(5(d)). For each algorithm the number of failed runs, the minimal and average
distance calculated over all runs is shown.

by the RRT-Connect and the DRM fall considerably below
the safety distance. This is an expected result, because both
algorithms do not include the safety distance in the calculation.
In contrast to that, the DA-DRM keeps the safety distance for
the whole trajectory and violate this distance in the area close
to the goal configuration where the distance should fall below
such as distance to achieve the target.

The results for scene D are shown in (Fig. 8). While the
RRT-Connect and the DRM again violate the safety distance,
their equivalents, which consider the safety distance as blocked
area, always keep the safety distance. However, these algo-
rithms have the highest number of failures, since they are not
able to plan in narrow passages. The DA-DRM is always able
to plan a path in the given time if the adapted roadmap includes
a path and follows the safety distance if possible. Thus scene
D shows, that the DA-DRM provides a good trade-off between
successfully planning a path and ensuring the safety distance.

The smoothness of the trajectories is measured by the
distances in workspace and C-space, which are shown in
Fig. 9(a) and Fig. 9(b). The data is provided in a violin
plot, where on the y-axis for each length the probability
density is shown. On the x-axis the results are labeled by the
scene number and the algorithm, while the results are sorted
by the algorithm. These two diagrams show that the RRT-
Connect provides the shortest trajectories in the C-space and
distances which are mostly equal to the other algorithms in the
workspace. The reason for this is the post-processing algorithm
which optimizes for the shortest possible trajectory. For the
DA-DRM, Fig. 9(a) shows, that it provides comparatively
long trajectories, which is affected by the safety distance. For
the C-space, the results are different, as shown in Fig.9(b).
The DA-DRM and the DRM algorithm generate trajectories
of nearly equal length. This shows, that the DA-DRM algo-
rithm provides smoother trajectories than the DRM algorithm,
because trajectories of the DA-DRM algorithm allow more
movement in the workspace with similar joint movement. But
these trajectories are not as smooth as those generated by the
RRT-Connect, which again produces the shortest trajectories.
Such short trajectories can not be generated by the DA-DRM
since it has to keep the safety distance.

The time needed to generate the trajectories is shown in
Fig. 10. The violin plot shows that the DRM takes with under
100ms the least time. The DA-DRM algorithm needs 200ms
to 500ms in the mean which is about as much as the RRT-
Connect needs. But in terms of consistency the DA-DRM beats
the RRT-Connect. The RRT-Connect has much more variance
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(a) Trajectory length in workspace.
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(b) Trajectory length in C-space.

Fig. 9. The length of the trajectory in the workspace (9(a)) and C-space (9(b))
for the different algorithms in the different scenes.

in the calculation time for each scene and has a high amount
of runs which need about 1000ms in Scene D.

To understand the increase in duration for the DA-DRM
against the DRM, we need to have a closer look at the duration
of each step during the execution. For this purpose, the time for
trajectory generation using a real world point cloud is broken
down, in the second experiment. Fig. 11 depicts the duration
of each step of the algorithm in a violin plot. As can be seen,
the sum of the average duration is about 230ms, which is the
time needed in simulation.

The algorithm is divided into five major steps, while all
other calculations need less than 5ms. First, the generate dis-
tance grid step needs about 30ms. During this step, all points
of the point cloud are iterated and the corresponding voxels are
marked. This includes the iteration over the adjacent voxels,
whose number increases cubically with the safety distance.
The cubical increase of the considered voxels is the reason
for the relative high time consumption. The second step, which
needs about 50ms is the adapt the graph step. During this step
all marked voxels are iterated and the corresponding nodes and
edges are updated. Since the number of marked voxels is high
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Fig. 10. The calculation times for the different algorithms in the different
scenes.
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Fig. 11. The calculation time for each step of the DA-DRM using a real
world point cloud.

for large safety distances, this step needs a significant amount
of time. In the third connect start and goal step, which needs
about 15ms, the start and goal configurations are connected to
the graph. This includes a k-nearest neighbors search, which is
simply done by iterating over all nodes. It could be sped up by
using a cover-tree data structure ([18], [22]). The fourth step is
the graph search step, which only includes one run of the A?

algorithm. The duration of about 35 to 130ms is a result of the
changes of the edge weights. Because the weights are changed,
the optimal path leads not along an edge created by the blocked
part of the environment, which increases the search area of
the A? algorithm. Therefore, the number of nodes considered
during a run is highly increased. In the last step, the graph
is smoothed during the post-processing, which needs between
40 and 120ms. To do this, new edges are created, which are
not included in the graph. Since the resulting trajectory has to
be self collision free, every new edge needs to be checked for
self collisions, which is computationally costly.

C. DA-DRM Roadmap Parameter Evaluation

A DA-DRM roadmap has mainly three different parameters
to adjust. These are the voxel size, the number of nodes
and the number of edges per node. To find the best values,
different roadmaps are calculated and then evaluated using the

test methods listed in the introduction of this section. As an
initial setup for the parameters, the values presented by Kunz
et al. [18] are used. They use 16384 nodes, 20 edges per node
and a voxel edge length of 50mm.

For the voxel size, smaller is theoretically better, since this
improves the accuracy for the planning. To find a good voxel
size, roadmaps with 50mm, 40mm and 30mm voxel edge
length, each with 16384 nodes and 20 edges per node are
compared. While C-space and workspace length of the gen-
erated trajectories do not differ much, the trajectory creation
time and the roadmap creation time are getting longer and the
roadmap size is getting larger for smaller voxel edge lengths:

Voxel edge length (mm) 50 40 30
Trajectory creation (ms) 100-150 100-230 150-250
Roadmap creation (h:m) 3:38 7:10 18:10
Roadmap size (MB) 859 1386 2637

For a voxel edge length of 50mm and 40mm the trajectory
creation time is very equal, with both under 200ms. The time
for roadmap creation with 30mm voxel edge length is much
higher, because the number of adjacent voxel increases to
cover the safety distance. In addition to the larger trajectory
creation time, the roadmap with 30mm voxel edge length
needs more than double the space and time to create the
roadmap. The creation time of about 7 hours and the size of 1.3
GB is reasonable for a roadmap. So using a voxel edge length
of 40mm gives an improvement in accuracy with reasonable
creation time and space need.

Using a roadmap with more edges tends to generate
smoother trajectories, while the roadmap creation time, size
and the trajectory generation time are increased. A roadmap
with 20 edges per node, as used by Kunz et al. [18], provides
good results for the DRM algorithm, while space and time re-
quirements are reasonable, as shown above. For the DA-DRM
algorithm, 20 edges per node seems to be a good choice, while
less edges provide also reasonable results:

Edges per node 20 15
Trajectory creation (ms) 100-230 100-240
workspace length 1200-2400 1750-3000
C-space length 8-15 9-17

The number of nodes affects the precision of the trajectory
planning in different environments. More nodes increase the
probability, that a node is near to the goal configuration. But
an increase of nodes also increases the runtime of the A?, the
pre-calculation time and the roadmap size. Since the number
of 16384 nodes provides a good precision, this number of
nodes is used throughout this work.

V. CONCLUSIONS

In this work, the DA-DRM algorithm is presented, which
extends the DRM algorithm by incorporating the distance to
obstacles for trajectory generation. The obstacle distance of the
planned trajectories has been increased to maintain a safety
distance while achieving good performance. The DA-DRM
algorithm includes a post-processing step, which uses a created
distance grid to smooth the generated trajectories resulting in
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shorter trajectories. In our evaluation scenarios, the runtime of
the algorithm has been measured with values below 500ms
which makes it suitable for real-time applications. We also
showed that the algorithm is capable to deal with direct visual
input (i.e. point clouds) without the need of any computer
vision algorithms such as object detection and localization.

To improve the trajectory creation time, the algorithm
could be implemented using a field-programmable gate array
(FPGA) as this was done for the DRM by Murray et al. [10].
Since all extensions are working with the voxel grid and the
W-C mapping, the adaptations to an implementation on the
FPGA are easy to conduct.
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