
Resource-Aware Motion Planning

Manfred Kröhnert, Raphael Grimm, Nikolaus Vahrenkamp and Tamim Asfour

Abstract— We address the question of how resource-aware
concepts can be utilized in motion planning algorithms.
Resource-awareness facilitate better resource allocation on
global system level, e.g. when a humanoid robot needs to
distribute and schedule a wide variety of concurrent algorithms.
We present a motion planning approach that employs self-
monitoring concepts in order to identify the difficulty of the
planning problem. Resources are requested dynamically and
adapted based on problem difficulty and current planning
progress. We show how dynamic adaptation of resource allo-
cation on algorithmic level can reduce the system workload as
compared to static resource allocation while meeting Quality of
Service (QoS) measures such as average workload or efficiency.
We evaluate our approach both in several synthetic setups with
varying difficulty and with the humanoid robot ARMAR-4.

I. INTRODUCTION

Complex robot systems, such as humanoid robots, uti-
lize a wide variety of algorithms, ranging from low level
control, image processing to visual perception and symbolic
planning. During execution, these algorithms share a limited
set of resources (CPU, memory, communication bandwidth,
power). In general, an operating system schedules requested
resources fairly between concurrent components, while the
algorithms themselves act in a greedy manner, ignoring the
current workload of the system. This can result in non-
optimal resource allocation due to several issues. First, it
might be required to limit the greedy nature of algorithms
(i.e. limit their resource allocation) in order to improve global
resource availability and to avoid workload peaks affecting
other components. Second, context dependent task priorities
can not be taken into account by a static scheduler operating
on system level. For example, a speech recognition and
dialogue management system should run with high priority
when commands are triggered, while a smalltalk situation
could result in lower priorities and lower resource demands.
Finally, unused system resources could be assigned to com-
putationally intensive modules to speed up calculations or
improve QoS.

Resource-aware algorithms can be used to deal with
changing and non-optimal resource allocations. Based on
the current context, they adapt their resource demands to
the current system load. Such resource-aware concepts are
for example investigated by the research project Invasive
Computing [1]. These concepts are helpful in programming,
monitoring, and supervising distributed and component-
based systems and hence, in fine tuning the overall system

The authors are with the Institute for Anthropomatics and
Robotics, Karlsruhe Institute of Technology (KIT), Germany,
{kroehnert,asfour}@kit.edu

Distributed Motion Planner

Worker 1 Worker n

Manager

...

Resource Demands,
Degree of Urgency

Availability of 
Resources 

Resource Aware Robot Framework

Motion 
Planning 
Request

Collision-free
Motion

Asynchronous Communication

Create
Destroy

Fig. 1: The proposed motion planning algorithm can be em-
bedded within a resource-aware robot software framework.
the planner is equipped with self-monitoring concepts and
the capability to adaptively change its resource demand.

performance. Benefits and advances of resource-awareness
have been shown for perceptual algorithms in [2], [3].

Especially autonomous humanoid robots benefit from
resource-aware concepts. Their resources are always limited
due to many concurrent algorithms and the constraints of
available battery power. Hence, it makes sense for algorithms
to only request resources when actually needed. Ideally,
the result quality of such algorithms improves by adding
more resources or stays stable with less resources avail-
able. However, not all algorithms share these properties.
To actually equip a robot with resource-aware components,
self-monitoring concepts are required in order to allocate
available resources to algorithms based on the current system
status.

In this work we present a distributed motion planner which
is able to request more resources at runtime (see Fig. 1).
We focus on CPU utilization as the most important resource
aspect for motion planning algorithms. Further, we show
how self-monitoring strategies are incorporated to identify
the difficulty of a planning problem in order to dynamically
increase the requested amount of system resources.

The algorithm is executed on a network of PCs running
standard Ubuntu 12.04. Evaluation is performed on both an
artificial setup allowing variations in the planning problem
difficulty and a realistic setup with the humanoid robot
ARMAR-4 [4].



II. RELATED WORK

The motion planning problem can be addressed by a wide
variety of algorithms. High dimensional problems, as they
are present in humanoid robotics, can be solved efficiently
with randomized approaches like Probabilistic Roadmaps
(PRM) [5] and Rapidly-exploring Random Trees (RRT) [6].
In this work, we focus on variants of the RRT approach,
since it allows for efficient solving of single query plan-
ning problems while maintaining probabilistic completeness.
Since the original version of the RRT algorithm, many
improvements have been published which can be separated
into three functional groups according to their goals.

A. Improving the quality of a found solution

RRT* [7] makes two modifications to the original RRT to
provide asymptotic optimality, in addition to the probabilistic
completeness of RRT.

First, the parent node selection is changed to create an
intermediate configuration c when trying to connect the near-
est neighbor nn to the sampled random configuration. The
algorithm then searches for a configuration in c’s vicinity,
instead of connecting c to nn. The line segment from c to
the found configuration must be collision free and result in
a path with the lowest cost from the start node to c.

The second modification optimizes path costs during a
rewiring step, which is executed each time a new config-
uration is added to the search tree. Each node in the new
node’s vicinity is checked to determine whether the cost of
its current path is higher than the cost of a path including the
new configuration. If this is the case and the line segment
connecting the node and the new configuration is collision
free, the node’s old path is removed and a path via the new
configuration is added.

Informed RRT* [8] improves RRT*’s [7] convergence
towards the optimal solution. Each time a better solution s is
found, the sampling domain cspace changes to cspace

⋂
Ps,

with Ps being the prolate spheroid containing all solutions
with a cost less or equal to s’s cost. Ps’s focal points are
ρstart and ρgoal and its polar diameter is set to the cost
of s. This change causes Informed RRT* to concentrate on
improving the path ρstart → ρgoal instead of improving the
path from ρstart to every configuration ρ ∈ cspace.

B. Changing the sequential algorithm to find solutions faster

Dynamic-Domain RRT [9] tries to limit the sampling
domain to the search tree’s visible Voronoi region. Since
determining the visible Voronoi region is a hard problem,
this region is only approximated. For this approximation to
work, each node ρ is assigned a radius with infinity as initial
value. Once a connection attempt fails, the node radius will
be set to rborder. In this case, the intermediate configuration
ρreached ← Steer(ρ, ρrnd) 1 is identical to ρ and the node
is then called a boundary node. When a node ρnn is the
nearest neighbor to a random configuration ρrnd, the function

1Steer(ρf , ρt) returns the point ρr from the line segment (ρf , ρt),
closest to ρt. The line segment (ρf , ρr) has to be collision free.

Steer(ρnn, ρrnd) is only called, if Distance(ρnn, ρrnd) is
less than ρnn’s radius. Since boundary nodes lie on the
border between cfree and cobstacle, their visible Voronoi
region is smaller than their total Voronoi region. Visible
Voronoi region of all other nodes is mostly identical to their
total Voronoi region. The smaller radius of boundary nodes
expresses this fact. This property stops Dynamic-Domain
RRT from trying to expand towards unreachable nodes and
benefits the algorithm in presence of small passages by
reducing the number of collision checks. The correct value
for parameter rborder is important for the visible Voronoi
region’s close approximation. It has to be small enough to
exclude regions outside and large enough to include most of
the visible Voronoi region.

Adaptive Dynamic-Domain RRT [10] is a modification of
Dynamic-Domain RRT making it more robust against poor
choices of parameter rborder. The robustness is achieved by
further changing the radius of boundary nodes, after it was
set to rborder. For each additional failed connection attempt
the node’s radius is decreased by an α value, while it is
increased by α for each successful connection attempt. To
preserve probabilistic completeness, a node’s radius will not
get lower than rmin. This adapting Dynamic-Domain causes
border nodes with a high percentage of cobstacle in their
vicinity to have a lower radius than other boundary nodes,
and thus improves the approximation of visible Voronoi
region.

C. Parallelizing the algorithm

Several parallel RRT implementations have been proposed
to decrease planning time and making it possible to deal with
more difficult planning problems.

Sampling-Based Roadmap of Trees (SRT) [11] creates a
global PRM of local RRT’s resulting in a more performant
and significantly more decoupled planner than just PRM
and sampling-based tree planners. The more powerful local
planer allows using more complex milestones and to dis-
tribute the workload almost evenly among processors while
keeping communication low.

Manager Worker RRT [12], [13] uses functional decom-
position to collaboratively build a search tree. The planing
task is split into two types of subtasks: operations with search
tree access (e.g. nearest neighbor search) and operations
without (e.g. collision checking). A manager process exe-
cutes the first type of subtask while it outsources collision
checks to multiple worker processes. This strategy can be-
come inefficient if the two subtask types are intertwined (e.g
in RRT*).

Distributed RRT [12], [13] collaboratively builds a search
tree through exploratory decomposition by using multiple
identical workers. Each worker owns a copy of the sampling
tree and performs sampling and collision checking. Before
each planning iteration, a worker applies all updates received
from other workers. A worker broadcasts its progress asyn-
chronously to all other workers after each iteration. Once a
solution is found, a stop signal is broadcast and all workers
terminate.



pSBMP-RRT and pSBMP-PRM [14] provide a planning
framework compatible with sampling-based algorithms such
as PRMs and RRTs. Better scalability than other meth-
ods such as SRT is achieved through applying C-space
subdivision. An independent roadmap is construct in each
subdivided region in parallel. Afterwards, regional roadmaps
are connected to other nearby roadmaps to form a roadmap
of the entire C-space.

Bulk Synchronous Distributed RRT [15] is a modification
of Distributed RRT. It reduces communication overhead by
only sending updates after a bulk of iterations have been
performed by a worker.

Using graphics coprocessors can speed up collision check-
ing and thus the whole algorithm [16].

Utilizing lock free concurrency and cache effects can result
in superlinear speedup [17].

Other types of parallel RRT algorithms exist which were
not used in this work, such as Or parallel RRT [12], [13],
RRTLocTrees [18], and Blind RRT [19].

III. RESOURCE-AWARE RRT*

Already proposed RRT algorithms do not consider adapt-
ing the algorithm’s resource usage to the problem’s require-
ments. Additionally, the parallelized RRT algorithms use a
static number of processing units for calculation and do
neither consider system state nor availability of resources.

As a first step in this direction, we propose a distributed
resource-aware RRT algorithm which observes its own state
and requests more resources if the current problem demands
so. It uses Informed RRT* for its asymptotic optimality and
improved convergence, Adaptive Dynamic-Domain RRT for
its sampling domain limiting and small passage handling,
and Bulk Synchronous Distributed RRT for its distributed
computation and reduced communication overhead. Since
one implemented resource allocation strategy utilizes runtime
tracking of planning progress, the used planners must be able
to provide some kind of failure metric.

A. The planning algorithm

The planning algorithm consists of one manager and
identical multiple worker processes as shown in Fig. 1.
Since sampling time is comparatively low, the main idea is
to parallelize work associated with costly collision checks
instead of optimizing specific subparts of the algorithm.

Algorithm 1 describes the dedicated manager process
which monitors the planning state, analyzes the sampling
tree, and determines if additional workers should be started.
However, the manager does not perform any kind of sam-
pling or collision checking. The manager starts a new worker
node every time the RequiresAdditionalResources(s)
function evaluates to true. Internally, resource allocation
strategies as described in section III-B are used to determine
if additional resources are required. The maximum worker
count workerCntmax is designed to be influenced from
outside the algorithm. If workerCntmax is reduced, the
manager will stop workers, starting with the newest one
until their number is below the new maximum. Planning

Algorithm 1 ManagerLoop

Require: start and goal configuration ρstart, ρgoal ∈ cspace,
strategy s, bulk size m ∈ N, timeout, initial and maxi-
mum worker count workerCntinitial, workerCntmax,
adaptive dynamic domain parameters α, rborder, rmin ∈
R

1: τ : Tree
2: AddNode(τ, ρstart)
3: for i← 0 to workerCntinitial do
4: StartAdditionalWorker()
5: end for
6: while not (HasPath(τ, ρstart, ρgoal) or isT imeout())

do
7: Wait()
8: ApplyPendingUpdates(τ)
9: UpdateStrategy(s)

10: if CurrentWorkerCnt() < workerCntmax then
11: if RequiresAdditionalResources(s) then
12: StartAdditionalWorker()
13: end if
14: end if
15: while CurrentWorkerCnt() > workerCntmax do
16: StopNewestWorker()
17: end while
18: end while
19: ShutdownAllWorkers()
20: ApplyPendingUpdates(τ)
21: return Path(τ, ρstart, ρgoal)

fails when no solution was found after the specified timeout
passes. After planning has completed or failed, the manager
terminates all workers and returns the result.

Algorithm 2 describes the combination of Informed RRT*,
Adaptive Dynamic-Domain RRT, and Bulk Synchronous
Distributed RRT executed by each worker. The functions
SelectParentRRT∗ and RewireRRT∗ select a node’s parent
and perform rewiring analogous to RRT*.

B. Resource Request Strategies

The implemented algorithm uses different strategies to
determine whether more computational power is required to
solve the current problem. Every strategy to be used with the
planner must have the following properties: independence of
and thus not posing restrictions on the planning algorithm
and short computation time to only cause minimal overhead.

1) Possible Strategies: A strategy can track an expansion
metric of the tree and use this to determine the rate of
expansion or the ratio between current and maximal tree
expansion. Two groups of expansion metrics exist.
The first group examines the path length or path cost.
Expansion can be determined by considering the length of
the longest path in the tree, or the average cost to reach a
leaf node. The current expansion rate can be estimated by
observing the average length of the last N edges added to
the tree.
The second group examines the volume of the tree. One



Algorithm 2 WorkerLoop

Require: goal configuration ρgoal ∈ cspace, bulk size m ∈
N, adaptive dynamic domain parameters: α, rborder,
rmin ∈ R

1: τ ← GetCurrentTree()
2: while not ReceivedShutdownRequest() do
3: for i = 0 to m do
4: ApplyPendingUpdates(τ)
5: repeat
6: ρrnd ← Sample(cspace)
7: ρnn ← NearestNeighbour(τ, ρrnd)
8: until ρf .r > Distance(ρf , ρrnd)
9: ρreached ← Steer(ρnn, ρrnd)

10: if ρreached 6= ρnn then
11: VNNs ← NearestNeighbors(τ, ρreached)
12: ρf ← SelectParentRRT∗(ρreached, ρn, VNNs)
13: AddNode(τ, ρreached)
14: AddEdge(τ, (ρf , ρreached))
15: ρreached.r ←∞
16: ρnn.r ← ρnn.r ∗ (1 + α)
17: RewireRRT∗(τ, ρreached, VNNs)
18: UpdateMinimalPathLength(τ)
19: else
20: if ρnn.r =∞ then
21: ρnn.r ← rborder
22: else
23: ρnn.r ← max(rmin, ρnn.r ∗ (1− α))
24: end if
25: end if
26: end for
27: SendUpdate(τ.currentUpdate)
28: end while

approach is to use the volume of the axis aligned bounding
box (AABB) containing all nodes. However, this strategy is
unstable, since is not able to track the planning progress if
the solution is contained inside the AABB’s volume.

A different approach determines the ratio of failed cre-
ations of intermediate configurations to the amount of tries
of creating them over the last N iterations. If a method
such as Dynamic-Domain is used, the ratio approximates the
relation of boundary surface between tree region + cobstacle
and the tree region itself. In this case, resources will only
be requested if the ratio is high, meaning that the problem
is most probably hard.

A third approach is to measure the algorithms runtime
and request more computation power after a time delta ∆T
has passed since the last request for additional computation
power. This approach is robust, since planning problems are
guaranteed to be hard if they take longer to solve. On the
other hand, workers are started too frequently or infrequently
if ∆T is chosen too small or too big. Similar to the rborder
parameter of Dynamic-Domain RRT this weakness can be
addressed by adding an additional parameter to adapt ∆T .
To balance out weaknesses of other approaches, a time delta

should always be added to any strategy.
2) Implemented Strategies: Two strategies were imple-

mented after evaluating proposed possible candidates. Both
produce a binary response of whether additional resource
should be requested or not. No distance based metric was
implemented, since their values are input dependent and
would require normalization. Due to this dependency, it
is impossible to come up with a general, meaningful, and
problem independent normalization strategy.

Since planning time is a direct indicator of the problem
difficulty, the first evaluated strategy uses the ∆T -approach.
In general, it is referred to as ∆T -strategy and as ∆Ty for
a parameter ∆T = y.

Tlast + ∆T ≤ Tnow (1)

If equation (1) evaluates to true, the ∆T -strategy decides to
request additional computational power.

Wrong choices of the ∆T parameter can lead to late
resource acquisition for difficult problems. Hence, the second
strategy modifies ∆T depending on the rate ϕ of failed
creations of intermediate configurations. High values of ϕ
indicate that the algorithm is most probably searching in a
difficult boundary area where using more resources would be
beneficial. The added parameter σ determines how strongly
the rate ϕ influences ∆T . In general, this strategy is referred
to as NN∆T -strategy (No Node ∆T ) and as NNx∆T y for a
set of parameters σ = x and ∆T = y

∆T ′ =
∆T

1 + σ ∗ ϕ
(2)

Tlast + ∆T ′ ≤ Tnow (3)

Equation (2) and (3) describe whether the NN∆T -strategy
decides to request additional computation power. The
NN∆T -strategy will request an additional worker at least
every ∆T but not faster than every ∆T/(1 + σ). The effect
of σ on ∆T is shown in Fig. 2.

Fig. 2: Effect of σ on the ratio ∆T ′

∆T as a function of ϕ.

IV. EVALUATION

The two implemented strategies are evaluated with four
synthetic setups and one realistic setup with the humanoid
robot ARMAR-4. All test cases are executed 100 times and
runtime is measured in wall-clock-time. The value of the



bulk size parameter m has been experimentally determined
and is set to 10 in all cases. During test execution, the system
never attempts to remove resources from the algorithm. For
the majority of time the manager process waits for updates
of the worker nodes. Thus, it is excluded from the process
count since it only causes an insignificant amount of CPU
utilization as opposed to the 100% CPU utilization of each
worker node. To eliminate outliers, the 10% trimmed mean
is used for all values.

A. Test platform

All test cases are executed on up to four machines con-
nected via Gigabit Ethernet. The average CPU speed of 3.38
GHz is realized through the following Intel(R) Core(TM)
processors: 1 x i7-4770 (3.4 GHz), 2 x i7-4790 (3.6 GHz)
and 1 x i7 CPU 870 (2.93 GHz). Ubuntu 12.04.5 LTS is used
as operating system which ships version 4.6.3 of the g++
compiler. No additional tasks are running on the computers
and the connection network is free from additional load. Each
machine starts a maximum number of four workers during
execution.

B. Test Case 1: SerialWalls

Fig. 3: The test case SerialWalls4 consisting of four walls
and the moving object.

The SerialWallsN test case is used to evaluate per-
formance in a similar setup with increasing difficulty. The
synthetic setups consist of N ∈ {1, 2, 3, 4} walls with holes
in opposite corners. The task is to plan a collision-free
motion that moves a cuboid from one side through all holes
to the other side. The hardest test case SerialWalls4 is
shown in Fig. 3.

The following strategies are applied in order to evaluate
the overall system performance:

• Static Resource Allocation: A constant number of
workers is started at the beginning. The first worker
immediately starts the planning algorithm. Evaluation
is performed with 1, 4, and 16 workers.

• ∆T: The ∆T -strategy is applied with ∆T ∈
{5, 10, 20, 30}. After ∆T seconds, a new worker pro-
cess is started.

• NN∆T: The NN∆T -strategy is used with ∆T = 30
and σ ∈ {1, 5, 10}. It adaptively requests new workers
when the planning progress is weak.

C. Test Case 2: Box

Fig. 4: The test case Box. ARMAR-4 pulls a bottle out of
a box of bottles.

In this test case, a collision-free motion for the humanoid
robot ARMAR-4 has to be planned for pulling a bottle out
of a box of bottles. The kinematic chain used for grasping
contains 10 degrees of freedom, covering two torso and 8
arm joints. This test case contains a narrow passage at the
start configuration and is used to test whether the NN∆T -
strategy is robust against weak selections of parameter ∆T .
Chosen parameters are ∆T ∈ {5, 30} for the ∆T -strategy;
∆T = 30 and σ ∈ {1, 5, 10} for the NN∆T -strategy.

The best strategy for the Box test case would be to start
as many workers as fast as possible, since it poses a difficult
problem.

D. Evaluation of the Static Resource Allocation Strategy

Fig. 5 compares the SerialWalls test cases executed
with a static number of workers. It shows the average
execution time tsolve until the first solution was found and
the time tinitial required to start all initial workers. The
bars in each test case are normalized to the runtime of
one worker, to provide better comparison of the planning
time improvements, Absolute planning times are listed in
TABLE I.

Fig. 5 shows, that, relative to the one worker case, both ex-
ecution time and tinitial/tsolve ratio decrease with increasing
difficulty. Further, it shows that a constant resource allocation
is not optimal for simple problems. The time required to
start 16 worker processes in the SerialWalls1 test case
almost equals the time required by four workers to solve the
problem. In this test case, tinitial is quite large, since each
worker loads its models over network and workers are started
sequentially. All workers run independent of the manager
process and directly start planning after being initialized.
Thus, the execution of the 16 worker case terminates after all
workers were started, since a solution was already found by a
previous worker. Comparison between the 4 workers and the
16 workers setup, shows that using all available computation
power for a simple problem results in a low speedup due to
the static overhead of starting additional threads and copying
required data.



Fig. 5: Static resource allocation in the SerialWalls test cases. tsolve is the average execution time until the first solution
was found (green) and tinitial the time required to start all initial workers (blue). Detailed planning times are listed in
TABLE I.

TABLE I: The execution time average tsolve and standard deviation (SDtsolve
) until the first solution was found and the

time tinitial and standard deviation (SDtinitial
) required to start all initial workers.

Testcase SerialWalls1 SerialWalls2 SerialWalls3 SerialWalls4
Worker 1 4 16 1 4 16 1 4 16 1 4 16
Solved 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 42.0% 94.0% 100.0%
tsolve [s] 0.95 0.71 0.70 21.10 8.20 4.00 198.31 64.21 23.28 671.90 239.81 65.26
SDtsolve [s] 0.006 0.031 0.009 1.103 0.397 0.131 7.571 2.511 0.709 8.368 6.962 1.438
tinitial [ms] 56.6 200.7 687.5 59.9 218.1 768.9 67.8 155.8 909.8 74.3 160.4 935.7
SDtinitial [ms] 0.66 11.64 1.94 0.75 12.00 1.78 0.74 6.39 1.85 0.88 1.15 1.42
tinitial/tsolve 5.9% 28.3% 97.9% 0.3% 2.7% 19.2% 0.0% 0.2% 3.9% 0.0% 0.1% 1.4%

For harder test cases this static overhead is negligible since
tsolve increases while tinitial stays mostly unchanged.

E. Evaluation of Dynamic Resource Allocation Strategies

In order to evaluate and compare dynamic resource al-
location strategies, we introduce the following measures to
obtain comparable numbers:
• Average Workload Wavg: Since our algorithm uses

strategies to request additional workers at runtime, the
total numbers for started workers (Wtotal) are incom-
parable. Instead, a comparable value of average number
of workers (Wavg) is calculated.

Wavg :=
ttotal
tsolve

(4)

tsolve is the execution time until the first solution was
found (measured in the manager process) and ttotal the
accumulated execution time of all workers during this
period (measured in each worker process). If only one
single worker is started, its execution time equals ttotal.
Thus, the value of Wavg can be less than one, since
tsolve includes additional work done by the manager
process before any workers are started (like setting up
the environment), .

• Efficiency ttotal: The efficiency can be expressed with
ttotal, the accumulated overall computation time of all
workers required to generate the planning result. The
smaller ttotal, the more efficient the computation power
is used.

Fig. 6 shows Wtotal and Wavg for all combinations of
SerialWalls test cases and executed strategies. It can be

seen that all strategies decide not to request additional
workers for SerialWalls1 while all strategies decide to
start more workers for harder test cases. The lower the
parameter ∆T , the more workers are started by the ∆T -
strategy. The higher the parameter σ, the more workers are
started by the NN∆T -strategy. The NN10∆T30-strategy
compensates the relatively high (and therefore not optimally
chosen) ∆T value and starts more workers than the ∆T20-
strategy.

To measure the effect of strategies on execution time,
tsolve can be compared (see Fig. 7(a)). It can be seen that the
simple test case SerialWalls2 is solved fastest with static
resource allocation strategies. On the other hand, efficiency
of static strategies gets worse (see Fig. 7(b)), since a part of
tsolve is spent on initializing workers. In particular, the 16
workers setup shows bad efficiency. In contrast, the dynamic
resource allocation strategies run a bit slower but with higher
efficiency.

The evaluation of the hard problem SerialWalls4 shows
that performance of the dynamic resource allocation strate-
gies comes close to the static 16 worker strategy while the
measured efficiency remains better.

In general, it can be stated that the efficiency of all
dynamic resource allocation strategies is better than static
approaches with more than 1 worker. This shows that using
strategies results in a more efficient usage of computation
power. Differences in efficiency get smaller with increasing
toughness of the planning problem.



Fig. 6: The values of Wtotal (light color) and Wavg (dark color) for the SerialWalls test cases and the used strategies.
New resources are only allocated for harder test cases.

(a) tsolve (b) ttotal

Fig. 7: Execution time tsolve and efficiency ttotal for the test cases SerialWalls2 and SerialWalls4 per evaluated strategy.
For each test case, the values are normalized to the execution time with a single worker.

(a) Wavg (b) tsolve (c) ttotal

Fig. 8: Wavg , normalized tsolve and normalized ttotal for
the test case Box per evaluated strategy.

F. Evaluation with the humanoid robot ARMAR-4

The test case Box was chosen as a realistic setup which
can show how well a badly selected parameter ∆T can be
compensated by the NN∆T strategy. Metrics for this test
case are presented in Fig. 8 and the concrete numbers for
average and standard deviation of tsolve for each strategy
were ∆T5 = (58,2 s / 3,8 s), ∆T30 = (187,8 s / 7,3 s),
NN1∆T30 = (127,2 s / 5,2 s), NN5∆T30 = (75,0 s /
3,7 s), and NN10∆T30 = (49,7 s / 3 s). The serial method
is not shown, since only 33% of the test runs found a valid
plan in a maximum of 6 minutes.

The ∆T30 strategy starts the least amount of workers of
all strategies due to the bad choice of ∆T = 30. Its runtime
is more than three times the runtime of ∆T5, while ttotal
is two times larger. All NN∆T strategies compensate this
by starting more workers, causing both tsolve and ttotal to
decrease. NN10∆T30 solves the problem 15% faster than
∆T5 while having a 7% higher efficiency value ttotal. This
again shows the ability of the NN∆T strategy to compensate
weak choices of parameter ∆T .



V. CONCLUSION

In this work, we presented a distributed resource-aware
RRT algorithm capable of requesting additional computing
resources based on strategies which monitor the current
planning progress. Different resource request strategies have
been evaluated in a series of synthetic motion planning
problems with increasing difficulty as well as with a realistic
setup with the humanoid robot ARMAR-4.

Overall we showed, that depending on the planning prob-
lem, static allocation or over allocation of resources often
lead to inefficiencies and unnecessary increases in system
workload. Thus, the amount of used computational resources
should be directly adapted according to the problem dif-
ficulty in order to increase resource usage efficiency. The
evaluated resource request strategies were shown to provide
the required information to perform such adaptation by
determining if and when additional resources should be
requested. However, a slight increase in execution time can
be observed in some cases, making the concrete choice of
strategy parameters a tradeoff between efficiency and speed.

In the future, we plan to implement and evaluate other
strategies to make the algorithm fully resource-aware. For
example, a more sophisticated strategy would additionally
include the current system workload in the decision making
process in order to not impair the system by requesting more
resources than available. Another possible strategy would be
to use space partitioning for dimensionality limiting (like
an octree) and to determine the tree expansion by counting
occupied voxels. This approach requires a transformation
from the configuration space to the work space, as well as
an additional parameter to adapt the internals of this metric
to the current planning problem. This parameter could be
user-defined or problem derived, such as volume or diagonal
lengths of the configuration space.

Communication (as opposed to collision checking) was
not a bottleneck due to high bandwidth network connections.
Thus, a future research direction is to examine the relation-
ship between the number of workers and communication
costs. Different levels of resource requirement urgencies
as well as indicating the willingness to release held re-
sources, could be achieved by transforming the current binary
resource request value to a continuous one. The system
can then utilize these urgency values in combination with
priorities to better distribute system resources and keep the
average level of satisfaction as high as possible.

Reducing or closing the gap in execution time and thus
reducing tradeoff penalties is another topic for future work as
well as widening the range of managed resources to include
network transfer rates and memory consumption. Special
hardware characteristics such as graphics processing units
can be considered, too.

ACKNOWLEDGEMENT

The research leading to these results was supported by
the German Research Foundation (DFG) as part of the Tran-
sregional Collaborative Research Centre Invasive Computing
(SFB/TR 89) and has received funding from the European

Unions Horizon 2020 Research and Innovation programme
under grant agreement No 643950 (SecondHands).

REFERENCES

[1] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting, “Invasive computing: An
overview,” in Multiprocessor System-on-Chip. Springer, 2011, pp.
241–268.

[2] J. Paul, W. Stechele, M. Kröhnert, and T. Asfour, “Resource-aware
programming for robotic vision,” CoRR, vol. abs/1405.2908, 2014.

[3] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, B. Oechslein, C. Erhardt,
J. Schedel, D. Lohmann, and W. Schröder-Preikschat, “Resource-
Aware Harris Corner Detection based on Adaptive Pruning,” in Pro-
ceedings of the Conference on Architecture of Computing Systems
(ARCS), 2014, pp. 1–12.

[4] T. Asfour, J. Schill, H. Peters, C. Klas, J. Bücker, C. Sander, S. Schulz,
A. Kargov, T. Werner, and V. Bartenbach, “ARMAR-4: A 63 DOF
Torque Controlled Humanoid Robot,” in IEEE/RAS International
Conference on Humanoid Robots (Humanoids), 2013, pp. 390–396.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566–580, Aug 1996.

[6] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 2,
2000, pp. 995–1001 vol.2.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[8] J. Gammell, S. Srinivasa, and T. Barfoot, “Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on, Sept 2014,
pp. 2997–3004.

[9] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-Domain
RRTs: Efficient Exploration by Controlling the Sampling Domain,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, April 2005, pp. 3856–3861.

[10] L. Jaillet, A. Yershova, S. La Valle, and T. Simeon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” in Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, Aug 2005, pp. 2851–2856.

[11] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-
Based Roadmap of Trees for Parallel Motion Planning,” IEEE Trans-
actions on Robotics, vol. 21, no. 4, pp. 597–608, Aug. 2005.

[12] D. Devaurs, T. Simeon, and J. Cortes, “Parallelizing RRT on
distributed-memory architectures,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May 2011, pp. 2261–
2266.

[13] ——, “Parallelizing RRT on Large-Scale Distributed-Memory Archi-
tectures,” Robotics, IEEE Transactions on, vol. 29, no. 2, pp. 571–579,
April 2013.

[14] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M.
Amato, “A Scalable Method for Parallelizing Sampling-Based Motion
Planning Algorithms.” IEEE, May 2012, pp. 2529–2536.

[15] S. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. Amato,
“A scalable distributed RRT for motion planning,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on, May
2013, pp. 5088–5095.

[16] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT*,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on, Sept 2011, pp. 3513–
3518.

[17] J. Ichnowski and R. Alterovitz, “Scalable Multicore Motion Planning
Using Lock-Free Concurrency,” Robotics, IEEE Transactions on,
vol. 30, no. 5, pp. 1123–1136, Oct 2014.

[18] M. Strandberg, “Augmenting RRT-planners with local trees,” in
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, vol. 4, April 2004, pp. 3258–3262 Vol.4.

[19] C. Rodriguez, J. Denny, S. Jacobs, S. Thomas, and N. Amato, “Blind
RRT: A probabilistically complete distributed RRT,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, Nov 2013, pp. 1758–1765.


	Introduction
	Related Work
	Improving the quality of a found solution
	Changing the sequential algorithm to find solutions faster
	Parallelizing the algorithm

	Resource-Aware RRT*
	The planning algorithm
	Resource Request Strategies
	Possible Strategies
	Implemented Strategies


	Evaluation
	Test platform
	Test Case 1: SerialWalls
	Test Case 2: Box
	Evaluation of the Static Resource Allocation Strategy 
	Evaluation of Dynamic Resource Allocation Strategies
	Evaluation with the humanoid robot ARMAR-4

	Conclusion
	References

