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Abstract— Humanoid robots are expected to interact with
humans in built-for-human environments and perform human-
like actions. This makes the design and optimization of hu-
manoid robots challenging, in part because of the complexity
of human motions. In our previous work, we introduced an
approach that automatically calculates the necessary actuator
requirements for a given upper-body humanoid robot kinematic
performing motions retargeted from human motion data. In
this paper, we propose a humanoid robot design framework,
which encompasses robot kinematic arrangement selection and
actuator optimization based on the actuator requirements data
with a focus on the robot upper-body. We also develop a novel
actuator optimization index, based on the speed, acceleration,
and torque requirements, to help evaluate possible actuator
configurations. The potential of the framework is illustrated
through a theoretical optimization analysis of the actuator
specifications of the humanoid robots ARMAR-6 and ARMAR-
7, in which the optimal gear ratios of the arm joint actuators
are determined based on a novel actuator optimization index
for a specific set of human motions.

I. INTRODUCTION

Robots have the potential to be an indispensable part of
our daily live in the near future by providing immense help
in fields like healthcare, transportation, entertainment, etc.
[1]. This implies that new robots will have to be designed
to successfully complete tasks in different areas. Since
robots usually consist of multiple electronic, computational,
and mechanical sub-components , robot design remains a
challenging task requiring high degree of understanding of
mechatronic systems ([2], [3]). Computer tools are often
employed by engineers to find solutions to the complex
design problems, which readily present themselves in the
field of robotics. Expert systems [4], simulation tools [5],
genetic algorithms [6], custom software [7], implementations
of optimization algorithms [8] among others, have been
investigated by the robotics research community in terms
of their impact on robot design.

One integral aspect of robot design is the choice of suitable
actuators [9]. The selection of an actuator, consisting of a
motor and a transmission (also called gearbox), has a direct
effect on the dynamic capabilities of the robot [10]. Even
though a considerable amount of research effort has gone into
developing optimization techniques for the optimal selection
of robot actuators, there is a severe lack of literature focusing
on the application of actuator optimization algorithms to
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humanoid robots. Since humanoid robots are expected to
accomplish complex tasks (e.g. bi-manual manipulation) the
requirements on the actuation and the proper selection of
motor-transmission combination need to be examined. In
this work, we focus on the upper body, as it is essential
for complex manipulation tasks, and most of our robots are
positioned on a platform, reducing the need to address lower-
body dynamics.

The Master Motor Map (MMM) framework1 [11] unifies
the representation of human motion by decoupling the human
motion capture process from further post-processing tasks.
Human motion data can be normalized uniformly to the
MMM human reference body model and easily transferred
to different robot kinematics. In [12], we developed a frame-
work to calculate the actuator requirements for human-like
motions, by retargeting motion data from uni- and bimanual
demonstrations to normalized robot kinematics, to compute
joint positions, velocities, and accelerations, as well as joint
torques using the normalized dynamic properties of the
MMM reference model. In this paper, we extend our work
by introducing a framework for humanoid robot design based
on human motion data.

Contribution: (i) a humanoid robot design framework2

with multiple customization options and evaluation criteria,
both visual and numeric; (ii) a novel actuator optimization
index based on the speed, acceleration, and torque require-
ments derived from the motion data; (iii) implementation of
the framework in a publicly available custom-built computer
program. The usefulness of the framework is demonstrated
by the theoretical optimization of the actuators for our robots
ARMAR-6 and ARMAR-7.

II. RELATED WORK

In the following, we review the state of the art in computer-
aided robot design and actuator optimization.

A. Computer Aided Robot Design

Robot design is a complicated engineering task often
involving the consideration of many design variables and
subject to a wide set of constraints [2]. Furthermore, the
presence of many non-linear relationships between the design
variables and the properties of the final result makes the
search for an analytical solution extremely difficult [13]. To
alleviate some of the complexities of robot design engineers
use computer tools (e.g. implemented solutions, simula-
tion software, advanced equations solvers, etc.) ([3], [14]).

1https://git.h2t.iar.kit.edu/sw/mmm
2https://git.h2t.iar.kit.edu/sw/computer-aided-robot-engineering



Computer-aided robot design can take one (or a combina-
tion) of the following forms: expert system, evolutionary
algorithm, optimization problem, or design system. In this
literature review, we focus on task-based design, meaning
optimizing the robot for executing a certain set of predefined
actions, as opposed to optimizing the structural integrity of
the robot components, for example.

Expert systems aim to encapsulate a large body of knowl-
edge about a certain topic which would normally be spread
into many different sources [15]. They operate on the basis
of a set of logical rules which is used to determine the
output of the system based on the input [16]. More recently,
[4] introduced an expert system, that can perform multi-
stage reasoning on an ontological knowledge base, to help
the design of humanoid robot components. This system
executes a systematic search within the solution space, which
is composed of catalog components, previous solutions,
and possible combinations between those. Although expert
systems have the advantage of being able to search a
vast knowledge base quickly and can often perform many
important design parameter calculations automatically, they
have the drawbacks of only being able to reason within the
knowledge that they possess.

Evolutionary algorithms (also called genetic algorithms)
are a class of search methods, suited for solving complex
optimization problems, by imitating natural evolution. In-
stead of evaluating one possible solution at a time, they
rely on a population of solutions, thus executing a search
in multiple directions at once. They use a fitness function
to decide which individuals from a population to keep or to
discard. A new population is created from the individuals
kept over from the previous population by means of unary
and binary operators [17]. To sum up, genetic algorithms are
able to find very good solutions for optimization problems,
which are extremely hard to analyze analytically. However,
evaluation of the fitness of each population can be compu-
tationally demanding, since the chance of finding a good
solution increases with the size of the population [17] and
evolutionary algorithms are known to be inconsistent [18].

Formulating the design task as an optimization problem
requires synthesising an optimization function, dependent on
a finite set of optimization variables, subject to a known set of
equality and/or inequality constraints. This is advantageous
when it comes to task-based robot design since the optimiza-
tion function can be specifically tailored to the movement
which is required from the robot and the environment, in
which the robot should operate [19]. Representing the
task of robot design as an optimization problem allows the
engineer a large degree of control over the design via the
formulation of the objective function. Further investigating
robot design as an optimization problem could be a viable
way of developing highly skilled robots for specific tasks
([1], [18]).

Design systems (also design frameworks) present a sim-
plified overview of the design process with a high level of
abstraction. They aid engineers by splitting the design task
into several steps starting from the system requirements and

ending with a complete design concept [20]. A framework
for interactive robot design was proposed by [21], which
investigates the robot’s operational space for task execution.
Instead of optimizing an objective function, the algorithm
iteratively translates the region of operational spaces accessi-
ble to the robot and informs the designer how to adjust robot
parameters and avoid breaking constraints. This human-in-
the-loop optimization allows the engineer to incorporate
their domain-specific knowledge in terms of both the robot
morphological and dynamic properties. Design systems allow
the user a great deal of control over the final solution of the
design problem, while still providing the necessary aid in
terms of computational power.

B. Actuator Optimization

Actuator selection is one vital aspect of robot design
since the motor-gear combination has an enormous effect
on the robot system’s dynamic properties [10]. The actuator
needs to output the proper torque, speed, and acceleration
in order to drive the load in a way permitting the robot
to achieve the desired performance ([22], [6]). Although
designing application-specific components (such as motors
and transmissions) could lead to optimal results for the
specific engineering task, this is usually not a viable option
for most robot designers, and therefore, a large part of the
research is focused on finding the most optimal actuator from
a database of motors and gears ([23], [24]). In that case, the
engineer has no control over the structure of the components,
so electromagnetic, power-loss, or temperature effects of the
components are not considered in this paper.

The idea of maximum system acceleration was introduced
by [25] as one of the earliest actuator optimization heuristics.
They analytically calculated the optimal gear ratio for the
highest acceleration to i∗ =

√
JM/JL. This is known as the

principle of inertia match since the gear ratio is chosen such
that the input inertia reflects the output inertia.

It can be observed that, the properties of an actuator
are closely related to the choice of gear ratio [26], and
consequently, many researchers choose to model the actuator
selection as an optimization problem focused on finding
the optimal gear ratio of the motor-gear system. This is
further advantageous, since the actuator parameters could be
represented in terms of the gear ratio (in the case where the
motor is treated as fixed) and interpolated, where the exact
values are unknown.

In the literature, there is a lack of publications which: a)
investigate the actuators of humanoid robots, which present
novel design challenges compared to industrial robots; and
b) consider the requirements for human-like arm motions.
The current work seeks to fill this gap in the literature
by introducing an innovative framework for the design of
humanoid robots with a focus on actuator selection and
optimization based on requirements derived from human
motion data.



Fig. 1: Humandoid Robot Design Assistant - Framework Overview

III. APPROACH

We propose a novel robot design framework for the
engineering of humanoid robots based on requirements from
human motion. As previously stated, motions from the KIT
Whole-Body Human Motion Database [27] were selected
and the normalized requirements for the actuators of hu-
manoid kinematics were calculated in [12] by simulating
how these kinematics would perform those movements. The
current work can be classified as a design system, but it also
includes an optimization step.

A. Framework Overview

The principal structure of the system can be seen in Fig. 1.
It consists out of three main components required for the
data processing, the kinematics selection, and the actuator
optimization. These three components are bound together
by the start-up screen, which allows the user to quickly
switch from window to window, based on which step they
have completed. The robot designer has to provide human
motion data and sequentially carry out each step in the
given order. At each step the user can adjust the system
settings until a desirable configuration is reached, before
proceeding with the following step, allowing a high degree
of customization and control over the robot design process.
After the actuator optimization step, the user has the optimal
actuator parameters and a suitable robot kinematic, which
can be used for the purposes of testing and creation of higher-
level robot model.

The MATLAB simulation data of the retargeted motions
from the KIT Whole Body Human Motion Database [12],
[27] are the source of the system presented here.

Furthermore, the system works with a database of pre-
defined motor-gear configurations including KIT SAC units,
which can be easily augmented if needed.

B. Data Processing

The Data Processing step contains the mechanisms to
reduce the level of detail of the motion data to a desired state
and preview the changes made for each motion parameter:
joint position, speed, acceleration, and torque over the whole
motion. The motion data can be analyzed on a frame-by-
frame basis for maximum precision. Since the focus here
is the motion itself, all the data presented in this step is
for the MMM reference model. The data and videos for all
other robot kinematics can be viewed in the next step of
the process. During this step the user can adjust the level of
detail to make the following steps easier, as well as, preview
how the motions would be executed by the MMM model and
observe the required speed, acceleration, and torque for each
joint, allowing them to make judgments about the complexity
of the design task.

The motion data dimensions are in the form Rn×m×p

where n = 22 + 1 is the number of joints (1 additional
dimension is added to save the time variable), m = 4 for
each position, speed, acceleration, and torque, and p is equal
to the number of time-steps of the simulation. One object
with these dimensions is loaded for each available robot
kinematic. Since each large movement type is made up of
smaller movements, MATLAB interpolates between those
for the sake of continuity. These interpolations, however, do
not correspond to the actual movement gathered from the
human motion data, and therefore should not be considered
further, thus they are set to an empty data type. The data for
the object torques is loaded in the same manner.

The MATLAB simulation output files have a very high
level of detail, in that there are multiple joint position,
speed, acceleration, and torque data points for each second.
This exceeds the amount of information needed to derive
meaningful information about the actuator requirements for
the whole movement. In order to reduce the data to a more
easily manageable amount, the user can perform a ”Delete
Small Time-Steps” operation , to achieve a desired level of
detail. Two modes were implemented to achieve this: mode
time-step deletes data points on an interval, specified by the
user; mode norm deletes data points, for which the difference
in magnitude of the value change from one point to the next
is smaller than the user-specified value.

C. Kinematic Arrangement Selection

In the Kinematic Selection window, the user can view the
different motion requirements for all robot kinematics (for
which the human motion data was retargeted) and compare
them based on their actuator requirements hulls and the
kinematic performance index. The user can also specify a
subset of all available motions, which they wish to consider.
The kinematics comparison is facilitated by the following
information presented to the designer: joint position through-
out the whole movement, normalized requirements hulls



for each joint based on the required speed, acceleration,
and torque to perform the movement, and the Kinematic
Performance Index [12]. The requirement hulls are calculated
with the help of alphashapes [28] to be more exact than the
convex hulls of the data. The visual and quantitative modes
of comparison give information about the trade-offs between
the requirements for different robot kinematics and should
allow the user to choose the best robot kinematic for the
selected motions.

1) Normalised Requirements Hull: To find the al-
phashape, the values for speed, acceleration, and torque
need to be normalized, in order for the calculation to be
sufficiently accurate. To achieve this, the value of speed,
acceleration, and torque for each time-step is divided by
the respective limit (chosen based on all available robot
kinematics and across all motions). This can be expressed
mathematically for one speed data point as follows: s∗ =
si/smax, where s∗ is the normalized speed value, si the
original data point speed value for the time-step i, and smax

is the maximum speed value across all robot kinematics and
loaded motions. In order to avoid short peak values, the data
is limited to the maximum values for each specific robot
kinematic. This is done by finding the ratio between the limit
of the chosen kinematic and the highest limit across all robots
in the form: rl = srmax/smax, where rl is the desired ratio
and srmax is the speed limit for the chosen robot kinematic
r. Then, each value from the data points can be set to rl, if
it was previously larger than that.

In order to calculate the requirements hull we need to
take into account the object torque, as well as the robot joint
speed, acceleration, and torque. Even though the 3D hull in
the speed-acceleration-torque is being displayed, it could be
the case that some points with relevant object torque are left
out, if only the robot data is used for the calculation. To
prevent that, the following method is employed: Firstly, the
4D alphashape hull in the speed-acceleration-robot-torque-
object-torque space is calculated. To get the array of points
over which the 3D hull should be calculated, all unique
points are extracted from the output of the 4D hull.

2) Power Requirement Index: The kinematic score (in-
troduced in [12]) is a vital part of kinematic arrangement
comparison, alongside the visual representation of the re-
quirements hull. To calculate the kinematic score of a kine-
matic arrangement the maximum torque and speed values of
each joint are needed. Because of symmetry constraints, the
highest value for the limit from the left and right respective
joints is considered. Additionally, the kinematic score is
split into two values: one for the robot kinematic itself, and
one for the object torque. The object torque score can be
calculated as follows:

P =

N∑
n=0

jnω · jnτ,o (1)

PRIO =
Probot,o

PMMM,o
(2)

Fig. 2: Requirements hull of a robot with ARMAR-7 kinematics
performing entertainment motions for the j1a joint (left: blue; right:
red), compared with the capability hull (gray) of the U2 SAC unit
(gear ratio: 120). In this case possible acceleration is insufficient
for the rapid entertainment motions.

where jnτ,o is the robot object torque, Probot,o is the object
torque score for the selected robot kinematic, and PMMM,o

is the object torque score for the MMM model. It should
be noted, that the object torque score is only then non-zero,
when at least one of the loaded motions is performed with
an object.

The index is used to compare different dynamic, human-
like, uni- and bimanual manipulation movements for 11
humanoid robot kinematics: LIMS2 [29], CENTAURO [30],
iCub [31], David [32], Justin [33], HRP-4 [34], Valkyrie
[35], ARMAR-III [36], ARMAR-4 [37], ARMAR-6 [38],
ARMAR-7) and the New Design robot kinematics. The
specifications of the MMM model are also given as reference
(Note: the MMM kinematic has no mechanical realization as
of the writing of this work).

The motion categories used for the comparison are the
same as those used in our previous work [12].

D. Actuator Selection and Optimization

To choose the optimal actuator configuration the user can
select different motor-gear configurations for each joint in
the actuator optimization window and observe how well they
cover the requirements in the 3D speed-acceleration-torque
plot not only visually (Fig. 2), but also based on the actuator
optimization index. For a higher level of precision in the
optimization, the user can use the automatic gear ratio opti-
mization to find the gear ratio, for which the current actuator
configuration will be most optimal in terms of satisfying the
requirements. To accommodate for a wide range of robot
designs, the user can freely select the desired robot height
and arm weight. There is the option to specify if the actuator
is within the arm or in the robot body, with the arm and
robot weights being adjusted accordingly. This step allows
the exploration of different actuator configurations, where the
visual and quantitative feedback modes can provide valuable
information about the viability of each configuration.



1) Data Scaling: The robot weight is a primary robot
parameter. The robot torque data from the MATLAB sim-
ulation is calculated based on a 1kg reference so that it
can later be scaled by the actual robot weight. To give the
user maximum flexibility over the robot design, the input
parameter for determining the final robot weight is the arm
weight. The weight of all actuators, which lie within the arm,
is added to the arm weight for the calculation of the resulting
total robot weight. The arm segments of the MMM reference
model account for 7% (14% for both arms) of the total robot
mass. This value is used to calculate the resulting total robot
weight from the total resulting arm weight.

The data scaling is performed based on the Froude number

Fr =
v2

g · l
=

l

g · t2
, given by the ratio of the inertial force to

the force of gravity [12], using the following scaling factors:

λ =
1

luser
; µ =

1

wuser
(3)

where luser is the robot height specified by the user; 1 is
the height of the MMM robot model in m, and wuser is the
robot weight calculated as previously described.

ωt =
1√
λ
· ωs; ω̇t =

1

λ
· ω̇s (4)

where ωt is the required speed; ωs is the speed from the
motion data; ω̇t is the required acceleration, and ω̇s is the
acceleration from the motion data. The scaling factors for
speed (ω) and acceleration (ω̇) were derived from the scaling
factor for time.

τt =
1

µ · λ
· τs; τo,t = iu · τo,s (5)

where τt is the required torque; τs is the torque from the
motion data; τo,t is the required object torque, τo,s is the
object torque from the motion data, and iu is the scaling
factor from the user input.

These factors are used over all data points to arrive at the
real actuator requirements data.

2) Requirements & Motor Hulls: The requirements hull
is derived based on the scaled requirements data and used
for the calculation of the actuator optimization index. One
last step for the acquisition of the requirements data is the
addition of the robot and object torques for each time-step. In
order to allow the user to separately scale those, it is impos-
sible to consolidate them until right before the calculation
of the requirements hull. Consequently the 3D array for a
time-step i in the data looks like this: [Si, Ai, Ti, r + Ti, o],
where Si is the speed value, Ai the acceleration value, Ti, r
the robot torque value, and Ti, o the object torque value.

For the calculation of the actuator optimization index the
motor parameters hull is also needed. The motor hull is
constructed based on the speed, acceleration, and torque
values of the motor-gear combination. The motor is treated
as ideal, in the sense that it can produce the same negative
values as positive. Therefore, for the motor hull calculation,
the 3D vertices given in Table I are used, where S is the

speed parameter, A is the acceleration parameter, and T is
the torque parameter of the motor.

TABLE I: Motor Hull Vertices

ω ω̇ τ

S 0 T
S 0 −T
S A 0
S −A 0
−S −A 0
−S A 0
−S 0 −T
−S 0 T

These parameters are dependent on the gear ratio for
a chosen motor-gear configuration. Gear ratio values that
are not found in the manufacturer’s catalog are interpolated
based on the known values, to allow finding new optimal
gear ratio values. It was taken into account that it is not
uncommon for gear manufacturers to be able to create gears
with user-specified gear ratios.

3) Actuator Optimization Index: The Actuator Optimiza-
tion Index is based on finding the intersection between
the motor hull and the requirements hull in the 3D speed,
acceleration, and torque space. Mathematically this can be
expressed as follows:

Let M be the convex hull (alphashape hull with α = ∞)
of the motor parameters and R be the alphashape hull (with
0 < α < ∞ ) of the motion requirements both in Rω×ω̇×τ

space where VI is the volume of the intersection and VR is
the volume of the requirements hull. Then the intersection
of those two volumes is a new volume: VI = VR ∩VM. The
actuator optimization index (A.O.I.) is calculated to:

A.O.I. =
VI

VR
(6)

In effect, the ratio describes what part of the requirements
hull is covered by the selected actuator configuration.

In the automatic sequence for the optimization of the
gear ratio the speed, acceleration, and torque interpolation
functions are calculated based on the data from the actuators
table in the form: f1(i) = ωp, f2(i) = ω̇p, and f3(i) = τp.
Afterward, a SciPy implementation of the Powell’s method
[39] is used to arrive at a new optimal gear ratio (i)
candidate. In short, Powell’s method iteratively searches
down directions, which are linearly independent, based on
the best-known approximation of the minimum. Powell’s
method does not require the calculation of derivatives, which
makes it a suitable candidate for our use-case. The new
speed, acceleration, and torque parameters of a motor with
the candidate gear ratio are calculated with the help of the
interpolation functions. Based on those, a new motor hull
volume (VM) is calculated, which is used to calculate the new
intersection (VI) with the requirements hull volume (VR).
Finally, the ratio of the volumes of the new intersection and
the requirements hull is computed.

https://scipy.org/


After an optimal value has been produced a value correc-
tion follows to accommodate for the physical realization of
the transmission. The value correction consists of rounding
up the result of the automatic optimization to a number
with one decimal place after the comma and calculating the
new resulting actuator optimization index. The bound of the
optimization algorithm are set to [imin; imax], where imin is
the minimum value of the gear ratio for the chosen actuator
configuration from the database, and imax is the maximum.

The gear ratios of all upper-body limb joints can be
selected manually or optimized, according to the described
procedure. The result of the final step is a robot actuator
configuration, which can be used for further analysis and
simulation.

IV. ANALYSIS

The framework was used for a theoretical optimization
of the ARMAR-6 and ARMAR-7 upper-body actuators. The
data level of detail adjustment was performed with the use of
the mode norm Delete Small Time-steps algorithm with the
norm value 0.25. The object torque scaling was set to 100%
and the robot weight and height were set to the ARMAR-6
and ARMAR-7 robot specifications. The specifications of
the robot kinematics are shown in Table II, where λ is the
scaling factor based on the MMM reference model; and the
MMM model specifications are included for comparison.
Two sets of evaluations were performed for each robot:
one, for the motions Entertainment (E), Household (H),
Factory (F), and Conversation (C); and another one, for the
motions Entertainment and Household (for a full breakdown
of the movements see [12]). Each step of the framework
was performed for each robot and the gear ratios for the
actuators of each upper-limb joint were optimised. This was
done to showcase how the framework aids task-based design
by providing meaningfully different results, based on the
selected motions.

TABLE II: Specifications of Robot Kinematic Examples Used for
Evaluation

Name jR j1 j2 j3 Torso λ

ARMAR-7 jRC, jR1 xy xy quat Pz 0.41
ARMAR-6 jRC, jR1 xy xz xy Pz 0.31
MMM jR0 xy xy xy Rx, Ry, Pz 1.00

The results of the automatic gear ratio optimization can
be seen in Table III, Table IV, Table V, and Table VI,
where ”SAC” is the joint specific KIT SAC Unit, iC is
the current gear ratio (for the selected SAC Unit), A.O.I.C
is the actuator optimization index for the currently selected
gear ratio, iO∗ is the value-corrected gear ratio calculated by
the automatic optimization algorithm, A.O.I.O∗ is resulting
A.O.I. for the optimal value-corrected gear ratio, and %∗ is
the change from the selected gear ratio to the optimal one.

As can be observed, the motor parameters calculated based
on the gear ratio results from the automatic optimization pro-
cedure produce a higher overlap between the motor hull and

TABLE III: ARMAR-6 Upper-body Joint Actuators Optimization
(E), (F), (C), (H)

Joint SAC iC A.O.I.C iO∗ A.O.I.O∗ %*

J1a L 160 0.035 44.1 0.110 214%
J1b L 160 0.048 50.2 0.124 158%
J2a M 160 0.072 50.2 0.165 129%
J2b M 160 0.050 50.0 0.146 192%
J3a S 160 0.149 50.0 0.333 123%
J3b S 160 0.103 67.0 0.147 43%
JR M 160 0.027 50.0 0.068 152%
JC L 160 0.060 54.7 0.137 128%

Avg. +142%

TABLE IV: ARMAR-6 Upper-body Joint Actuators Optimization
(E), (H)

Joint SAC iC A.O.I.C iO∗ A.O.I.O∗ %*

J1a L 160 0.104 45.1 0.108 3%
J1b L 160 0.036 49.5 0.096 167%
J2a M 160 0.029 50.5 0.065 124%
J2b M 160 0.055 50.0 0.164 198%
J3a S 160 0.120 51.4 0.232 93%
J3b S 160 0.142 62.8 0.228 61%
JR M 160 0.034 50.0 0.093 174%
JC L 160 0.071 56.7 0.155 118%

Avg. +117%

TABLE V: ARMAR-7 Upper-body Joint Actuators Optimization
(E), (F), (C), (H)

Joint SAC iC A.O.I.C iO∗ A.O.I.O∗ %*

J1a U1 160 0.077 65.6 0.140 82%
J1b U1 160 0.104 68.5 0.176 69%
J2a U1 100 0.074 62.1 0.095 28%
J2b HD8 166 0.204 58.1 0.339 66%
J3a A7W 94 0.278 92.0 1.000 260%
J3b A7W 94 0.492 81.3 0.500 2%
JR U1 100 0.076 56.3 0.107 41%
JC U1 160 0.068 72.6 0.109 60%

Avg. +76%

TABLE VI: ARMAR-7 Upper-body Joint Actuators Optimization
(E), (H)

Joint SAC iC A.O.I.C iO∗ A.O.I.O∗ %*

J1a U1 160 0.081 62.7 0.153 89%
J1b U1 160 0.131 69.6 0.221 69%
J2a U1 100 0.260 59.4 0.348 34%
J2b HD8 166 0.365 60 0.568 56%
J3a A7W 94 0.711 91.1 0.712 0.1%
J3b A7W 94 0.650 89.8 0.651 0.1%
JR U1 100 0.080 57.4 0.111 29%
JC U1 160 0.177 73.5 0.278 57%

Avg. +42%

the requirements hull. It can be seen, that the optimal gear
ratios are mostly smaller than the currently selected ones.
This is explained by the fact that the motion data sometimes
includes large accelerations and lower transmission ratios



produce higher accelerations. It can be seen that ARMAR-6
was specifically designed for industrial applications, where
slower movements and higher forces are needed. Hence,
lower transmission ratios are reasonable in the case of fast
conversation motions.

This example application of the proposed framework
shows that it is a useful tool to derive optimal actuator
parameters based on motion requirements from a set of
motions. It also displays the practicality of the proposed
actuator optimization index in comparing different actuator
configurations and highlights the usefulness of an automatic
gear ratio optimization, which can find new possible solu-
tions.

V. DISCUSSION

In conclusion, this paper presents a novel framework
for the kinematic selection and comparison and actuator
selection and optimization for the design of humanoid robots
based on actuator requirements, calculated from human mo-
tion data. The proposed framework provides the robot de-
signer with a significant range of creative freedom, compared
to other computer aided methods.

Furthermore, the engineer receives immediate feedback
based on the parameters they alter, which can save a lot
of time, especially in the early stages of the design process.
This allows the user to quickly remove sub-optimal solutions
and focus on those with more potential. Similarly to an
expert system, this framework works with a database of
human motion data and a table of actuator configurations
(our SAC units). However, the KIT Whole Body Human
Motion database [27] is constantly being extended with new
motions and objects. Additionally the system can be applied
to totally new kinematics and actuators, making it much more
flexible.

The proposed Actuator optimization Index, in contrast
to other actuator optimization approaches, includes the re-
quired acceleration for the movement (in addition to the
speed and torque), which could bridge the gap between
robot and human trajectories. It is also supplemented by
a visual representation of intersection of the requirements
hull with the motor hull in the speed-acceleration-torque
space. Allowing comparison in multiple ways (in this case:
numerically and visually), enables discovering meaningful
differences between the inspected configurations.

Outside the purview of this framework are design prob-
lems regarding topics such as robot control, trajectory opti-
mization, and structural integrity. However, the robot model
derived from the optimal parameters, which this framework
can deliver, should serve as a valuable blueprint for investi-
gating the optimal solutions for other engineering problems
concerning humanoid robot design.

One significant improvement to the proposed framework
would be the addition of an optional kinematics optimiza-
tion step. It would involve a new program window, which
allows the user to specify the desired robot joints, their
position along the arm, and the joint types. After deciding
on the kinematic arrangement, the user would export it to

MATLAB, where the necessary actuator requirements for
the selected motions would be calculated. Then, following
the steps outlined in this work, the user would be able
to compare the kinematic indices of the newly designed
kinematic arrangement against all other known ones and
decide if it is worth pursuing its design further. This would
allow for the co-optimization of kinematic and actuator
configurations, thereby increasing the design space for new
humanoid robots significantly.

Additionally, since the output of the framework is the op-
timal robot parameter set for the kinematic and actuator con-
figurations, the possibility to export the robot model could
be added. The robot model could then be imported into the
MATLAB simulation for the design to be inspected further.
This simulation could inform other design decisions (such
as actuator placement, robot weight distribution, etc.) on a
more practical level, further supporting the design process
and making the design of humanoid robots a less daunting
endeavor. In the future, the system could be extended to the
lower body if required, but this brings additional complexity
due to the interaction forces with the environment that are not
currently available in the database. Linear actuation of the
arms is not yet integrated but could be added in the future, as
is already the case with the mobile base. Future work should
include the application of the framework to real robots to
validate its effectiveness and solve practical implementation
problems.
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