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Abstract— Executing bimanual manipulation tasks on hu-
manoid robots introduces additional challenges due to inherent
spatial and temporal coordination between both hands. In
our previous work, we proposed the Bimanual Manipulation
Taxonomy, which defines categories of bimanual manipulation
strategies based on the coordination and physical interaction
between both hands, the role of each hand in the task, and
the symmetry of arm movements during task execution. In this
work, we build upon this taxonomy and provide a formaliza-
tion of temporal and spatial constraints associated with each
category of the taxonomy. This formalization uses Petri nets
to represent temporal constraints and differentiates between
relative and global targets. We incorporate these constraints in a
category-specific controller to enable reactive adaptation of the
behavior according to the respective coordination constraints.
We evaluated our approach in simulation and in real-world
experiments on the humanoid robot ARMAR-6. The results
demonstrate that category-specific constraints can be enforced
when needed while maintaining flexibility to accommodate
additional constraints.

I. INTRODUCTION

Manipulation remains a challenge in robotics. Compared
to unimanual manipulation, bimanual manipulation adds ad-
ditional challenges due to aspects such as arm coordination
strategies, redundancy resolution in closed kinematic chains,
self-collision avoidance, and sophisticated force-based con-
trol [1]. In our previous work, we introduced a taxonomy
for bimanual manipulation that describes different categories
of bimanual coordination patterns based on temporal and
spatial constraints between both hands [2]. Examples of
such bimanual patterns are shown in Fig. 1. The taxonomy
distinguishes in total between seven patterns of bimanual
manipulation actions, see Fig. 2. In this work, we extend
and detail the description of our taxonomy and provide a
formalization of the temporal and spatial constraints of each
category of the taxonomy with a specific focus on linking the
taxonomy to controllers needed for the execution of bimanual
tasks on a robot. In contrast to previous approaches, this work
does not focus on representing a specific bimanual action or
a single category of such actions. Instead, it incorporates
various configurable constraint templates derived from hu-
man demonstrations and can be used to map a wide range
of bimanual actions.

The goal of this work is to demonstrate the use of the
taxonomy, specifically the information about a bimanual
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Fig. 1. ARMAR-6 executing actions of different categories: (a) unimanual
right, (b) uncoordinated, (c) asymmetric (d) right dominant and symmetric.

category, to generate appropriate motions for both hands.
Thus, we assume that a bimanual manipulation category
together with the trajectories of both hands is given. Such
information can be extracted from human demonstrations as
presented in [2], where we show that the categories can be
recognized based on motion capture or RGB-D data [3].

Our contribution: Based on the Bimanual Manipulation
Taxonomy presented in [2] we formalize the temporal and
spatial constraints imposed by each category. This is needed
to demonstrate the applicability of the taxonomy to bimanual
robot manipulation tasks. Furthermore, we show how the
category-specific coordination constraints contribute to the
exemplary design of reactive behaviors in bimanual tasks.
We evaluated our approach in simulation and real-world
experiments using the humanoid robot ARMAR-6 [4].

II. RELATED WORK

First, we give a brief description of the Bimanual Manip-
ulation Taxonomy, see [2] and Fig. 2, since this is pivotal for
the remainder of the paper. Further, we discuss how previous
works tackled the spatial, temporal and force constraints
arising from the coordination between two hands.

A. Bimanual Manipulation Taxonomy

Key aspects for the differentiation between categories
defined by the taxonomy are coordination and interaction
between the hands, the roles of the hands and symmetry.
Firstly, the categories are divided into coordinated and unco-
ordinated categories. The uncoordinated categories consist
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Fig. 2. Bimanual manipulation taxonomy presented in [2].

of uncoordinated bimanual and unimanual left and right.
The coordinated categories are further subdivided based on
whether there is physical interaction between the hands or
not (tightly vs. loosely coupled). Within the tightly coupled
categories, the further differentiation depends on whether
both hands have the same role when grasping a common
object (symmetric) or whether one hand has a dominant
behavior (right- or left-dominant). In the following, the
abbreviations listed in table I are used for the categories.

TABLE I
ABBREVIATIONS FOR BIMANUAL CATEGORIES.

bimanual category abbreviation
unimanual left uni l
unimanual right uni r
uncoordinated bimanual uncoord bi
loosely coupled loosely
tightly coupled asymmetrical left dominant asym l dom
tightly coupled asymmetrical right dominant asym r dom
tightly coupled symmetrical sym

The taxonomy is designed to distinguish between different
constraints that apply between hands. At the highest level,
the taxonomy distinguishes between coordination and lack
thereof among the hands. The uncoordinated categories sig-
nify the absence of explicit constraints between the hands.
However, it is noteworthy that both arms still share the
same workspace, resulting in implicit constraints related to
collision avoidance. This could mean prioritizing one over
the other, optimizing execution timings to avoid collision, or
approaches for motion planning. Conversely, the coordinated
categories encompass all coordination patterns wherein tem-
poral and/or spatial constraints might be present. The tightly
coupled categories summarize those patterns with physical
interaction, which means that additional force constraints
are to be considered, while the loosely coupled category
represents all temporally and spatially constrained cases
without physical interaction.

B. Constraints in Bimanual Manipulation

Several types of constraints can apply between the hands.
Pek et al. [5] analyze constraints between multiple objects,
distinguish between spatial and temporal constraints and
define several subcategories. Another type of constraint com-
monly considered in robotics is based on forces.

Several approaches exist for describing temporal con-
straints. Allen’s Interval Algebra [6] is an established for-
malism for describing temporal relations on intervals using
13 different relations such as before, during, etc. Based on

this algebra Dreher et al. [7] present a softened formulation
of temporal relations which is usable for real-world data and
specifically for bimanual manipulation tasks. They further
represent temporal task models using graphs and infer sub-
tasks from this representation. Other possibilities to describe
temporal constraints are precedence graphs [8] or Petri nets
[9]. They can also be directly implemented in the control
strategy such as in Mirrazavi et al. [10] who present an
approach for coordinating multiple agents to reach a moving
object while taking self-collision avoidance into account
based on a centralized inverse kinematic solver formulated
as a quadratic program.

Spatial constraints can be described on a symbolic level
using spatial relations such as right of, behind, close [11],
[12] or on trajectory-level. Trajectory-level coordination is
mainly addressed by using a leader-follower approach [13],
[14] or the cooperative-task space (CTS) [15], [16]. Both
focus on physical interaction tasks. Park and Lee [17], [18]
propose the extended cooperative-task space (ECTS), a uni-
fied representation of both the CTS and the leader-follower
approach. Based on two ECTS coefficients, a relative and
absolute motion can be distributed to two end-effectors
covering 4 different coordination modes: the uncoordinated
orthogonal mode, the serial mode that corresponds to a
leader-follower formulation, the symmetrical parallel mode,
where the hand motions are described relative to an absolute
trajectory in between them and finally a blended mode.
Combined with quadratic programming, the ECTS represen-
tation was also recently used for grasping and tossing an
object while in motion [19]. Several works use the notion
of global vs. relative task definitions for bimanual manipu-
lation: Describing tasks as a sequence of relative, global and
local targets (where local means with respect to the robot
frame) [20], representing a task as absolute and relative skills
encoded as dynamic movement primitives (DMPs) [21] or
proposing a relative parameterization method for bimanual
manipulation based on Gaussian Mixture Models (GMMs)
[22]. Others introduce a hierarchy where relative goals are
prioritized over global ones [23] and deep learning methods
that predict when relative actions are required [24]. Gao et
al. [25] present a framework for visual imitation learning
of bimanual manipulation actions based on hybrid master-
slave relationships between the hands and extracted key
points on objects. This results in a flexible combination of
action definitions both relative to the other hand and the
environment, which can automatically be learned.

Force-based constraints between the hands (directly or
via tools and objects) play an additional and fundamental
role in tightly-coupled categories. The cooperative transport
of one object (cf. sym in our taxonomy) was extensively
investigated in the past. In this case, a certain ”squeezing”
force needs to be applied in order to keep the object stable
between the hands. The employed methods can be catego-
rized into object-level impedance control ([26], [27]) and a
combination of Projected Inverse Dynamic Control (PIDC)
and the grasp matrix ([28], [29], [30], [31]). Interaction
forces can also be relevant constraints for asymmetric tasks



as described in [32].
In summary, a wide variety of methods exist to address

temporal, spatial and force constraints in bimanual manipu-
lation. They mostly cover specific application scenarios and
cannot be generalized to different types of actions. Within
this work, we will define general representations for spatial
and temporal constraints between the hands which are based
on established concepts. We further formulate a template
version of those constraints for the different categories of
the Bimanual Manipulation Taxonomy. Based on a task
that is represented as a sequence of bimanual categories,
a specification of temporal and spatial constraints for the
complete tasks can be inferred.

III. FORMALIZATION OF BIMANUAL CONSTRAINTS

We propose a formalization of temporal and spatial con-
straints associated with different categories of our Bimanual
Manipulation Taxonomy.

A. Spatial Constraints

Our goal is to provide an approach for the formalization
of bimanual constraints that is consistent with the methods
known in the literature and discussed in Section II-B. We
formalize the spatial constraints imposed on each hand by
adopting one of the following states:

• unspecified: The hand does not execute a relevant task.
Apart from avoiding collisions and fulfilling additional
soft criteria such as optimizing the human likeness, the
pose of the hand is irrelevant.

• global: The goal of the hand is formulated indepen-
dently of the other hand either in a fixed world-frame
or in the robot’s root frame.

• relative: The goal of the hand is formulated based on
the pose of the other hand.

This aligns with the global, local and relative constraints
defined by Stavridis et al. [20]. However, in their framework,
global constraints refer to a world frame and local constraints
to the robot’s root frame. In our case, the emphasis is on the
constraints between the hands which is why we combine
both, and incorporate object-centric task description in the
global constraints.

TABLE II
SPATIAL CONSTRAINTS FOR DIFFERENT CATEGORIES.

bimanual category right hand left hand
global relative global relative

uncoord bim × ×
uni l ×
uni r ×
asym l dom × ×
asym r dom × ×
sym (×) × (×) ×

Table II shows which constraints are most important for
each category. The most important task space goals are
indicated with an ×, and secondary task space goals with an
(×). For the asymmetric categories, this essentially results in
a leader-follower approach, where the non-dominant hand is
the leader and the dominant hand the follower. The resulting

constraints on the end-effector pose target of the hands are
described in Section IV. For uni r/uni l the motion of the
right/left hand is determined based on global constraints
while the respective other hand is unspecified. The three
states of spatial constraints unspecified, global, relative can
apply either for only the start and end point of a segment or
the complete trajectory. We formalize the spatial specification
as a directed graph where nodes correspond to spatial states
and edges to the trajectories connecting them. The types of
edges E and nodes N are defined in Fig. 3.

unspecified

global

relative

unspecified

global

relative

Fig. 3. Edges E (left) and nodes N (right) of the spatial graph.

We consider all possible sets of trajectories e ∈ E and
goal states n ∈ N in Figure 4.

A B C

D

Fig. 4. Spatial permutations considering elements defined in Figure 3.
Based on the indicated categories A–D they can be correlated with different
bimanual categories.

The permutations highlighted in grey are logically impos-
sible since they are contradictory: If the entire trajectory
is defined globally, the goal state cannot be unspecified,
and if the trajectory is defined relatively, the goal state
must also defined relatively. The remaining permutations are
primarily grouped based on the goal pose, denoted by A–
D. The combination of a relative edge and node (group D)
is treated separately since this case is particularly relevant
for actions with physical interaction between the hands
(tightly coupled categories). Different combinations of those
groups for the left and right hand correspond to different
categories of the Bimanual Manipulation Taxonomy. The
assignment of spatial combinations to bimanual categories
is given Table III), with × indicating that this combination
does not exist.

TABLE III
ASSIGNMENT OF SPATIAL COMBINATIONS TO BIMANUAL CATEGORIES.

Left hand
A B C D

R
ig

ht
ha

nd

A no action uni l loosely asym l dom
or loosely

B uni r uncoord bi loosely asym l dom
or loosely

C loosely loosely × ×

D asym r dom asym r dom × × or symor loosely or loosely

If a task description as a sequence of categories is given,



one can construct the representation based on the elements
shown in Figure 3. The differentiation between the unspeci-
fied and global trajectories within the blue category (B) and
orange category (C), however, require further investigation.
In our application in Section IV we use the more restrictive
formulation with the global trajectory definition. The combi-
nations at the bottom right of the table (indicated with ×) do
not exist since they would be underspecified with both goal
states being relative to the other one. Combinations which
are labeled asym r dom or asym l dom could also fall into
the loosely category in case there is no physical interaction
(no force constraints) between the hands. The category sym is
only denoted in brackets in Table III. As shown in Table II for
sym, relative constraints are most important for both hands.
However, since this leaves the system underspecified, some
global grounding needs to be introduced. Conceptually, this
is possible by defining both hands relative to the same global
trajectory. Another option to maintain the relative pose in
case of perturbations is to use the asymmetric formulation
and make sure that the perturbed arm is considered as leader
(non-dominant hand).

B. Temporal Constraints

Zöllner et al. [9] use Petri nets to describe how task
executions of the right/left arm or both arms can be triggered.
This means switching between an active and a ready state
for both hands. In this work, we formulate the category-
specific constraints and behavior in case of perturbation
by defining different Petri net templates (see Figure 5).
In comparison to alternative approaches such as behavior
trees, Petri nets naturally model concurrent and parallel
processes. Consequently, they are particularly well-suited for
representing shared resources, such as the coordination of
two hands in our context. Petri nets are defined by the 4-tuple
N = (P, T,A,mo), with P being the set of places, T the set
of transitions, A the set of arcs and m0 the initial marking
of the net. In Figure 5 transitions are denoted within the
rectangles and places are indicated next to the circles. Petri
net templates are defined to describe individual bimanual
categories and can be sequenced to formulate the entire task.
Initial markings are at the left, indicating their entry from a
previous category and their transition to the next one on the
right. The category-specific template Petri nets describe, on
the one hand, the category-specific behavior in the event of
perturbations (phase stopping) and, on the other hand, the
behavior during transitions (e. g., transition independently or
only when both are completed).

The terms ErrL and ErrR as part of the transitions T
indicate the error of the left and right hand respectively,
which is computed based on the current pose and the
computed pose in the last timestep. The transition is triggered
in case of a certain error surpassing a specified threshold.
Since the category loosely includes all categories with spatial
and temporal constraints but without physical interaction, we
do not provide a temporal Petri net template for this category
since it combines several different coordination patterns.
This might require further investigation and potentially the

definition of subcategories within loosely.
Spatial and temporal constraints are largely modeled in

parallel in this model but there are several dependencies.
Each segment (each category) has a formalization of spatial
and temporal constraints. The spatial constraints define if
a relative or global trajectory is followed within the Petri
nets. The time constraints can stop the progression of these
reference trajectories, which in turn has spatial effects.

C. Transitions Between Categories

In the previous subsection, we described how spatial and
temporal constraints can be formalized within a bimanual
category. However, a task consists of a sequence of those
categories and the associated trajectories. In this work, we
consider the order of sequences as given. They can be derived
from demonstration, e. g., using methods presented in Dreher
et al. [7]. The temporal conditions for transitions between
categories are implicitly derived from the representation as
Petri nets. This includes synchronization at the start of a
category such as for asym r dom/asym l dom and sym. In
the case of the uncoordinated categories, the hands evolve
independently.

Spatially, several categories can be concatenated by con-
necting them to form a common graph. An example for
the case of rolling dough is shown in Fig. 6. It consists
of the following categories: both hands start from a global
resting position, the left hand moves an object out of the way
(uni l), both hands move to the rolling pin (uncoord bi), both
hands hold the rolling pin and roll out the dough (sym) and
finally the hands release the rolling pin and move back to
their resting position (uncoord bi). The symmetric segment
is represented as a combination of relative and global since
both are needed for a complete description.

If no specific trajectory is defined, traditional planners can
be used. Given trajectories can be easily adapted to a new
start or goal poses by using movement primitives such as
DMPs [33], ProMPs [34] or VMPs [35].

IV. CATEGORY-BASED CONTROLLER

The above-mentioned bimanual categories can be used
in robotics by selecting control methods that ensure the
category-specific constraints are met. Our aim is to develop
an approach suitable for robots acting in the proximity
of humans, e. g., assistive robots in a household context.
Therefore, a compliant robot behavior is required, which
poses the challenge of appropriately reacting to external
perturbations.

To this end, we present a framework that guarantees the
fulfillment of category-specific spatial and temporal con-
straints in a reactive manner. The system assumes minimal
knowledge of the environment or force-torque sensing. The
framework is depicted in Figure 7. The task model includes
the sequence of bimanual categories including movement
primitives and provides desired relative and absolute hand
poses as well as the category label to the category-based
motion generation. Based on this information and the current
state of the robot, the category-based motion generation
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Fig. 5. Temporal constraints with places P for right/left hand respectively:
R1/L1: ready, R2/L2: active, R3/L3: paused, R4/L4: completed

targets for the robot robot. These targets are then mapped to
robot control commands by using an impedance controller
for tracking the desired task space goals.

The category-specific behavior is designed based on the
respective constraints imposed on each hand as described in
detail in Section III-A. Therefore we consider the categories

right hand

left hand

uni l uncoord bi sym uncoord bi

Fig. 6. Temporal sequencing for rolling dough.
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Fig. 7. Framework for category-based robot control. The meaning of
variables in indicated in Table IV.

listed in Table II and parameterize their trajectories taking
into account the most relevant constraints. As input, the task
model provides the currently desired poses of both hands.
Leveraging this information, we can formulate reactive target
postures for both hands based on the categories. Poses are
represented as homogenous 4x4 matrices ξ

which are defined relative to the global coordinate system.
Each hand’s target pose can be described either directly by
their global target pose

ξL = ξL,d ξR = ξR,d (1)

or based on the current pose of the other hand and the relative
trajectory. The relative trajectory can be learned based on the
initially given, unchanged trajectories. Relative poses ξrel
are defined as the pose of the right hand relative to the left
hand. Therefore, global targets based on the relative pose are
computed as

ξR = ξL,cξrel ξL = ξR,cξ
−1
rel . (2)

The variables used in these equations are defined in Table IV.

TABLE IV
GLOBAL VARIABLES FOR THE DESCRIPTIONS OF TASK SPACE GOALS.

variable meaning
ξL, ξR computed target hand pose
ξL,d, ξR,d desired hand pose for the current state
ξrel desired relative pose (right hand in frame of left)
ξL,c, ξR,c actual measured hand pose for the current state

For different categories, the targets are combined in differ-
ent ways as indicated in Table II. For the case asym r dom
the left hand has the role of the leader ξL = ξL,d and the
right hand of the follower ξR = ξL,cξrel,

while for the uncoord bi case both are described globally
as ξL = ξL,d, ξR = ξR,d.

The most complex case is sym. As shown in Table II,
the relative poses are most important, however, if possible
also a global pose should be followed. To achieve this,
one can alternate between the two asymmetric categories
while selecting the perturbed hand as the leader (i. e., the
non-dominant hand). This is implemented in a way where



switching leader and follower is only triggered if the error
computed for the follower surpasses the error computed for
the leader by a certain margin.

Temporal constraints are considered by implementing the
logic of the Petri net templates presented in Figure 5.
This allows uncoordinated motions to progress temporally
independently. However, should a perturbation occur, the
progression of the respective trajectories, is halted. This
aligns with phase stopping of movement primitives.

For the tightly coupled categories, a start synchronization
is implemented wherein the segment only starts if both hands
are ready i. e., if the preceding segment is completed for both
hands. In symmetric cases, the motions of the hands are
described in a shared system, implying that a perturbation
of one hand also triggers a phase stopping for the other
hand, which implicitly leads to goal synchronization. In
asymmetric cases, phase stopping is only applied to both
hands if the follower is perturbed. Threshold values need to
be adapted according to the underlying task-space controller
and its tracking accuracy.

To transform the task space goals into torque commands
for the robot, a common impedance controller for task space
targets is used. The compliant behavior of this controller
ensures safe physical interaction with humans and the envi-
ronment.

V. EXPERIMENTS AND EVALUATION

We evaluate the approach described in Section IV by
executing qualitative example tasks on a real robot and
performing quantitative evaluations in a Mujoco simulation.

A. Real Robot Experiments

We implement four typical household actions as example
scenarios representing different categories and executed them
on the ARMAR-6 [4] robot to demonstrate the feasibility of
the approach in real world. The four scenarios are shown in
Fig. 1. Recordings can be found in the accompanying video.

1) Unimanual: The robot is in a kitchen holding a box of
tea bags in its right hand. The left hand is blocking a drawer,
but the human is able to guide the unspecified hand out of
the way to access the drawer.

2) Uncoordinated: The robot holds a box of tea in each
hand and places them on a table. In Figure 8(a), it can
be observed that the placing motion performed by the left
hand is continued even if the other hand is stopped. The
offset between the actual and the desired position during
perturbation corresponds to the threshold set for the detection
of perturbations.

3) Asymmetric: The robot holds a bowl in its left hand
and stirs with a ladle held by the right hand. The stirring
motion is continued with respect to the pot even if the hand
with the bowl is perturbed (see Fig. 8(b)).

4) Symmetric: The robot grasps a long tube and moves
it upwards. First, the left and afterwards the right hand
is perturbed during the motion (see Fig. 8(c)). Since the
controller is initialized as the right hand following the left,
the right hand directly adapts its motion when the left hand is

perturbed. As soon as a threshold for the difference between
the desired and actual pose is reached, the progression of the
trajectory stops until the hand is released. When the right
hand is perturbed afterwards, a critical threshold needs to be
reached to change the behavior into the left hand following
the right one. Once again phase stopping occurs.

Overall, the robot behaves as expected for the respective
tasks: Relaxed coordination constraints enable the considera-
tion of additional constraints such as moving out of the way
unimanual and avoiding unnecessary delays of the left hand
uncoordinated. In the asymmetric example, the task can be
continued even when perturbed and for the symmetric case,
the tube can be reliably held.

B. Simulation Experiments

To quantitatively evaluate how well the presented approach
ensures to fulfill spatial constraints, we perform experiments
on the humanoid robot ARMAR-6 [4] in a Mujoco simu-
lation [36]. Experiments in simulation enable us to apply
the perturbation in a reproducible way, which allows for
comparable results. As shown in Fig. 9 the robot performs a
simple motion downwards with a constant offset between the
hands. The total duration of the motion is 10sec. For time
t ∈ [3; 7] seconds, a perturbation force is applied on the left
arm (indicated by the red arrow, in negative z direction, 100
Newton). We set the controller parametrization according to
the bimanual categories. Fig. 10 shows the positions for three
different cases. In the uncoord bim case, the motion of the
right hand is not influenced by the perturbation of the left
hand. For asym l dom, the right hand does not adapt spatially
but stops its execution. Lastly, for sym, the right hand does
not only adapt spatially but also stops the execution of its
trajectory as long as the left hand is perturbed. Fig. 10 shows
also a perturbation in the x- and y-direction since the hand
is perturbed at the wrist but the position is measured for the
tool center point of the robot, which is located close to the
center of the palm.

Each experiment is performed 5 times with different
simulation seed values. We measure the absolute and relative
errors of the hands for both the unperturbed case and the
perturbed case. Errors are computed as the translational error
between two frames, i. e. the error between e.g. ξR,d and ξR,c

as the absolute error and between ξ−1
L,dξR,d and ξrel as the

relative error.
The average errors are shown in Table V. The most

relevant errors for each category are highlighted in gray.
It can be observed that the highlighted errors have mostly
smaller values compared to the other errors in the same row.
This is because the approach prevents the accumulation of
global errors which could for example negatively impact the
relative error. For the perturbated case for all categories, the
absolute error for the left hand is high because the hand
is perturbed and can therefore not be influenced by our
approach. When taking a look at the highlighted errors for
the absolute error of the left hand and the relative error
they are mostly small which indicates, that the respectively
relevant constraints are enforced. Only for the asym l dom
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(a) Perturbation of the right hand at t = 5s
for an uncoordinated reaching motion.

(b) Perturbation of the left hand during
an asym right dom stirring motion.

(c) Perturbation of the left hand at t = 4s
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Fig. 8. Real-world experiments performed on ARMAR-6. Color legend: actual right ( ), desired right ( ), actual left ( ), desired left( ).

Fig. 9. Robot experiments in a Mujoco simulation. The hands move
downwards with a constant offset. For t ∈ [3; 7]s a constant force of 100 N
in z-direction is applied on the left wrist.
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Fig. 10. Positions for both hands in the case of a perturbation of the left
hand for t ∈ [3; 7]. Color legend: actual x ( ), actual y ( ), actual
z ( ), computed x( ), computed y( ), computed z( ).

case, the relative error is high. This is because ea,R and erel
are conflicting for a perturbation of the left hand, which is
why this behavior is expected.

VI. DISCUSSION

In this study, we focus on the control alternatives specific
to individual categories, along with their respective features.
Although we touch upon how these category-specific defi-
nitions facilitate sequencing (see Section III-C), we do not

TABLE V
AVERAGE ERRORS IN MM OF 5 REPETITIONS PERFORMED IN MUJOCO

SIMULATION.

unperturbed perturbed
ea,L ea,R erel ea,L ea,R erel

uncoord bim 1.93 1.93 0.30 37.99 1.46 78.35
asym l dom 3.69 1.93 1.77 50.02 1.48 35.45
asym r dom 1.93 3.69 1.94 37.94 78.96 3.40
sym 1.93 3.69 1.94 37.94 51.68 3.40

present a comprehensive framework or evaluation. However,
the evaluations presented in Section V illustrate the potential
advantages of employing category-specific controllers in
extended sequences as discussed below.

Two baselines can be used to compare with (i) independent
control of the two arms (as in uncoord bi, baseline A) or
(ii) a permanent coupling of both arms (as in sym, baseline
B). The categories can be concatenated as described in
Section III-C. First, the approaches differ in their execution
time when implementing phase stopping in the event of an
error. For baseline B, the hands in each segment take the
time of the slower hand (due to target synchronization),
resulting in a long, inefficient execution time. In contrast,
in baseline A, each hand takes only its minimum required
time for each segment, resulting in a low execution time but
potentially compromising important timing constraints. Our
approach ensures that timing constraints are enforced where
necessary, but relaxes them where possible to allow for short
execution time. The other important criterion for evaluating
the approach is the task success. For tasks that require
coordination between hands, baseline A performs poorly
because relative constraints between hands are not taken into
account. Baseline B, on the other hand, enforces relative
constraints, but possibly at the cost of global constraints and
at the cost of degrees of freedom that could be used for
further constraints, e. g., to enforce human-like movements.
Our approach aims to enforce the constraints where they are
needed, ensuring that the specific relative constraints are met,
but keeping the task as free as possible so that additional
criteria can be enforced.

VII. CONCLUSION

In this work, we define and formalize the temporal and
spatial constraints that apply to actions within the different
categories defined in the Bimanual Manipulation Taxonomy



[2]. We show how these category-specific constraints can
be implemented to select suitable robot controllers and
evaluate the implemented controllers on the humanoid robot
ARMAR-6 [4]. The framework may require further fine-
tuning to the task at hand but can be set up quickly and
intuitively for an initial task description.

In the future, we plan to evaluate the sequencing of multi-
ple categories as described in Section III-C for the execution
of daily life tasks by a robot. In addition, we plan to go
beyond the temporal and spatial constraints and also consider
force-related constraints. In the context of our taxonomy,
this means to take a closer look into coordinated, tightly-
coupled manipulation. This includes challenges related to
the recognition of force-based constraints and force-based
control methods.
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