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ABSTRACT

Modern service and humanoid robots are comprised of multiple computers distributed among the robots’
hardware. During task execution, several software components are executed in parallel on the connected
machines. Due to the complex control loops and communication requirements of robot tasks, a suitable
assignment of software components to the available hardware units is necessary to achieve low reaction
times. Currently, there is a lack of works on approaches to evaluate intra-robot communication. We propose
a coupling between the robotics framework ArmarX and the network simulator OMNeT++ to support the
evaluation and optimization of robot architectures. Our approach allows unmodified robot components
to communicate across simulated network interconnects. In a case study, we examine the influence of
different hardware assignments of software components on task execution times. We show that the timing
information present in the simulation-based evaluations enables more efficient hardware assignments when
compared to static graph partitioning.

1 INTRODUCTION

Most modern robots are distributed systems comprised of specialized components. Robotics frameworks
used to develop robot applications rely on a modular architecture that incurs computation and communication
overhead compared to monolithic architectures. Since many robots execute precise or even safety-critical
tasks, the runtime behavior of robotics systems is an important topic, which has, however, received only
limited attention in the literature.

A variety of robotics frameworks are developed by different research groups (Elkady and Sobh 2012),
the most well-established being the Robot Operating System (ROS) (Quigley et al. 2009), which is used
both in research and industry (Guizzo and Ackerman 2012). Other examples include Yet Another Robot
Platform (YARP) (Metta et al. 2006) and Orocos (Bruyninckx 2001). In our work, we examine the ArmarX
framework (Vahrenkamp et al. 2015). Robotics frameworks provide the ability to create software modules
and contain pre-built modules with specific robot functionalities such as image recognition or motor control.
At the core of these frameworks, communication middlewares provide functionalities for the components to
transparently communicate with each other over an underlying network topology. Communication between
components is typically performed in a peer-to-peer fashion, with a central service for registration of
components. As a basic communication mechanism, most frameworks rely on remote procedure calls
for direct communication and data distribution functionality such as publish and subscribe services. By
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relying on the communication middleware, the software components of a robot can be distributed among
the robot’s hardware.

The overhead of communication middlewares results from the pure transmission times of messages
over the network and from serialization and message management costs. While this overhead is negligible
for infrequent exchanges of individual messages, they constitute a substantial part of the execution times
of most robot applications with high modularity and wide distribution of components. Evaluating these
costs is possible through measurements within a real system. However, real-world measurements require
the system to be deployed, are time-consuming, and only capture one specific hardware assignment of
software components.

The communication times and thus the execution times of tasks are strongly influenced by whether
frequently communicating components are assigned to the same hardware units, or, if such an assignment is
infeasible, by the interconnect between the components. A key goal in the development of robot applications
is to minimize communication times to allow for higher loop frequencies within control loops and to assure
for subtasks to be executed within certain time frames, e.g., to meet safety requirements.

Developers of robotic applications have mostly relied on intuition and experience to find component
assignments to minimize communication costs. With high data rates of sensor values and increasing numbers
of software components, analytical tools can be used to find more efficient assignments. By accomplishing
a higher frequency in control loops as a result, the preciseness of a robot’s grasping task could be increased
for example. Therefore, the present paper describes a network simulation for evaluation of execution times
and runtime behavior of robotics tasks with different network topologies and component distributions. Our
main contributions are as follows:

• Design of a bidirectional coupling between a robotics framework and a network simulation.
• Validation of the performance predictions and optimization of the component topology in an example

robotics scenario.

2 FUNDAMENTALS

In this chapter, we present related work and introduce the robotics framework ArmarX.

2.1 Related Work

A number of works describe evaluations of robotics frameworks using microbenchmarks or real-world
measurements of example task executions. Shakhimardanov et al. examine the Robot Operating System
(ROS) with respect to its scalability (Shakhimardanov et al. 2011). In their benchmark, they use the publish
and subscribe service of ROS to simply distribute data from a single publisher to a varying number of
subscribers with all components being assigned to a single computer. Therefore, they only examined the
local communication overhead without regard for transmission times between hosts. They conclude that
ROS scales linearly with the message size, while the message frequency has hardly any impact on the
latency, as long as the bandwidth is not worked to capacity. They notice, however, that the number of
subscribers unexpectedly influences the latency, which limits the scalability of ROS.

A similar investigation is described by Gijs van der Hoorn (Van der Hoorn 2012). This work compares
ROS with Orocos regarding their component interaction latency, jitter on interaction latency and throughput.
When comparing a monolithic system to a system with 27 components, both performing the same example
task, component-based systems are up to 16 times slower. An analysis reveals that most time is spent in
middleware functionality.

A substantial body of research has considered methods for the modeling and simulation of distributed
systems. Becker et al. present a meta model to describe the “performance-relevant information of a
component-based architecture” (Becker et al. 2007). A simulator is presented that takes an instance of
their meta model as input, and outputs workloads and response times generated by simulating the modeled
distributed system.
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Perumalla et al. propose a simulation framework for large-scale applications based on the Message
Passing Interface (MPI) (Perumalla 2010). They designed their simulation to be able to execute existing MPI
applications on simulated high-performance clusters. Since the system used for the simulation generally
has more limited hardware resources than the simulated system, they modified the MPI runtime library to
account for the timing differences between real clusters and the simulated platform. The simulation traps
and schedules MPI calls to maintain the order expected in the real system. With the help of test runs they
conclude that while there is still room for improvement regarding the performance of their simulation, the
runtime predictions are accurate. Similar to their work, our simulation coupling approach traps remote
procedure calls.

Some authors focus on accurate models of parallelized applications in high-performance computing
environments (Hammond et al. 2009, Rodrigues et al. 2011). While these works provide promising avenues
to improve our performance estimations in the future, our present work focuses on the communication
costs given by the chosen hardware assignments.

A number of efforts have been undertaken to unify the coupling of simulations and other systems. The
goal is to promote reusability and tools for interdisciplinary collaboration. The most prominent framework
to compose distributed simulation systems is the High Level Architecture (HLA) (Dahmann et al. 1997).
With modularization of simulation domains and the use of interfaces, HLA enables interchangeability
of simulation members, so-called federates. Apart from simulations, a federate can also be a hardware
system or an arbitrary software application. A similar, more recent approach widely used in industry is the
“Functional Mockup Interface” by Blochwitz et al. (Blochwitz et al. 2011). Awais et al. have proposed an
execution scheme for hybrid distributed simulations based on models using discrete-event and time-stepped
time advancement as well as models based on continuous time (Awais et al. 2013). For the coupling, they
rely on HLA and FMI. Similar to their work, our simulation combines a time-stepped robotics framework
with a discrete-event network simulation.

Tools such as Shadow (Jansen and Hooper 2011) and the Direct Code Execution facilities in NS-3 (Tazaki
et al. 2013) enable the execution of existing applications within simulated network environments. Wegener
et al. present an interface to access the traffic simulator SUMO via TCP, which allows for coupling with
network simulations (Wegener et al. 2008).

A more ad-hoc approach is given by direct coupling of simulations using custom connections between
simulation domains. In real-world examples of direct coupling, socket connections are often used. Mayer
et al. provide an overview of coupling mechanisms targeting the network simulator OMNeT++ (Mayer and
Gamer 2008). They state that if only application-layer information is required to be sent to the network
simulation, direct coupling through a TCP socket is sufficient and requires the least changes to the existing
application.

In our work, the main challenges lie in the synchronization between the robotics application and the
network simulator, which must be solved independently of whether we rely on a framework such as HLA.
Thus, since the intention of the present work is to show the general feasibility and benefit of our approach,
we rely on a direct coupling over a TCP socket and leave improvements in reusability and maintainability
to future work.

2.2 The Robotics Framework ArmarX

ArmarX is developed by the High Performance Humanoid Technologies Lab at Karlsruhe Institute of
Technology and provides several pre-built robot components. One of the core packages is comprised of
sensor-actor units that abstract the access to a robot’s sensor values and the control of motor units. Further,
there are several utility components, e.g., kinematics solvers and motion planners. Developers can create
custom software components and orchestrate the components using a statechart mechanism. A dynamics
simulator enables modeling a robot’s interaction with its physical environment. For this purpose, specific
units for sensing and acting inside the simulated environment are provided. The simulator defines its own
simulation time, i.e., it is largely decoupled from wall-clock time. The most important use case of ArmarX is
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to program the humanoid robot series ARMAR. For instance, ARMAR-III (Asfour et al. 2006) is designed
to help in known kitchen environments. By combinations of grasping, transportation and placement of
objects, it performs tasks like loading of a dishwasher.

For communication between software components, ArmarX’s communication middleware relies on
the remote procedure call (RPC) framework Ice (ZeroC, Inc. 2018). Ice allows for so-called Ice objects
to communicate transparently over a network using RPCs. Calls on remote objects are implemented as
function calls on local representations of the remote objects called proxies. Proxies can be obtained from
a central registration service. The Ice runtime translates the local calls to remote calls transmitted via
the network. For every RPC, an application-layer packet representing the request is created. This packet
contains the called object, function and serialized call parameters. ArmarX uses TCP as the transport
protocol. On the server, the actual function is executed. If there is a reply, another application layer packet
is created and sent to the caller. In ArmarX, every component is implemented as an Ice object providing
its functions in an Ice interface. This allows for components to be distributed among different hardware
units within a robot. In the following, we refer to the networked hardware units in a robot as hosts. Along
the RPC functionality, there is also a publish and subscribe mechanism based on topics. Via RPCs, objects
can send data to a central server that distributes this data to all objects subscribed to the specified topic.
In ArmarX, this service is frequently used to distribute sensor data. The RPC mechanism, as well as the
publish and subscribe services represent the communication mechanisms we have to model realistically as
a basis for simulating the intra-robot communications.

3 METHODOLOGY

To obtain a meaningful evaluation of intra-robot communication and its effects, a bi-directional coupling
is required:

1. ArmarX to network simulator: First, the components’ communication behavior needs to be available
to the network simulator to evaluate the communication costs. Due to the complex logic in individual
components and the large number of components in a typical scenario, modeling each component
in a network simulation is not feasible. Hence, we decided to rely on the existing components with
only slight modifications to intercept RPCs and send their information to the network simulator
through a socket connection.

2. Network simulator to ArmarX: In addition to the pure communication costs, we also want to
study the impact of the communication costs of different hardware assignments on the robot’s
behavior. For instance, longer communication times may lead to delays in control loops and thus
affect the precision of robot actions. We achieve a bi-directional coupling by holding back an
intercepted RPC within ArmarX, until the corresponding message has passed through the simulated
network. Subsequently, within ArmarX, the RPC is transferred and executed physically over the
Ice framework.

For our implementation, we used the network simulator OMNeT++ (Varga 2010) and modeled all used
ArmarX components as virtual components within our simulation model. Since ArmarX still executes
the component logic, the virtual components act as simple senders and receivers of virtual TCP messages
representing RPC packets. Further, they account for RPC execution times on the server.

3.1 Synchronization between Simulations

Our goal is to create a coupled simulation in which the messages exchanged between robot components
are delayed according to the topology and conditions of the simulated network. Thus, the virtual time
between ArmarX and the network simulation must be synchronized.

The virtual time in ArmarX proceeds in a time-stepped fashion, whereas OMNeT++ is based on the
discrete-event paradigm, i.e., virtual time advances to the earliest of a set of events scheduled in the simulated

https://zeroc.com/products/ice
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future. Thus, the proposed system is a hybrid simulation (Awais et al. 2013). In our implementation, the
network simulation manages the progress of the coupled simulation system. The simulation proceeds as
follows: the network simulation executes all events up to the current virtual time of ArmarX. Now, the
network simulation sends a message to ArmarX to request calculation of the next time step. Subsequently,
the network simulation resumes event execution up to the new ArmarX time. During this process, messages
are exchanged between the network simulation and ArmarX to trigger the simulated transmission of an
Ice message, or to signal the completion of a simulated message transmission.

3.2 Simulation Events

We distinguish three different types of messages transmitted from ArmarX to our network simulation,
indicating the following occurrences:

• Routing of an RPC request
• Calculation of an RPC on the server side
• Routing of an RPC response

In Fig. 1, a typical simulation of an RPC within an ArmarX time step is shown. After simulating the
transmission of an RPC request, the actual RPC is performed within ArmarX. Subsequently, the calculation
of the RPC and the routing of its response can be simulated.
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Figure 1: Timeline of the event scheduling for an example simulation step.

Scheduling events corresponding to ArmarX message transfers at the correct virtual time in the network
simulation is complicated by the processing times within ArmarX. After calculation of a new ArmarX
simulation step, components execute periodic tasks, perform arbitrary calculations and transfer messages.
To translate the time required for these steps from wall-clock time to virtual time, a message collection phase
is required to allow any message transfers to be signaled to the network simulation before the simulation
time proceeds. Further, message collection phases are required at the following stages:
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• After the simulated routing of a request, new RPCs may be created as an effect of the current RPC.
• After the simulated execution of an RPC, a response may be created inside ArmarX.
• Finally, after the simulation of a potential response to an RPC, a subsequent RPC may be executed.

During a message collection phase, the network simulation pauses until a configurable timeout in
wall-clock time has been reached. As we will show in Section 4.3, the configuration of the timeout enables
a tradeoff between the performance and the accuracy of the simulation.

3.3 Measurements

We model network communication costs using the OMNeT++ INET (INET 2018) framework by creating
configurable networks of hosts representing the robots’ hardware units. ArmarX software components are
modeled as TCP applications. The INET framework allows us to realistically estimate the communication
costs considering configurable interconnects. To account for processing times within the robot’s hosts,
measurements of the following quantities are required:

• Execution times of Ice calls.
• Overhead of Ice serialization and de-serialization.
• Message sizes of Ice request and replies.
• Operating system overhead: by default, the INET framework adds 100 nanoseconds of processing

time when receiving a TCP packet, representing the overhead of the operating system’s network
stack. However, real-world overheads substantially exceed this value (Larsen et al. 2009, Emmerich
et al. 2014). Relying on values from real-world measurements is particularly important when small
messages are exchanged and network stack overheads thus dominate costs of message transfers.

For our simulation, we measured the above quantities during execution of the scenario described
in Section 4. During the simulation runs, we determine individual processing times by sampling from the
empirical distributions.

4 RESULTS

For evaluation and as a case study, we consider a basic scenario in which ARMAR-III moves its left arm to
follow a rectangular trajectory. Despite the simple nature of this task, there are more than 50 components
involved. We give a brief overview of the functionality of the scenario and the involved components:
the application is specified as a statechart with the main state comprised of a control loop that executes
periodically every few milliseconds. In the control loop, the current state of the robot is obtained via an
RPC to a RemoteRobot component. With the retrieved information about the position of the robot’s joints,
the target velocity for the robot’s hand to reach the end of the current rectangle line can be calculated. This
calculation is repeated periodically to account for the effects of external forces such as gravity on the arm.
The calculated velocity is then sent via an RPC to the TCPControlUnit component, which calculates the
target velocities for individual joints. The TCPControlUnit runs a separate control loop, also requesting the
current state of the robot with an additional call to a RobotStateComponent to calculate the target velocities.
The velocities are sent to the KinematicUnit, which is the actor unit for the robot’s joints. Fig. 2 shows a
sequence diagram for the RPCs made by the TCPControlUnit.

4.1 Validation

To validate our simulation model, we compare simulation runs with distributed executions on physical
hardware. The distributed execution was performed on a network of three commodity computers (2x Intel
i7-7700, 32 GB RAM; 1x Intel i7-960, 16 GB RAM) connected over a gigabit switch. The required
measurements as described in Section 3.3 were performed on the same platform. We ran the simulation

https://inet.omnetpp.org/
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Figure 2: Sequence diagram of RPCs made by the control loop of the TCPControlUnit.

and distributed execution ten times each and measured the time required to complete a cycle for each of
the control loops of the TCPControlUnit displayed in Fig. 2. In Fig. 3, we show the empirical distributions
of the measured cycle times aggregated over all runs for the distributed execution in comparison to the
cycle times obtained in the simulation.

It can be seen that the general shape of the empirical distributions matches. In both cases, two peaks
about one millisecond apart from each other can be observed. The peaks are caused by the two phases
in the scenario’s execution: after initialization, until about half of the total scenario time has passed, the
robot’s arm is not moved. When the TCPControlUnit is inactive, it only performs two Ice calls, resulting
in lower execution times than with the four calls performed when it controls the robot arm’s movement.

Considering the cycle times shown in Table 1, the simulation underestimates the average cycle time
for the control loop of the TCPControlUnit by about 0.26 ms (17%). We found that the main cause of this
difference is the execution cost for process-local computations, which accounts for about 0.2 ms and is not
regarded in our simulation. Additionally, we model the Ice framework as a black box, only considering
serialization and execution costs of calls. Other tasks contributing to the runtime, such as the scheduling
of incoming RPC calls on the server side, might cause additional overhead. This also leads to the slightly
lower deviation within and between runs. This difference cannot be seen in confidence intervals due to a
lower sample size in simulation runs caused by the robot starting its arm movement faster in simulation.

To validate the correctness of the robot behavior when coupled with the network simulation, we
compared the distance of the robot’s arm to an ideal rectangular trajectory between distributed executions
and simulations. The accuracy depends both on the cycle times and on the delays when propagating sensor
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values among the robot components. Comparing the squared errors between simulation and distributed
execution shows an average difference of about five percent. Figure 4 contrasts the distance of the hand
to the ideal path in a simulation run with a distributed execution.

Overall, we consider the accuracy of our simulation results to be sufficient to examine the timing
behavior of the robot. Improvements in accuracy could be achieved by a more detailed modeling of the
computations performed by the robot components. In particular, we currently do not consider the effects
of the computational load in a component on the processing times.

Table 1: Cycle times of the TCPControlUnit for distributed executions and simulations in milliseconds.

Distributed Execution Simulation
Run Mean SD 0.95 CI Mean SD 0.95 CI
1 2.1146 0.5343 0.0286 1.7862 0.5254 0.0315
2 2.1027 0.6588 0.0344 1.7903 0.5099 0.0312
. . .
10 2.0780 0.5728 0.0303 1.8024 0.5159 0.0324
Mean 2.1220 0.6047 0.0317 1.7927 0.5213 0.0321
SD 0.0406 0.0355 0.0017 0.0082 0.0162 0.0008
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Figure 4: Distance of the robot’s arm to the ideal trajectory for a simulation run and a distributed execution.

4.2 Optimization of Hardware Assignment

The main purpose of coupling the robotics framework to a network simulation is to enable optimization of
the hardware assignment of components with respect to latencies and bandwidth limitations, e.g., to reduce
the end-to-end reaction time to outside events. In the following, we investigate how the coupled simulation
can assist robot developers in reducing the time required to complete cycles of the robot’s control loops,
and the traffic across the inter-component connections.

4.2.1 Cycle Times

First, we focus on minimizing the cycle times of the TCPControlUnit by varying the hardware assignment
of the involved components displayed in Fig. 2. Naturally, the highest cycle times are achieved with all
software components being assigned to different hosts, resulting in the same results as listed in Table 1. As
expected, the lowest cycle times are achieved by assigning all components to the same host. This approach
reduces cycle times by more than half to about 0.88 ms. The second fastest cycle times are achieved by
isolating the KinematicUnit, with average cycle times of 1.13 ms, followed by isolating the component
providing robot information, with cycle times of 1.56 ms.
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4.2.2 Network Traffic

We conducted a second experiment using the same scenario as above, now focusing on minimizing the
bandwidth usage when increasing the number of hosts the software components are assigned to. Since
the lowest bandwidth usage will always be achieved when assigning all components to the same host, we
postulate that the software components are distributed equally among the hosts. Such constraints could be
given in a system with limited bandwidth and processing power. To minimize the bandwidth consumption,
we computed the minimum edge cut in a communication graph created from simulation data. The edge
cut was computed heuristically using Metis (Karypis and Kumar 1995). The results can be seen in Fig. 5.
The proposed hardware assignment with two hosts requires only 2.6 MBit/s of bandwidth. Up to six hosts,
the total throughput rises linearly to about 21 MBit/s. With seven hosts and beyond, the bandwidth usage
grows more slowly, since fewer and fewer pairs of interacting components are separated. With twelve
hosts, the bandwidth usage is at 32 MBit/s, which is about a third of the extreme case of assigning each
software component to a separate host.

We now consider the cycle times achieved when minimizing the bandwidth usage. When increasing
the number of hosts, the cycle times increase sharply due to the separation of components with frequent
interaction. The variation in cycle times between eight and twelve hosts is not reflected in the bandwidth
usage, demonstrating that minimizing one of these quantities does not necessarily minimize the other.

We can show that the hardware assignment suggested by the minimum edge cut in the communication
graph does not minimize the cycle times. To this end, we chose the configuration with five hosts and manually
swapped the hardware assignment of two components, which was sufficient to group all components that
crucially affect the cycle times to the same host. A simulation run with this hardware assignment results
in average cycle times of 0.89 ms, which is 28% lower than the averaged 1.23 ms in Fig. 5.

The considered scenario was small enough to perform the above experiments by manual adaptation of
the hardware assignments. To cover more complex architectures, the experimentation can be automated
to systematically steer the configuration towards an optimal hardware assignment in a simulation-based
optimization process (Gosavi 2003).

4.3 Performance

The performance of the coupled simulation is most strongly affected by the configurable duration of the
timeouts for collecting messages from ArmarX. Fig. 6 shows the simulation runtime with different timeouts,
contrasted with the error in the prediction of cycle times. The error was calculated by comparing average
cycle times with those of a simulation run utilizing timeouts of 20 milliseconds. Larger timeout durations
lead to higher execution times but more accurate results, since short timeout durations may cause messages
from ArmarX to be missed during message collection and thus postponed in simulation time.
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A smaller amount of runtime is spent on computing the next time step within ArmarX, and on event
handling within OMNeT++. We recorded an average of 3.69 ms for requesting a new ArmarX time step and
receiving its confirmation, which allows the simulation time to proceed by 1 ms. Per second of simulation
time, about 550.000 events were handled by OMNeT++.

5 CONCLUSION AND DISCUSSION

We presented a coupling of a robotics framework with a network simulator that enables realistic evaluations
of intra-robot communication networks, taking into account the execution times of remote procedure calls.
Predicting the runtime of robot tasks can help researchers and developers to optimize applications and
the hardware assignment of software components. Although our simulation currently targets the ArmarX
framework, the general approach is applicable to other robotics frameworks that allow for interception of
message transmissions at the sender.

Our prototype implementation still has a number of limitations that we intend to tackle in the future
to allow for a complete integration within the robotics framework ArmarX:

• Performance: Since there are no guarantees about future messages sent by ArmarX, timeouts are
required to achieve a low probability of missing a message. As a consequence, the slowdown of
our simulation compared to local executions is still quite high. Eliminating timeouts entirely would
require substantial modifications to the ArmarX codebase. Some performance improvements may
be achieved by separately tuning the timeouts for the three phases of a remote procedure call.

• Simulation of local computations: The proposed network simulation translates the execution times of
remote procedure calls to simulation time. Computations that are independent of remote procedure
calls are executed according to wall-clock time and not considered in the simulation. Thus, the
simulated overall execution times are typically lower than in real-world executions. Modeling the
timing behavior of local computations will require more intrusive adaptations to ArmarX.

• Evaluation of further scenarios: Our evaluation and validation was performed with respect to a
comparatively simple movement of a robot arm, which already involved more than 50 components.
More complex tasks could be considered to evaluate and optimize larger intra-robot architectures.

Lastly, we intend to further improve our simulation model. Most importantly, computational costs could
be modeled by factoring in configurable CPU specifications and the simulated system load. Additionally,
by modeling the costs for processing of messages throughout the network stack at more detail, the accuracy
of the predictions could be improved.
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