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Abstract— Learning models of bimanual manipulation tasks
from human demonstration requires capturing human body
and hand motions, as well as the objects involved in the
demonstration, to provide all the information needed for learn-
ing manipulation task models on symbolic and subsymbolic
level. We provide a new multi-modal dataset of bimanual
manipulation actions consisting of accurate human whole-body
motion data, full configuration of both hands, and the 6D
pose and trajectories of all objects involved in the task. The
data is collected using five different sensor systems: a motion
capture system, two data gloves, three RGB-D cameras, a head-
mounted egocentric camera and three inertial measurement
units (IMUs). The dataset includes 12 actions of bimanual daily
household activities performed by two healthy subjects with a
large number of intra-action variations and three repetitions
of each action variation, resulting in 588 recorded demonstra-
tions. A total of 21 household items are used to perform the
various actions. In addition to the data collection, we developed
tools and methods for the standardized representation and
organization of multi-modal sensor data in large-scale human
motion databases. We extended our Master Motor Map (MMM)
framework to allow the mapping of collected demonstrations
to a reference model of the human body as well as the
segmentation and annotation of recorded manipulation tasks.
The dataset includes raw sensor data, normalized data in the
MMM format and annotations, and is made publicly available
in the KIT Whole-Body Human Motion Database.

I. INTRODUCTION

Robot programming by demonstration (PbD) is a promis-
ing and effective approach for teaching robots new skills
in an intuitive way and by non-expert users [1]. While
PbD in general has been an area of extensive research for
decades, learning bimanual manipulation tasks from human
demonstration is a largely underdeveloped area and remains
a challenging task [2]. This is due to the fact, that bimanual
manipulation actions are not simply the sum of two uniman-
ual actions because temporal and spatial coordination as well
as potential interactions between the hands must be taken into
account. In the context of learning motion primitives from
demonstration ([3], [4]), kinesthetic teaching is often applied
to generate data for learning on the target robot system
while avoiding the correspondence problem and motion
retargeting between different embodiments [5]. However,
kinesthetic teaching does not provide the information about
temporal and spatial relations between hands and objects to
be manipulated, which is needed for bimanual coordination
and goal-directed adaptation of learned bimanual actions.

∗ The first two authors contributed equally to this work.
This work has been supported by the German Federal Ministry of

Education and Research (BMBF) under the project OML (01IS18040A).
The authors are with the Institute for Anthropomatics and Robotics,

Karlsruhe Institute of Technology, Germany {franziska.krebs,
andre.meixner,isabel.patzer,asfour}@kit.edu

Fig. 1: Left: Example of a bimanual action (transfer). Right:
Subject in full body suit with markers and sensors. The multi-
modal sensor setup used to collect the data is partially visible.

We consider such object-hand and hand-hand relations key
constraints for learning semantic task models for bimanual
manipulation and their goal-directed adaptation and execu-
tion. Such semantic task models should encode i) symbolic
task information such as actions with their preconditions and
effects, spatial and temporal relations between hands and
objects as well as ii) subsymbolic, sensorimotor information
needed for learning bimanual movement primitives from
e. g. position trajectories, force profiles and embodiment
specific parameters.

Providing datasets containing all the information needed
for learning such task models of bimanual manipulation
from human demonstration, their mapping to and execu-
tion on different robots is a challenging task that requires
significant efforts ranging from a systematic recording of
human and object motion data, unified representation of
collected data to providing methods and tools for processing
and interpretation of the data. Such datasets would lead to
considerable progress in the area of learning bimanual tasks
by facilitating several research directions and contributing to
the reproducibility of research results in this area. To the
best of our knowledge, there is no comprehensive dataset
that explicitly accounts for the bimanuality of actions while
providing all the information needed to extract semantic
and sensorimotor information from human demonstration in
terms of accurate multi-modal recordings of human whole-
body motion, full human hand configuration as well as pose
and motions of all objects involved in the task.

Other approaches address the question of collecting data of
human demonstrations for learning by capturing interactions
of humans with virtual environments ([6]–[8]) and their



physical simulation or by using computer vision methods
to synthetically generate photo-realistic renderings of human
poses based on image and human motion capture data [9].
While both approaches are promising, they are limited in
terms of representing realistic physical interactions with
objects. This is due to the fact that data generated in virtual
reality strongly relies on the accuracy of the underlying
physical simulation and data generated based on image data
and motion capture data such as in [9] rarely includes
object information. Both approaches can highly benefit from
accurate motion capture data as ground-truth for evaluation
or even rely on such motion capture data as in e. g. [9].

Our Contribution: We present a new multi-modal dataset
of bimanual manipulation actions consisting of i) accurate
human whole-body motion data, ii) full configuration of both
hands and iii) 6D pose and motion of all objects involved
in the task. The data is collected using five different sensor
systems: i) VICON motion capture system to record whole-
body human and object motion with high accuracy at the
trajectory level, ii) two data gloves that provide finger joint
trajectories of both hands, iii) three RGB-D cameras that
provide different perspectives on the scene, iv) a head-
mounted egocentric camera to capture the subject’s field
of view and v) three inertial measurement units (IMUs)
attached to the human body to provide additional information
and investigate the potential of minimalistic wearable sensor
setups in the context of action recognition. The dataset
includes 12 bimanual actions of daily household activities
performed by two subjects with a large number of variations
within actions. In total, 21 household objects are used for
the execution of the different actions. An excerpt of our
motion recordings can be seen in Figure 1. The data is further
segmented and annotated to facilitate future use and research
in the area of learning semantic task models on symbolic
and subsymbolic level of bimanual manipulation. Following
a unifying approach for the representation and organization
of large-scale human motion databases, we extend our Master
Motor Map (MMM) framework [10] to offer methods and
tools needed for processing the data and make the dataset
publicly available in our KIT Whole-Body Human Motion
Database1, see also [11].

II. RELATED WORK

We first review related human motion data collections
in the close context of multi-modal bimanual recordings
of daily household and kitchen activities. The datasets are
categorized based on the used sensor modalities. We provide
an overview of the most relevant related works in Table I.
Our comparison is based on provided action annotations,
sensor modalities, especially the accuracy of whole-body
pose and object interaction, and captured variations within an
action type. Many datasets provide unconstrained recordings
of various subjects performing naturally in unstructured
environments to capture a wide variance in data across
all dimensions. However, the introduction of explicit single

1https://motion-database.humanoids.kit.edu/

variations in object types and relations, as well as bimanual
execution, within actions is beneficial for research on gener-
alizing bimanual task models, as it allows better comparison
of the influence of different task parameters on the execution.

A. Single-View Video Datasets

Several large-scale datasets with video recordings of hu-
mans performing various actions in different daily scenarios
are available.

Head-mounted video cameras are often used to record a
human subject’s field of view and create datasets of daily
activities in natural environments (e. g. [12]–[15]) because
they are easy to attach to the human body and continuously
capture the workspace of the subject even for mobile ma-
nipulation. The EPIC Kitchen Dataset-100 [12] with 100
hours of long-term unscripted kitchen activities is the largest
annotated egocentric action dataset. The 20BN-Something-
Something dataset [16] offers a similarly large collection
of very short video clips containing first- and third-person
human-object interactions. However, both datasets do not
provide recordings of the human whole-body motion and
have been collected in an unknown or changing camera
coordinate system. In [17] the YouCook dataset is created
by collecting and annotating 88 open-source third-person
cooking videos from YouTube. In comparison, the MPII
Cooking Activties Dataset [18] provides annotated 27 hours
of self-recorded static camera videos of subjects preparing
real dishes in a kitchen environment.

Overall, these datasets often provide large amounts of
videos in various, unstructured environments because the
data collection effort is comparatively low. The recordings
are either collected from various open video platforms, or
recorded in real-world scenarios as neither a large sensor
setup nor special equipment is required. Because of their
size, such datasets are often used for training and evaluation
of machine learning algorithms, especially in the context of
action recognition, detection, anticipation and retrieval.

Methods for extracting 2D [19] and 3D [20] human poses,
grasp types [14] as well as object bounding boxes [21]
and 3D poses [22] of known objects from RGB videos
can be used to obtain various information from video data,
however, retrieving accurate information in various scenarios
under different conditions is still difficult. Further, learning
robot manipulation concepts based on video datasets as
described in e. g. [23] can benefit from datasets that provide
comprehensive knowledge about human demonstrations.

B. Multi-View and/or Multi-Modal Video Datasets

Collecting multi-view video datasets or using additional
sensor modalities to capture human demonstrations con-
tribute to the extraction of further knowledge.

The TUM Kitchen Data Set [24] is based on the fusion
of multiple RGB camera streams to recreate the three-
dimensional human pose. In addition, RFID tags and mag-
netic sensors are used to detect subjects opening a door or
a drawer while setting a table. In Slice & Dice [25] three-
axis accelerometer measurements from sensorized cooking



TABLE I: Overview of human motion datasets for object manipulation.
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[34] 08 x x x x x x x x x x x x x
[24] 09 x x x x x x x x x
[25] 09 x x x x x x
[38] 10 x x x x x x x x x x x x x
[26] 13 x x x x x x x
[27] 14 x x x x x x x
[15] 14 x x x x x
[11] 15 x1 x1 x x x x x x x x
[16] 17 x1 x1 x x x1

[37] 19 x x x x x x x x1 x x x x
[39] 19 x x x x x2 x2 x1 x1 x x x x2 x
[31] 20 x x x x x x x
[12] 20 x x x x x x
[30] 20 x x x x x x x x
[41] 20 x1 x1 x x x x x x
[29] 20 x x x x x x x
Our 21 x x x x x x x x x x x x x x x x x x x x x x
1 only partially 2 switched from motion capture to pose sensor 3 mass, speed, etc. 4 RFID, power, pressure sensor, etc.

utensils are collected during the preparation of sandwiches
and salads. Similarly, the 50 Salads dataset [26] provides
task recordings for preparing various salads, also contain-
ing rough object trajectories obtained from accelerometers.
In [27] subjects are observed when preparing cereal from
multiple view-points with audio signals recorded as an ad-
ditional sensor modality. In another approach, an egocentric
RGB-D camera is used to collect data to classify grasp types
and to predict contact points and forces [28].

The ETRI-Activity3D dataset [29] focuses on recording
motions for recognizing daily activities of elderly people.
Therefore, RGB-D videos of a large group of young and
elderly subjects are recorded from eight points of view.
In the LEMMA dataset [30], two static RGB-D and two
egocentric RGB cameras are used to record two agents
cooperating to perform given tasks in different kitchen and
living room environments. While the aforementioned datasets
include videos with both hands, the focus is not explicitly on
bimanual manipulations. In our previous work we provided
the Bimanual Actions Dataset [31] that includes only RGB-
D videos from a single camera. The focus of this dataset
was primarily on human action recognition in bimanual
household tasks based on spatial relations. Thereby, action
labels were assigned to each hand individually to increase
the granularity of the provided annotation.

Similar to larger single video datasets, most of the de-
scribed datasets offer mostly unconstrained motion record-
ings for training and evaluation of action recognition and
prediction methods. In addition, such datasets are essential
for learning from human observation tasks such as e. g. iden-
tifying changes in 3D semantic relations during bimanual

manipulation [31], learning simple motion primitives [32]
or learning of object affordances [33]. However, in com-
plex bimanual manipulation scenarios more suitable motion
tracking approaches are needed to deal with multiple small
or feature-less objects and occlusions to allow extracting
accurate motion trajectories of subjects and objects.

C. Motion Capture Datasets

Several large-scale human motion databases are avail-
able [11], [34]–[36] but most are less focused on explicitly
capturing object manipulation.

The Carnegie Mellon University Multimodal Activity
(CMU-MMAC) database [34] consists of recordings obtained
with various sensor modalities capturing subjects performing
cooking and food preparation tasks. In the AnDyDataset [37]
industry-like activities such as screwing and manipulating
loads under various conditions are recorded with a multi-
modal sensor setup for the purpose of human motion classifi-
cation, prediction and evaluation in industrial environments.
However, both datasets only provide object motion in the
video data. In the OPPORTUNITY Activity Recognition Data
Set [38], the subjects perform daily life tasks while their
pose is tracked with inertial measurement units (IMUs), and
interactions with objects and the environment are captured
with a variety of sensor modalities.

In comparison, the Daily Interactive Manipulation (DIM)
Dataset [39] focuses on interactive manipulation, particularly
motions where an object or tool is manipulated by the
subject to perform an interaction with another object. For
this purpose, a custom-built handle including a force-torque
sensor is attached to the manipulated object/tool. A large



number of short actions, especially pouring actions and their
variations (objects, content) were recorded. In addition to
force information, object poses are also captured. While
this dataset contains subsymbolic information (position and
force trajectories) of various daily manipulation actions, only
unimanual motions are performed using the sensorized tool,
which also prohibits a natural grasping and manipulation
behavior. Further, the dataset does not include human body
motion during the task execution. In [40], recordings of 37
subjects performing a ”fruit scooping” task are collected.
Similar to the previous dataset, a sensorized tool is used, but
in addition the corresponding human hand and forearm are
tracked with multiple sensors including motion capture. In
this case, a bimanual task is considered in which the other
hand kinesthetically guides a robotic arm to hold the fruit.

The GRAB: GRasping Actions with Bodies dataset [41]
provides a large amount of marker-based motion capture
recordings containing full 3D human shape and pose se-
quences including the hand and face motion of a subject in-
teracting with 51 different 3D printed objects. The emphasis
is put on whole-body grasping and the estimation of actual
grasp contact surfaces. In this dataset, only the interaction
with a singular object is considered during bimanual grasping
and actions. While offering the opportunity for researching
bimanual grasping and handover tasks, the dataset is less
suited for analyzing and learning bimanual actions in the
context of goal-oriented object-object interaction.

Compared to related work, we provide a new multi-modal
dataset of whole-body motions for learning task models
of bimanual manipulations. The new dataset complements
our Whole-Body Human Motion Database [11] and the
Bimanual Action Dataset [31] with recordings of bimanual
tasks. Recent work has not only emphasized the role of the
whole-body posture in the ability to perform task-specific
motions and exert forces but also provides methods for
transferring such uni- and bimanual manipulation tasks to
robots [42]. The design of our dataset is motivated by the
goal of providing all the necessary information for learning
such task models from human demonstration with explicit
focus on capturing variations in object types and object
relations in bimanual tasks. Further, we provide manual
action annotations for each hand.

III. THE DATASET

This section explains the sensor setup, recorded objects,
action types and variations. It also describes the synchro-
nization of this dataset and how experiments were conducted.
More detailed information, such as the exact marker setup or
precise anthropometric subject data, as well as all performed
motion recordings are available in the KIT Whole-Body
Human Motion Database [11].

A. Sensor Setup

The sensor setup consists of a total of five different sensor
modalities. A marker-based VICON motion capture system
is used to capture accurate trajectories of body segments
and objects at a frequency of 100Hz. Figure 2 provides
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Fig. 2: Positions of employed cameras with respect to the
subject and table. The bold line depicts in which direction
the camera is facing. The red coordinate system marks the
origin of the motion capture system.

an overview of the camera setup in our motion capture
lab, which is equipped with nine static motion capture
cameras (MX T10) attached to the wall around the capture
area at a height of about three meters and mobile cameras
(Vero), which are placed on tripods around the subject of
interest. As shown in Figure 1, the subject wears a full
body suit (Prophysics AG and NaturalPoint) with attached
optical markers of a diameter of 14mm that are tracked
by the infrared cameras. In parallel, the experiments are
recorded with a connected digital video (DV) camera for
documentation.

For the recording of hand grasping movements in bimanual
tasks, the subjects wear commercially available data gloves
(Cyber Glove III) on each hand. These data gloves measure
the finger joint angles, the palm curvature and the wrist
angles. We used the currently available data gloves in our
lab, which is a right hand data glove with 22 degrees of
freedom (DoF) and a left hand data glove with 18 DoF
(all DoFs except the distal finger joints). The data gloves
are calibrated as described in our previous work [43] and
capture finger joint positions at a frequency of 90Hz. We
consider using such data gloves as the most suitable way to
capture finger position trajectories in bimanual manipulation
tasks as capturing such trajectories with the same marker-
based motion capture system would require a high number of
additional markers on both hands and lead to occlusions and
wrong marker associations when the hands closely interact
with multiple objects.

In addition, three 9 DoF inertial measurement units
(IMUs) (Blue Trident of Vicon Motion Systems) are attached
to the human body to measure linear accelerations and
angular velocities at a frequency of 225Hz. The data is
upsampled to 300Hz in order to obtain an integer number of
sub-samples per frame of the VICON system. The sensors
are attached to the human body at anatomical landmarks:
one sensor on each forearm close to the wrist (dorsal side of
the antebrachium above carpals) and one sensor on the back
between the shoulder plates (approx. thoracic vertebrae T4).



Fig. 3: Objects used in our bimanual manipulation dataset.

To obtain egocentric images from the perspective of the
subject, Full HD video recordings are collected with a head-
mounted action camera (GoPro Hero 8) with 60FPS in
SuperView and activated HyperSmooth for automatic image
stabilization.

In addition, three RGB-D cameras (Azure Kinect DK) are
placed at fixed positions on camera tripods. The camera posi-
tions are selected to provide different views on the scene and
indicate potential positions of a robot that should learn from
human demonstration. These video recordings are obtained at
30FPS, 1080p RGB resolution and 640 px× 576 px depth
resolution. To obtain and track the pose of the RGB-D and
action cameras in respect to the scene, optical markers are
attached to the cameras to record their pose.

B. Objects

The actions were recorded with a total of 21 real house-
hold objects and food items (e. g. cucumber, knead dough),
see Figure 3. All actions were performed on or behind a
table with a height of 88 cm, which corresponds to the height
of common kitchen counters. At least four markers were
attached to each object in order to track its pose with the
motion capture system. Depending on the object, markers
of size 6mm, 9.5mm or 14mm were used. 3D models of
all objects are provided with the dataset. These models were
created either using a 3D scanner or CAD software in the
case of simple object geometry.

C. Actions

Twelve frequently in household activities used manipula-
tion actions were selected for the dataset with focus on the
variety of used objects and the bimanuality of actions. The
actions, the number of recorded variations as well as used
objects per action are given in Table II, where the color code
indicates the object usage for an action across all variations.

Although some actions such as pouring can be performed
using only a single hand, this dataset explicitly focuses on
recording the execution of such tasks with both hands. In
many cases these are asymmetric movements [44], in which
one hand stabilizes an object while the other hand performs
the manipulation of the object. For example, the left hand
holds a cup on the table or in midair while the right hand
pours water from a bottle. There are also cases where both
hands are holding the same object (e. g. sweeping, rolling out
dough) or self-handovers are performed. Other special cases

TABLE II: Recorded actions and used objects
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are walking while performing a manipulation or holding an
object by enclosing it with the whole arm.

All actions are recorded in the way they would be naturally
performed by right-handed individuals. To account for varia-
tions in natural human action execution, every variation was
repeated three times by the subject. Also, semantic variations
within one action type are considered, such as different object
locations. For example, the bottle can be on the left or right
side of the cup and next to or farther away from the subject.
Such variations are important to investigate the adaptation
of motion trajectories to new scenes and situations. Further-
more, different objects are included focusing especially on
changes in single task parameters such as the object height
or diameter (e. g. small vs. large cup or bowl). Different
actions with tools are also considered such as scooping with a
spoon or ladle. The tools are handled differently even though
they are used for the same purpose. Additionally, different
executions of bimanual manipulation actions are considered.
For example, the left hand holds, tilts or lifts a bowl while
the right hand stirs. For some actions, the object held in
hand during manipulation can also be different. As shown
in Table II there is an imbalance in the number of recorded
variations per action type. This is due to the fact that for
some actions interesting parameters (e. g. position, direction,
height) allow more variations in the execution.

D. Data Synchronization

To provide timely-synchronized data from the different
sensor modalities used for the collection of the dataset, we
implemented a software named CaptureComponent, which
synchronously triggers the recordings of the different sensors
on several remote host computers. The component distributes
signals as UDP packages to remote software components of
selected sensors and manages recording-specific information
such as filenames or recording time. These software com-
ponents are implemented for each sensor and encapsulate



the sensor-specific processing and functionality to enable
independence of the programming language of the sensor’s
interface, the operating system and hardware. The Capture-
Component also provides access to each distributed com-
ponent to check the sensor status. Further synchronization
is achieved by collecting and aligning timestamps for each
sensor recording.

E. Recording Procedure

Two healthy, young adults (1 male, 1 female) participated
in the experiments. Both are right-handed, have normal
vision and no upper limb orthopedic impairments. Anthro-
pometric data of the subjects (body height, hand segment
lengths, weight) are recorded. The dataset includes record-
ings of only two subjects due to the high efforts required for
providing such high quality multi-modal data with a large
number of action variations and repetitions. Subjects were
familiar with the task but were asked to perform the actions
as they would execute them in their own home environment.

The subject stands behind the table at the beginning and
the end of each recording with flat placed hands on the table.
Start and end configuration of the scene, such as hand and
body posture, and task instruction, such as ’cut off three
slices of the cucumber’, are given to the subjects. Details of
the exact task execution such as the temporal synchronization
of the hands and grasp types are left to the subject’s intuition.
Three repetitions of each action were recorded. In total, we
collected 98 demonstrations per subject with three repetitions
each, resulting in 588 demonstrations.

Within the recordings of the different variations of an
action the order of the recordings was the same among
the subjects, but the actions themselves (e. g. Scoop) were
recorded in a different order. The action durations, i. e. the
length of the recordings, range between 5 and 15 seconds.
The different actions were recorded on multiple days.

This study was approved by the ethics committee of the
Karlsruhe Institute of Technology, Karlsruhe, Germany. The
participants gave their written informed consent before the
experiments that the data may be made publicly available for
research purposes in the KIT Whole-Body Human Motion
Database. For data privacy reasons the faces of subjects are
blurred in all publicly available visual recordings.

IV. REPRESENTATION AND PROCESSING OF THE DATA

In order to make the collected data from various sensors
available to the research community, we rely on and expand
our previous work on the Master Motor Map (MMM)
framework [10] to provide a unified representation and
standardized data structures for organization and storage in
large scale motion databases. In the following, we describe
the extensions made to the MMM to address the needs of the
new recordings as well as the tools provided for segmentation
and labeling of the dataset.

A. MMM Framework

The Master Motor Map (MMM) [10] provides an open-
source framework for the representation of human motions

as well as their perception, visualization, reproduction and
recognition. The MMM framework2 decouples the motion
capture process from further processing steps by providing
a reference model of the human body as well as a unifying
motion data format. Through the use of a reference kine-
matics and dynamics model with subject-specific parameters,
captured motions are normalized and presented in a stan-
dardized way. For the mapping of captured human motions
to a target reference embodiment, the squared distances
between real markers attached to the subject’s body at
predefined anatomical landmarks and virtual markers on the
MMM reference model at the same anatomical landmarks
are minimized using non-linear optimization techniques.

In this work, this mapping is extended by considering the
hand size of the subject by scaling the hand model in the
MMM independently of the human’s height. The hand size
is determined by measuring the distance from the subject’s
wrist to the tip of the middle finger. To further improve
the accuracy of the hand pose mapping, the squared error
of each hand marker is scaled with a specific weighting
parameter. We provide one possible mapping of the motion
in this dataset. However, this mapping can be exchanged or
adjusted to address the needs of the intended application.

Moreover, the XML-based MMM data format as well as
the framework is adapted to independently store, handle and
visualize data from all additional sensor modalities in this
dataset such as IMU, RGB, RGB-D and data gloves using
an extendable plugin-based sensor structure. The videos are
stored in a suitable video container format (e. g. mp4) and
are only referenced in the MMM data format.

B. Segmentation and Labeling
In order to provide a suitable interface for further process-

ing of the recorded human movement, the MMM data format
is extended to allow both manual and automatic hierarchical
segmentation, i. e. on symbolic and subsymbolic level as
proposed in [45], as well as annotation of the data. Similar
to the previous work of [31], the motion recordings in this
work are manually segmented and annotated according to
actions performed by each hand.

Manipulation tasks are usually composed of several ac-
tions such as approach an object, lift it, perform a manip-
ulation, place the object and retreat the hand. The annota-
tions include manipulation actions (e. g. scoop, wipe, peel),
supporting actions (e. g. hold, move) and actions describing
different grasping phases (approach, lift, place, retreat). An
example segmentation for scooping is displayed in Figure 4.
The manipulation task is segmented into the following ac-
tions for the right hand: approach ladle with right hand, lift
ladle, move hand with ladle in the bowl, scoop, move hand
with ladle to the cup, pour from the ladle into the cup, .... As
displayed, all manipulation actions such as scoop are further
hierarchically segmented. These fine-granular segments can
be used when considering isolated partial actions.

Relevant objects are also included in the annotation. We
distinguish between a main object that corresponds to the

2https://mmm.humanoids.kit.edu
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Left
Right

Fig. 4: Bimanual segmentation for scooping from a bowl to a cup. Top: Visualisation of the motion on the MMM reference
model. Bottom: Segmentation tracks for both hands (Left, Right). Occuring actions are idle, approach, lift, hold, move, place,
retreat, scoop as well as additional actions pre, pour and post scooping task.

grasped object, a target object with which the main object
interacts, and a source object that is only given if such
interaction occurs at the beginning of a manipulation task.
In the example of the manipulation action ”scooping from a
bowl into a cup using a ladle”, the bowl corresponds to the
source and the cup to the target object, while the ladle is the
main object.

V. CONCLUSION

We present a new multi-modal dataset of bimanual ma-
nipulation actions, which has been recorded from human
demonstrations using several sensors with focus on providing
all information needed for learning task models of biman-
ual manipulations from human demonstration on symbolic
and subsymbolic level. Thus, precise whole-body human
motions including both hands as well as object motions
are represented in a unifying way using the Master Motor
Map (MMM) framework and stored publicly available in the
KIT Whole-Body Human Motion Database.

The dataset contains 12 different bimanual actions, per-
formed by two subjects with up to 19 variations per action
and three repetitions of each action variation. This results
in a total of 588 human demonstrations. The human whole-
body pose, hand kinematics as well as 21 household objects
and real food items are tracked using marker-based motion
capture and data gloves. In addition, data of three inertial
measurement units, one head-mounted action camera, and
three RGB-D cameras is collected simultaneously.

In particular, the dataset provides intra-action variations
representing different ways of human demonstrations to fa-
cilitate learning and generalization of bimanual manipulation
actions while taking into account multiple modes and models
in the demonstrations as these are key for task-specific
adaptation and generalization of movement primitives rep-
resenting the underlying actions in the demonstrations [46].
While focusing on bimanual manipulation tasks, we provide
whole-body motion and full hand configurations to facilitate
research on whole-body loco-manipulation tasks.

Furthermore, the MMM framework [10] and data format is
extended to deal with the synchronization and normalization

of the recorded multi-modal data, as well as the mapping
of this data to the MMM reference model. In addition, we
provide tools within the MMM framework for manual action
segmentation and annotation of bimanual manipulation tasks.

The dataset, tools and methods have been collected and
developed to facilitate research in the area of learning
bimanual task models from human observation and will con-
tribute to many research directions in this area ranging from
learning motion primitives, action and activity recognition,
learning spatial and temporal constraints in bimanual human
demonstrations as well as bimanual coordination.

Our future work will be concerned with the continuous
extension of the dataset regarding the number of actions and
their variation, as well as the number of recorded subjects
performing longer demonstrations. Further, we will work on
learning task models for bimanual manipulation using the
dataset, in particular on incremental learning of such models,
temporal relations and transitions between actions of both
hands, and on defining related benchmarks in this research
area.
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