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Abstract— Humans exhibit outstanding capabilities in using
both hands to perform daily tasks. Understanding bimanuality
in human demonstrations is key for humanoid robots, which
should learn from human observation. In this paper, we address
the problem of the recognition and segmentation of biman-
ual action categories defined by our Bimanual Manipulation
Taxonomy, based on RGB-D data. To this end, we combine
object detection and human motion tracking methods to derive
graph-based representations of bimanual manipulation tasks
that describe spatial relations between objects and hands as
well as the temporal change of these relations during the
execution of the task. We train a Graph Neural Network
(GNN) for simultaneous recognition and segmentation of the
demonstrations and compare the results with a rule-based
classification approach that only takes contact relations between
objects and hands into account. For training, five kitchen
tasks of the KIT Bimanual Actions Dataset are selected and
complemented with two new tasks accounting for symmetrical
bimanual manipulations. The evaluations show the best results
for a GNN considering spatial relations and object knowledge
compared to a GNN considering only contact relations between
objects and hands and compared to the rule-based approach.

I. INTRODUCTION

A promising approach for teaching robots new skills is
Learning from Demonstration (LfD) [1], [2]. The goal is to
provide non-expert users with an intuitive way to program
robots simply by demonstrating the task. In this paper, we
contribute to the programming of bimanual manipulation
tasks from human demonstration. In [3], we proposed the
Bimanual Manipulation Taxonomy that defines different cat-
egories of bimanual manipulation actions. These bimanual
categories are defined based on different aspects of bimanual-
ity such as the coordination and physical interaction between
both hands, the role of each hand in the task, and the sym-
metry of arm movements during the execution of the task.
A detailed description of the bimanual categories defined
by the taxonomy is given in Section II-A. To analyze our
taxonomy, we applied a rule-based classification of bimanual
categories using the KIT Bimanual Manipulation Dataset
[3], which consists of bimanual human motion recordings
obtained by a marker-based capture system. In this paper, we
extend our work by a novel approach for the recognition and
classification of bimanual categories – which simultaneously
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Figure 1. Recognition of bimanual categories in RGB-D data.

provides a segmentation of bimanual human demonstrations
– based on RGB-D data. We consider these bimanual cate-
gories crucial for representing bimanual manipulation tasks
and the selection of and switching between controllers for
the different phases of a bimanual task. The knowledge
of the current category can indicate which aspects of the
demonstration are crucial (e.g. relative pose) and therefore
assist in extracting the relevant task constraints. Being able
to recognize these categories in RGB-D data is an important
requirement for the usability of the taxonomy in real-world
applications on robots equipped with RGB-D sensors.

Contribution: (i) We introduce an approach for the recog-
nition and classification of bimanual categories in RGB-D
data based on Graph Neural Networks (GNNs). (ii) We
extend the KIT Bimanual Actions Dataset (Bimacs) [4] with
two additional tasks, focusing on tightly-coupled bimanual
symmetric tasks. (iii) We compare our previous rule-based
classification of bimanual categories with the novel GNN-
based approach and demonstrate the benefit of using object
knowledge and relations between objects for improved recog-



nition of bimanual categories. An overview of our approach
is given in Figure 1.

II. RELATED WORK

This work builds up on the concept of bimanual categories
defined by the Bimanual Manipulation Taxonomy in [3].
Thus, we will describe first the categories as well as the
previously developed method for their detection. In addition,
we will discuss related approaches addressing action recog-
nition with focus on bimanual manipulation tasks.

A. Bimanual Action Categories

In [3], we presented a taxonomy for bimanual manip-
ulation, which is particularly designed for application in
robotics. The key aspects which are considered are coor-
dination and interaction between the hands, the roles of
each hand in a bimanual task, and the symmetry of the arm
movement during the execution of the task. The taxonomy
is depicted in Figure 2. On the highest level, the categories
are divided into coordinated and uncoordinated. Unimanual
left and right and uncoordinated bimanual actions constitute
the uncoordinated part of the taxonomy. The branch of
coordinated bimanual actions is subdivided based on whether
there is physical interaction between the hands or not (tightly
vs. loosely coupled). Within the tightly coupled category,
we differentiate between 1) symmetric actions, in which
both hands have similar roles, and 2) asymmetric actions,
in which one hand exhibits a dominant behavior (right- or
left-dominant). A rule-based classification was suggested and
applied frame-wise on marker-based motion capture data.
Thereby, the categories are determined based on contact
relations between hands and objects as well as motion
features. By doing so, we demonstrated that the categories
suggested by the taxonomy can be detected based on high-
confidence motion capture data and accurate object models.
However, the availability of such data cannot be assumed for
real-world robot applications.
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Figure 2. Bimanual Manipulation Taxonomy presented in [3].

Other works address the question of the recognition and
classification of bimanual manipulation actions. Boehm et
al. [5] use a rule-based classification for the recognition of
bimanual coordination modes in the context of robot-assisted
surgery. These modes are defined by the direction (e. g., move
together or away) and a symmetry (e. g., point or mirror)
of the movements. To improve bimanual interaction with
a semi-autonomously controlled prosthetic hand, Volkmar

et al. [6] distinguish between unimanual, bimanual asyn-
chronous and bimanual synchronous movements. Those are
detected by a rule-based classification of the data of two iner-
tial measurement units (IMUs) attached to the prosthesis and
the other hand. Miller et al. [7] recognize similar categories
based on motion symmetry for the purpose of monitoring
the rehabilitation of post-stroke patients. Artificial neural
networks are applied on raw IMU data and features extracted
from the raw data. An approach for teleoperation of dual-
arm robots was proposed by Rakita et al. [8] based on
a so-called bimanual action vocabulary consisting of ”one
hand seeking”, ”self-handover”, ”fixed offset” and ”one hand
fixed”. A sequence-to-sequence recurrent neural network is
used to infer the most probable bimanual action category. The
existing approaches are difficult to compare quantitatively
since defined categories are different and the analysis was
performed based on different sensory modalities. Several
approaches ([3], [5], [6]) use rule-based methods which are
intuitive and directly allow for error-analysis in case of
failed classification. Other approaches use neural networks
motivated by handling noisy and chaotic data [7] or inspired
by neural processes in humans [8].

In contrast to other approaches, in this work we consider
the recognition and classification of seven different bimanual
categories as defined by our bimanual manipulation taxon-
omy [3] and given in Table I. In addition, we aim at the
recognition of these categories based on RGB-D data.

TABLE I
BIMANUAL ACTION CATEGORIES.

Bimanual Category Abbreviation
No action no action
Unimanual left uni left
Unimanual right uni right
Loosely coupled & uncoordinated bimanual loosely
Tightly coupled asymmetrical left dominant tightly asym left
Tightly coupled asymmetrical right dominant tightly asym right
Tightly coupled symmetrical tightly sym

B. Action Recognition

As discussed in Section II-A there are only a few works
addressing the classification of bimanual manipulation action
categories and – to our best knowledge – no approaches
to solving the problem based on RDB-D or RGB sensory
data. However, the problem can also be more generally seen
as Human Activity Recognition (HAL) problem, since the
main goal is to identify a semantic label to perform human
activities based on time-series data obtained from different
sensors. Therefore, we will discuss also related work in the
area of human action recognition. While action recognition
can be directly performed on RGB and/or depth data, we
focus on approaches that use previously extracted features.
We hypothesize that in a comprehensive LfD framework,
the tracking of the human body and the involved objects is
essential since this provides the trajectory-level information
which is also required. We argue that approaches based on
these previously extracted features generalize better to novel



tasks and environments since they are independent of varia-
tions in the background and variations in body appearance.
Khare and Kumar [9] recently presented a survey on deep
learning and RGB-D based human action, human-human
and human-object interaction recognition. They provide an
overview of relevant datasets and the most commonly used
techniques. For human-object interaction detection, which
deals with the detection of manipulation-related actions, the
survey reveals that most used approaches rely on graph-
based representations. Another recent review for human
action recognition focuses on the usage of different sensor
modalities [10]. Aside from RGB and additional depth data,
they name skeleton-based action recognition as a separate
modality. The approaches applied for this modality can be
divided into three categories: Recurrent Neural Networks
(RNNs) including their gaited variants such as Long Short-
Term Memories (LSTMs) ([11], [12]), Convolutional Neural
Networks (CNNs) ([13], [14]) and Graph Neural Networks
(GNNs) ([15], [4]). Notably, GNNs do not only preserve the
expressive power of graph structures but are also suitable to
handle different input sizes.

While the skeleton modality, as considered in [10], only
describes the human body in manipulation tasks, the objects
involved are also relevant. This is what is explicitly consid-
ered in [4], where a GNN is used for action recognition and
segmentation while considering both hands individually. The
underlying graph-based representation consists of 1) nodes,
which correspond to the hands and the objects detected in
the scene, and 2) edges connecting the nodes and describing
the spatial relations between hands and objects. Apart from
considering spatial relations instead of only contacts to
construct a scene graph, the input information used is very
similar to the rule-based classification presented in [3] for the
detection of bimanual action categories. This suggests that a
similar approach might be successful for the recognition of
bimanual categories.

III. APPROACH

The goal of the work is to develop an approach for the
recognition of bimanual manipulation categories in house-
hold tasks based on RGB-D data and learning-based ap-
proaches (GNNs). In this section, we describe the different
steps of our approach, as shown in Figure 1, including the
creation of suitable training data, the extraction of features,
the generation of graph-based representations and the clas-
sification using GNNs.

A. Dataset

Learning-based methods such as GNNs require sufficient
training data in which all classes of bimanual categories are
adequately covered. Thus, we need a dataset that fulfills the
following criteria: (i) The dataset includes natural human
demonstrations of household tasks with bimanual actions,
and (ii) it resembles data as it would be available for a robot,
namely single-view RGB-D data from an observer position.
Both criteria are fulfilled for the Bimacs dataset [4], which
provides RGB-D data of 6 subjects performing 9 different

actions. Each task was recorded 10 times using a PrimeSense
Carmine 1.09 camera. The dataset additionally provides
extracted 3D bounding boxes of objects and spatial relations
of those. Since neither object nor human pose tracking are
a focus of this paper, we directly use the data provided.
However, we exclude workshop-like assembly tasks and use
only the tasks Cooking, Cooking with bowls, Pouring, Wiping
and Cereals. After manually labeling the data with bimanual
categories, a closer analysis revealed that the tightly-coupled
symmetrical category is hardly included ( < 1 % of frames).
Therefore, as an extension of the Bimacs dataset, two new
tasks were recorded.

1) Data collection: Based on the original dataset, six
subjects were recorded (3 male, 3 female; 5 right-handed,
1 left-handed) using an RGB-D camera (Azure Kinect DK).
This study was approved by the ethics committee of the
Karlsruhe Institute of Technology, Karlsruhe, Germany. The
participants gave their written informed consent before the
experiments that the data may be made publicly available
for research purposes. In the collected video data faces are
anonymized. Data was collected at 30 fps with a resolution
of 1920px × 1080px for RGB and 640px × 576px for
depth data. The structure was designed to match the data
of the Bimacs database [4]. Two new household tasks were
each recorded 10 times for each subject. Subjects were
provided with a description of the overall goal to be achieved,
but the precise execution was left to them. Initial object
positions were varied within different recordings. The two
new tasks are designed to include symmetric actions within
a household context, namely: set table and prepare dough.
In total six different objects are used: cup, bowl, rolling pin,
spoon, whisk and plate. Symmetric motions are expected for
transferring big objects like a bowl or a plate and for using a
rolling pin. The two new tasks are shown in Figure 3. In total,
we collected 120 new recordings with a total duration of 60.2
minutes. Together with the selected recordings of the Bimacs
dataset, this resulted in a new dataset with 420 recordings
and a total duration of 127 minutes, which we refer to as the
combined dataset in the remainder of the paper.

2) Feature Extraction: We use YOLOv7 [16] (trained
on the objects in our dataset) to detect the object in RGB
video data. The resulting 2D bounding box is used to extract
relevant points from a point cloud derived from the depth
image. Those were filtered based on the color properties
of the detected object and then a 3D bounding box with
the dimensions of the object is placed in the center of the
remaining point cloud. For tracking the hands, the Azure
Kinect Body Tracking SDK was used. A 3D bounding
box was constructed based on the minimum and maximum
coordinates of the four detected key points per hand (wrist,
hand, tip of the hand and thumb).

As a last step we use the methods provided in [17] to
extract 15 static and dynamic spatial relations between the
extracted 3D bounding boxes as defined in [18], namely
contact, above, below, left of, right of, in front of, behind
of, inside, surround, moving together, halting together, fixed
moving together, getting close, moving apart, stable. The



Figure 3. Exemplary frames from the two recorded tasks: Set table (lower row) and Prepare dough (upper row).

resulting 3D bounding boxes are transformed to a local
coordinate system defined by the ArUco markers placed
in the corners of the table, before computing their spatial
relations.

3) Labels: Both the data from the Bimacs dataset and
the new data were manually annotated in accordance with
the definitions of the bimanual categories as defined by the
bimanual manipulation taxonomy in [3]. Those labels are
used for training the GNN and regarded as ground truth data
for the evaluation. Thanks to the extension of the Bimacs
dataset, the proportion of tightly coupled symmetric actions
in the resulting combined dataset is increased to 13.55 %.

4) Data Augmentation: Due to the uneven representation
of right and left-handed subjects, categories such as uni left
and tightly asym left are underrepresented. To compensate
for this and ensure better comparability between subjects,
we double the data by mirroring it. Therefore, the bounding
boxes for the right and left hand are switched and the spatial
relations are adapted accordingly by swapping the relations
right of and left of. Furthermore, the labels are also adapted
by switching between corresponding left and right categories.
This essentially leads to having a right-handed and left-
handed version for each subject.

B. Graph Neural Network

For the significantly lower data accuracy extracted from
RGB-D data compared to motion capture data, a decrease
in the performance of the rule-based approach is expected.
Therefore, we consider alternative methods used in action
recognition. As stated in Section II deep neural networks
are commonly used for this purpose. In our case, special
requirements must be fulfilled. On the one hand, the network
must be capable of dealing with with variable input sizes due
to the variable structure of the considered scene resulting
from different numbers of objects and spatial relations. On
the other hand, the network should be able to process graph-
based representations similar to the scene graphs used in
our previous rule-based approach. Graph Neural Networks
(GNNs) are predestined for such tasks as they fulfill both
requirements. Thus, GNNs are selected for the recognition
of bimanual manipulation categories.

As described in [4] and originally defined in [19], we
define a graph G as a 3-tuple G = (u, V,E), with u being
the global attribute of the graph, V the set of nodes in the
graph and E the set of edges. The set of nodes V consists
of the node attributes va ∈ V and the edges E of 3-tuples

e = (ea, s, r) ∈ E. Within the edges, ea represents the edges
attributes and s and r are the sender and receiver nodes
in V . In our case, the input graph is constructed based on
the extracted features in each frame, where nodes are the
object/hand instances and edges encode the spatial relations
between them. Furthermore, the scene graph of the current
and the last nine frames are concatenated by temporal edges
connecting the node of a specific object instance between
consecutive frames. The global attribute u is not used in the
input graph but encodes the determined category as one-hot-
encoding in the output graph.

Due to the similarity of the problem in [4] having es-
sentially the same input graphs, a similar network structure
is used. The model is formed as in [4] by two indepen-
dent graph network blocks for the encoder and decoder,
respectively, and one full graph network block for the core.
The encode-process-decode configuration is used. For all
blocks multilayer perceptrons (MLPs) were employed as
update functions. The sum function was used as aggregation
function. All MLPs in each graph network block were
parameterized with 2 layers and 256 neurons per layer. The
core model performed 10 processing steps. These parameters
were empirically determined after evaluating multiple test
series on our data.

IV. EVALUATION

In this section, we evaluate our approach by comparing
the results obtained using GNNs with those of the rule-
based approach described in our previous work [3]. To ensure
consistency between the Bimacs dataset and its extension, the
evaluation is performed separately on the Bimacs dataset,
its extension as well as the new combined dataset. The
combined dataset consists of 420 recordings with a total
duration of about 127 minutes. 53.6 % of the frames belong
to the Bimacs and 47.4 % are part of the new recordings.
Finally, an ablation study is conducted, to evaluate the
influence of features such as temporal graph concatenation
and the consideration of spatial relations between hand/object
instances instead of only considering contact relations as in
the rule-based approach.

A. Graph Neural Network

For the following evaluations, we trained the GNN on
the extended Bimacs dataset, which consists of the house-
hold tasks of the Bimacs dataset and the new additionally
recorded tasks (set table and prepare dough). As described



in Section III-A.4, the data was doubled for each subject to
account for differences in right- and left-handed subjects.
To account for the overrepresentation of loosely coupled
bimanual actions with over 40 % of all frames for the training
of the GNN, two of three frames labeled as loosely are
skipped. This results in a distribution of the ground truth
data for the bimanual categories as shown in Figure 4.
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Figure 4. Distribution of the ground truth data.

Following the work of [4] we used the encoder-core-
decoder architecture with MLPs as update functions. To
obtain the best fitting parameters of these MLPs and the
network structure, we performed a systematic evaluation
starting with the initial parameters used in [4]. As can be
seen in Table II, one of the highest F1 scores is obtained
from the highlighted row, which are our final parameters.
The parameters with slightly higher F1 scores due to a larger
history size or a larger amount of processing steps were
discarded because of the significantly longer training time.

For training, the dataset was split into a training set and a
testing set. Testing sets contain all recordings from one sub-
ject (one subject of each dataset including its mirrored mo-
tions), while training sets contain all remaining recordings.
Additionally, before training, one out of the ten repetitions
for each task in the training set was put aside as a validation
set. For the quantitative evaluation of the classifier, a leave-
one-subject-out cross-validation was performed to obtain six
folds of training and testing sets. A combined evaluation of
the six test sets results in a macro F1 score of 0.70. The
confusion matrix is shown in Figure 5. The overfitting of
the loosely category is visible and is caused by the fact
that the loosely category is the category with the highest
occurrence in the training data. However, we hypothesize
that this distribution is legitimate for the training data, as
the dataset suggests that the category loosely is indeed more
prevalent in natural movements than other categories.

Table III shows the macro metrics obtained in the eval-
uation for the different categories. It can be observed that
particularly the tightly-coupled categories are detected best.
The precision and F1 score are also high for loosely.
However, the recall is significantly lower, and as shown in
the confusion matrix in Figure 5 many unimanual motions
are falsely detected as loosely. In the case described above

TABLE II
PARAMETER EVALUATION OF THE MLPS. THE EVALUATION IS ONLY

PERFORMED ON ONE SUBJECT. THE HIGHLIGHTED ROW PRESENTS OUR

FINAL PARAMETERS.

Layers Neurons Batch
size

Learning
rate

History
size

Process
steps

Macro
F1-score

2 256 256 0.001 10 10 0.7086
1 256 256 0.001 10 10 0.6870
3 256 256 0.001 10 10 0.6996
2 128 256 0.001 10 10 0.6892
2 512 256 0.001 10 10 0.7045
2 256 32 0.001 10 10 0.6874
2 256 128 0.001 10 10 0.6851
2 256 512 0.001 10 10 0.6980
2 256 256 0.01 10 10 0.5029
2 256 256 0.0001 10 10 0.6734
2 256 256 0.001 1 10 0.6463
2 256 256 0.001 5 10 0.6886
2 256 256 0.001 20 10 0.7027
2 256 256 0.001 10 5 0.6882
2 256 256 0.001 10 20 0.7101
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Figure 5. Normalized confusion matrix using GNN with object knowledge.

the node IDs of the input graphs correspond to a specific
hand or object for the entire dataset. The GNN does not
necessarily know the semantic properties of an object, e.g.,
a rolling pin, but it does know that when it is used, e.g.,
when rolling, the symmetric category is often recognized.
Therefore, in the case of inference, it can use the object ID
for classification, meaning that it has of object knowledge.
To avoid this, we kept the object IDs the same only within
one recording. This would correspond to the case where
the object is unknown, but it can be tracked through a
demonstration. For different recordings, the IDs are assigned
differently, so that it is not possible for the model to learn a
relation as described above. This results in a lower F1 score
of 0.54 and the confusion matrix depicted in Figure 6. As
can be seen from the confusion matrix, the results are worse
across all categories showing the relevance and advantage of



TABLE III
METRICS OF THE GNN-BASED APPROACH WITH OBJECT KNOWLEDGE.

Category Precision Recall F1-score
tightly sym 0.79 0.87 0.83
tightly asym right 0.77 0.78 0.78
tightly asym left 0.75 0.79 0.77
loosely 0.79 0.68 0.73
no action 0.59 0.80 0.67
uni left 0.56 0.60 0.58
uni right 0.54 0.60 0.57

using object knowledge.
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Figure 6. Normalized confusion matrix using GNN without object
knowledge.

B. Comparison with Rule-Based Approach

In order to assess the performance of the GNN-based
approach, we use the rule-based classification approach de-
scribed in [3] as a baseline. This approach uses graph-based
representations with objects and hands as graph nodes and
contact relations between them as graph edges. Therefore,
minor adaptions are needed: The consideration of the ori-
entation is discarded since axis-aligned bounding boxes are
used. Furthermore, heuristics were implemented to handle
objects not detected in intermediate frames and objects only
detected in few isolated frames. Threshold parameters are
adapted to better suit the less precise data. Figure 7 shows
the confusion matrix for the rule-based classification based
on the combined dataset including both the original Bimacs
dataset and the extension.

The results for the rule-based approach (see Figure 7)
are significantly worse than the corresponding GNN-based
approach without object knowledge (see Figure 6). This
is also evident by the macro F1 score which improved
from 0.40 to 0.54. Predictions are particularly imprecise for
the tightly coupled categories. This indicates that for most
cases, the contact-based differentiation still works reasonably

no
ac

tio
n

un
i lef

t

un
i rig

ht

loo
sel

y

tig
htl

y
sy

m

tig
htl

y
asy

m
rig

ht

tig
htl

y
asy

m
lef

t

Predicted label

no action

uni left

uni right

loosely

tightly sym

tightly asym right

tightly asym left

Tr
ue

la
be

l

.54 .05 .20 .15 .04 .02 .01

.03 .47 .01 .36 .03 .02 .07

.04 .02 .53 .31 .02 .06 .01

.02 .06 .07 .61 .05 .10 .08

.01 .02 .05 .13 .38 .21 .21

.01 .21 .04 .18 .27 .25 .04

.07 .10 .20 .38 .04 .21
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Normalized confusion matrix using the rule-based approach.

well, but the motion-based differentiation within the tightly
coupled categories is not working anymore. This is due to
the fact that a rule-based approach with fixed thresholds
performs worse with the information extracted from the noisy
RGB-D data. In addition, not considering orientations due to
using axis-aligned bounding boxes might increase the effect.
The high number of frames that are wrongly classified as
loosely supports this hypothesis. There are some categories
whose true labels belong to the tightly coupled categories
indicating that a misclassification occurred due to failure in
contact detection. However, there are even more frames with
true labels that are either unimanual or no action. This is
also either due to wrong classification, missing objects or
imprecise motion data.

When compared to the results of the rule-based approach
with motion capture data as presented in [3], the results are –
as expected – considerably worse.This is due to the reduced
quality of RGB-D data compared to accurate motion capture
data used in [3], which makes the detection of objects and
hands more difficult and thus leads to wrong classification.

C. Performance on Different Datasets

To ensure a certain level of consistency between the
Bimacs dataset and the data recorded in the scope of this
work, we compare the classification results. The results of
the rule-based approach on the Bimacs, the new data and
the combined dataset is shown in Table IV. Parameters
are optimized for each dataset individually. The results for
the Bimacs and the new recordings are in a similar range,
however, the results for the new recordings are slightly better.
This is probably due to a more precise tracking of hands and
objects.

Since the datasets on their own do not provide enough data
and category coverage to train a GNN, we only compare the
results of the rule-based approach.
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(a) Example segmentation of the Prepare dough task.
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(b) Example segmentation of the Set table task.

Figure 8. Example segmentation of the Prepare dough and Set table tasks. The top bar visualizes the ground truth, the middle bar the segmentation of
the rule-based approach, the bottom bar the segmentation of the GNN-based approach. Categories: ◦ no action, ◦ uni right, ◦ uni left, ◦ loosely,
◦ tightly sym, ◦ tightly asym right, ◦ tightly asym left

TABLE IV
MACRO METRICS FOR THE RULE-BASED APPROACH ON DIFFERENT

DATASETS.

Training data Precision Recall F1-score
Bimacs 0.39 0.45 0.38
New recordings 0.46 0.52 0.46
Combined 0.41 0.43 0.40

D. Ablation Study

As stated in Section III-B, a Graph Neural Network
performs significantly better than a rule-based approach for
imperfect data and features extracted from RGB-D. In this
section, we analyze the specific features of the GNN, which
can be adapted for best results. The GNN uses spatial
relations instead of only contact relations as done in the rule-
based approach in [3]. Therefore, we also train a GNN by
only considering contact relations. Furthermore, we consider
a version where the input graph contains information from
one frame only and there are no temporal edges connecting
object instances in the scene graphs over multiple frames.
This is evaluated both with spatial relations and only contact
relations. We also add the version without object knowledge
for comparison. The results are shown in Table V. The result-
ing metrics of training the GNN without object knowledge

(as described in Section IV-A) are also added to the table as
a comparison.

As expected the suggested approach performs best. How-
ever, interestingly not considering the temporal edges de-
creases the performance less than considering only contact
relations. This could be due to the fact that some temporal
information are encoded in the dynamic spatial relations e. g.,
halting together, moving apart. As expected the lowest scores
are obtained for the model considering only contacts and no
temporal edges.

TABLE V
ABLATION STUDY COMPARING THE MACRO METRICS.

Training data Results
Spatial
Relations*

Temporal
Edges

Object
Knowledge Precision Recall F1-score

x x x 0.68 0.73 0.70
- x x 0.58 0.65 0.60
x - x 0.65 0.69 0.65
- - x 0.51 0.57 0.52
x x - 0.54 0.56 0.54

*In case of no spatial relations only contact relations are considered.

E. Segmentation Results
While the previous section mainly considered the clas-

sification, in this section we consider the segmentation. An



exemplary segmentation for an extract of the newly recorded
task Prepare dough is shown in Figure 8(a) and for the task
Set table in Figure 8(b). The manually annotated ground truth
segmentation is compared against the rule-based and GNN-
based approach. Compared to the rule-based approach the
segmentation points of the GNN are quite close to the ground
truth data. During the loosely actions in Figure 8(a) there
are some segments of unimanual actions in both approaches
which means, that the activity of one hand was not properly
detected. For the rule-based approach, the tightly asym right
actions also have a high misclassification rate, on the one
hand, because of the threshold for symmetric motions (wrong
label tightly sym), on the other hand, because of not recog-
nized contact relations (wrong label loosely). This is also
evident in Figure 8(b) where particularly the rule-based
approach is erroneous within the loosely segment and hardly
detects the symmetric at all.

V. CONCLUSION

We presented a simultaneous segmentation and classifica-
tion into the bimanual categories as suggested in [3] based on
RGB-D data. To this end, we extended the Bimacs dataset
with two additional tasks to cover also symmetrical tasks.
We showed that employing a Graph Neural Network (GNN)
yields clearly improved results compared to a rule-based
approach, especially when object knowledge is provided, and
even more so when spatial relations are taken into account
instead of just contact relations. There are several aspects that
should be discussed considering the presented evaluation.
First of all, it has to be mentioned that the manually
labeled ground truth data is imprecise, especially considering
the exact segmentation points. Nevertheless, we consider it
sufficiently well for this purpose. When employing either the
GNN-based or the rule-based approach for new tasks there
will be several factors influencing the quality of the outcome:
Firstly, the rule-based approach is unsupervised and can thus
be applied out of the box. It is to be evaluated how well
the GNN generalizes for completely different data. Secondly,
both approaches highly depend on the quality of the methods
for object and body tracking which are employed and can
profit from advances in computer vision.

In the future, we will also evaluate the performance of
more sophisticated recent GNN architectures as e.g. [20],
[21] for the segmentation and recognition of bimanual cat-
egories. We plan to combine the segmentation based on
bimanual categories with an action segmentation as both
provide relevant information for learning comprehensive
task models from human demonstration and would benefit
from one another. Further, we will work on integrating the
developed method on a humanoid robot, enabling the robot
to detect bimanual categories in real-time.
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