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Abstract

This article presents a novel telepresence system for advancing aerial manipulation in dynamic and1

unstructured environments. The proposed system not only features a haptic device, but also a virtual2

reality (VR) interface that provides real-time 3D displays of the robot’s workspace as well as a3

haptic guidance to its remotely located operator. To realize this, multiple sensors namely a LiDAR,4

cameras and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines5

are devised for industrial objects of both known and unknown geometries. We further propose an6

active learning pipeline in order to increase the sample efficiency of a pipeline component that relies7

on Deep Neural Networks (DNNs) based object detection. All these algorithms jointly address8

various challenges encountered during the execution of perception tasks in industrial scenarios.9

In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines.10

Methodologically, these results commonly suggest how an awareness of the algorithms’ own failures11

and uncertainty (‘introspection’) can be used tackle the encountered problems. Moreover, outdoor12

experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial13

manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to14

winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-15

place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator16

(SAM). As a result, we show the viability of the proposed system in future industrial applications1.17

Keywords Pose Estimation, Active Learning, Virtual Reality, Telepresence, Aerial Manipulation.18

1 Introduction19

The global market for robotic inspection and maintenance is growing fast with an expected annual turnover of up to20

4.37 billion dollars by 20252. Recently, international corporations and organizations, such as General Electric, Sprint21

Robotics, Baker Hughes and Boston Dynamics, have started initiatives to generate and evaluate robotic technologies22

for inspection and maintenance applications. One of the most prominent directions for these real world industrial23

1A video material accompanying this paper can be found at https://www.youtube.com/watch?v=JRnPIARW8xY
2BIS Research, Global Inspection and Maintenance Robot Market: Focus on Type, Component, and End User - Analysis and Forecast, 2020-2025;

March 2020

https://www.youtube.com/watch?v=JRnPIARW8xY


Figure 1: Left: the cable-Suspended Aerial Manipulator, dubbed SAM (Sarkisov et al., 2019) during field experiment.
Right: a ground station where an operator remotely controls the robotic arm through a haptic interface. In real world
applications of bilateral teleoperation, the operator is often remotely located without visual contact to the robot.

applications is aerial manipulation (Ollero et al., 2022). An aerial manipulation system is composed of robotic24

manipulators and a controlled flying platform (Fishman et al., 2021; Bodie et al., 2020; Kondak et al., 2014; Kim et al.,25

2013). The platform enables coarse positioning while the manipulator enables dexterous grasping and manipulation for26

complex tasks. Hence, these aerial platforms extend the mobility of robotic manipulators, which can be deployed at high27

altitudes above ground, increasing safety for human workers while reducing costs. Examples of aerial manipulation28

applications range from load transportation (Bernard and Kondak, 2009), contact based inspection and maintenance in29

chemical plants (Trujillo et al., 2019), bridges (Sanchez-Cuevas et al., 2019), power-line maintenance (Cacace et al.,30

2021), to sensor installations in forests for fire prevention (Hamaza et al., 2019).31

In this article, the real world applications of aerial manipulators are envisioned for several industrial scenarios in32

dynamic and unstructured environments. For these industrial applications of aerial manipulators, our current interests33

are in the bilateral teleoperation concepts, i.e., a human operator remotely controls the robotic manipulator from a34

safe area on ground and receives visual and haptic feedback from the robot. This increases human operator safety35

while the robots execute their tasks in dangerous environments (Hulin et al., 2021; Hirzinger et al., 2003). Such a36

concept is motivated by having a robotic system with a human-in-the-loop, where the system can leverage human37

intelligence to reliably accomplish its missions. To realize this, existing works have focused on relevant components of38

the system, namely force feedback teleoperation under time delays (Balachandran et al., 2021b; Artigas et al., 2016),39

shared autonomy (Masone et al., 2018), human-machine interfaces (Kim and Oh, 2021; Yashin et al., 2019; Wu et al.,40

2018), and robotic perception for aerial manipulators (Karrer et al., 2016; Pumarola et al., 2019).41

Building upon the aforementioned developments, we propose a novel virtual reality (VR)-based telepresence system for42

an aerial manipulation system operating in industrial scenarios. Figures 1 and 2 illustrate the main idea. The proposed43

system is intended for real world scenarios, where the remotely located robot performs aerial manipulation tasks, while44

its human operator is inside a ground station without having direct visual contact with the robot (Figure 1). To this45

end, we propose a system which does not only involve a haptic device to enable the sense of touch for the operator, but46

also a VR to increase the sense of vision (Figure 2). While the live video streams can also provide a certain level of47

situation awareness to the operator, several studies confirm that adding a virtual environment where one can change its48

sight-of-view, zoom in and out, and further provide haptic guidance, supports the operator in accomplishing the tasks49

(Pace et al., 2021; Whitney et al., 2020; Huang et al., 2019). Our own field studies also confirm that augmenting live50

video streams with 3D visual feedback and haptic guidance can enhance manipulation capabilities of aerial robots.51

The main novelty of our VR based concept is its realization with a fully on-board perception system for a floating-base52

robot, which does not rely on any external sensors like Vicon, or any pre-generated maps in outdoor environments.53

Instead, multiple sensors, namely LiDAR, a monocular camera, a pair of stereo cameras and inertial measurements54
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Figure 2: The proposed telepresence system with VR from robot perception and active learning. In the proposed system,
the robot creates VR of its workspaces as a 3D visual feedback to the human operator, and further provides a haptic
guidance. The main novelty of this work is the realization of such a system for real world scenarios.

units (IMUs) are jointly utilized (Table 1). To achieve this, we propose object pose estimation and active learning55

pipelines. First, in order to virtually display industrial objects with known geometry, we provide a simple extension of a56

marker tracking algorithm (Wagner and Schmalstieg, 2007) by combining with on-board Simultaneous Localization57

And Mapping (SLAM). Second, if the objects of interests are geometrically unknown, we devise a LiDAR based pose58

estimation pipeline that combines LiDAR Odometry And Mapping (LOAM Zhang and Singh (2017)) with a pose graph,59

a point cloud registration algorithm (Besl and McKay, 1992), and a Deep Neural Network (DNN) based object detector60

(Lin et al., 2017). For both the cases, the combinations are facilitated by an introspection (Grimmett et al., 2016) module61

that identifies the reliability of the pose estimation. Finally, we present a pool based active learning pipeline, which uses62

an explicit representation of DNN’s uncertainty, to generate the most informative samples for a DNN to learn from.63

This enhances the sample efficiency of deploying DNN based algorithms in outdoor environments. We identify certain64

real world challenges and describe in detail how these introspective approaches can mitigate these challenges.65

With the DLR’s SAM platform (Sarkisov et al., 2019), the feasibility and benefits of the proposed idea are examined.66

To this end, we first present ablation studies on the designed pipelines with indoor and outdoor data-sets from the robot67

sensors. Here, the influence of each component is examined with regard to mitigating the identified challenges, and we68

show the feasibility of creating the real-time VR, which can closely match the real workspaces of the robot. Moreover,69

the effectiveness of the proposed method is shown through outdoor experiments within the considered industrial scenario.70

This scenario, which was designed under the scope of EU project AEROARMS (Ollero et al., 2018), is relevant to71

inspection and maintenance applications for gas and oil industry. It involves pick-and-place and force-exertion tasks72

during the mission, which is to deploy a robotic crawler for automating pipe inspection routines. Moreover, the SAM73

platform executing peg-in-hole tasks with a margin of error less than 2.5 mm is further considered, which is one of the74

standard manipulation tasks in industrial settings. By executing over 70 executions of the aforementioned tasks over75

days and nights, from spring to winter, and with different users and locations, the benefits of our VR based telepresence76

concept are illustrated for enhancing aerial manipulation capabilities in real world industrial applications.77

In summary, the key contributions of this work are:78

• We propose an advanced VR based telepresence system for aerial manipulation, which provides a 3D visual79

feedback and a haptic guidance. The system neither requires any external sensors nor pre-generated maps,80

has been evaluated outside laboratory settings, and can cope with the challenges of a floating-base system.81

Moreover, multiple sensors are fused to exploit their respective strengths for the given perception tasks.82

• We devise object pose estimation and active learning pipelines to realize the proposed system in dynamic83

and unstructured environments. Challenges to existing methods are reported, and several ablation studies are84

provided to validate the proposed approaches. Methodologically, this work suggests the relevance of robotic85

introspection in realizing VR based telepresence robots with aerial manipulation capabilities.86

• We perform exhaustive flight experiments over extended durations including 40 task executions in outdoor87

environments, 27 task executions within a user validation study, and the operation of the system at night. Thus,88

we establish the proposed concept as a viable future option for real world industrial applications.89



Outside No external Floating-base Multiple
the laboratory sensors or pre manipulation exteroceptive

settings? generated map? system? sensors?

AeroVR (Yashin et al., 2019) ✗ ✗ ✓ ✗
ARMAR-6 (Pohl et al., 2020) ✗ ✓ ✗ ✗

ModelSegmentation(Kohn et al., 2018) ✗ ✓ ✗ ✗
AvatarDrone (Kim and Oh, 2021) ✗ ✗ ✓ ✗
PaintCopter (Vempati et al., 2019) ✗ ✗ ✓ ✗

AR (Liu and Shen, 2020) ✗ ✓ ✗ ✗
AR (Puljiz et al., 2020) ✗ ✓ ✗ ✗

GraspLook (Ponomareva et al., 2021) ✗ ✓ ✗ ✗
The proposed system ✓ ✓ ✓ ✓

Table 1: Comparisons between the existing VR based robotic systems and the proposed system.

The paper starts with a survey of related work (Section 2) and provide the system description of SAM robot hardware,90

human-machine interfaces, sensor choices, and integration (Section 3.1). We formulate the problem of the VR creation,91

and identify challenges in realizing the system (Section 3.2). Then, the designed pipelines are presented, which are to92

address these challenges (Section 4). In Section 5.1, we provide ablation studies to validate the designed framework,93

while Section 5.2 contains the results of our flight experiments. We report the lessons learned in Section 5.4 and94

conclude the work with some future extensions in Section 6.95

Relation to Previous Publications This paper extends the author’s previous publications, namely Lee et al. (2020a) and96

Lee et al. (2020b). In terms of methodology, we provide a LiDAR based pose estimation pipeline (Section 4.2). This97

extension enables the creation of VR without relying on markers, which is required in industrial scenarios. The devised98

active learning pipeline for object detection (Section 4.3) extends and brings the previous theoretical framework (Lee99

et al., 2020b) to practical applications. Furthermore, with respect to experimental contributions, this article provides100

new ablation studies that are associated with the new methods. Most importantly, exhaustive outdoor experiments for101

manipulation tasks are further performed to examine the benefits of the proposed VR based concept over extended102

durations and characterize its technical readiness for industrial applications.103

2 Related Work104

The proposed VR based concept advances the area of VR interfaces for robotics. The comparison of this work to105

existing works is summarized in Table 1. The current literature from different domains of robotic research is discussed,106

which are, pose estimation (Section 4.1 and 4.2), and active learning with DNNs (Section 4.3). Importantly, we stress107

that this work is not to advance the state-of-the-art methods in these two areas. Rather, the aim is to apply and extend108

them to realize a working system for the given industrial scenarios. For example, the provided extension of a marker109

tracking algorithm with visual-inertial SLAM is not the main contribution of this paper. Lastly, we further locate our110

work within the literature of aerial robotic perception in field applications.111

Virtual Reality Interfaces In the past, several VR interfaces have been widely utilized in robotics including aerial112

systems (Wonsick and Padir, 2020). So far, the presented approaches often create the VR either by using external113

sensors such as Vicon and a-priori generated maps. Notably, Vempati et al. (2019) utilizes a-priori generated maps for114

the applications of VR in aerial painting. For aerial manipulation, Yashin et al. (2019) uses Vicon system to create the115

VR while Kim and Oh (2021) renders the environment with a portable sensor kit (Oh et al., 2017). Recently, many VR116

techniques have gained interest in the robotic manipulation community. Therein, many works (Haidu and Beetz, 2021;117

Zhang et al., 2020b) let a human perform demonstration in VR, and transfer the demonstrated manipulation skills to118

real robots. These works greatly show the synergy between VR and robotics. As this paper demonstrates the feasibility119

of creating VR with on-board sensors only, the work can contribute to many of these works in showing how one can120

create a VR for robotics.121



On the contrary, many researchers aimed to provide VR of the remote scene by applying 3D reconstruction techniques122

(Ni et al., 2017; Kohn et al., 2018). For example, Kohn et al. (2018) presents an approach using RGB-D camera. As the123

main challenge of reconstruction based methods is the limited bandwidth in communication, Kohn et al. (2018) proposes124

an object recognition pipeline, i.e., replace the detected object with sparse virtual meshes and discard the dense sensor125

data. Pohl et al. (2020) uses RGB-D sensor to construct a VR for affordance based manipulation with a humanoid,126

while Liu and Shen (2020) and Puljiz et al. (2020) create augmented reality for a drone and a manipulator, respectively.127

Pace et al. (2021) conducts a user study, and argues that the point clouds of RGB-D sensors are noisy and inaccurate128

(with artifacts), which motivates for point cloud pre-processing methods for telepresence applications (Pace et al., 2021).129

In contrast, our approach is based on scene graphs (Section 3.2) with pose estimation, which is an alternative to 3D130

reconstruction methods. Finally, the main novelties are illustrated in Table 1, which are the realizations of a VR based131

telepresence system for outdoor environments using multiple sensors jointly. No external sensors or pre-generated maps132

are used, while dealing with specific challenges of a floating-base manipulation system, i.e., the surface that holds a133

robotic arm is constantly changing over time, thereby inducing motions for the attached sensors.134

Object Pose Estimation One of the crucial components in the proposed framework is object pose estimation algorithms.135

This is because we utilize a scene graph representation, which requires 6D pose of the objects for creating a 3D display,136

as opposed to a 3D reconstruction of the remote site. As the literature is vast, we refer to the survey (He et al., 2021) for137

a comprehensive review. In this work, the main novelty is the working solutions for the considered application, which is138

tailored towards realizing the proposed VR system. For this, the two scenarios are discussed below. These are visual139

object pose estimation for objects of known geometry, and LiDAR based method for unknown geometry.140

If the object is known and accessible a-priori, one of the robust solutions is to use fidicual marker systems. Fidicual141

markers, which create artificial features on the scene for pose estimation, are widely used in robotics. The use-142

cases are for creating the ground truths (Wang and Olson, 2016), where environments are known (Malyuta et al.,143

2020), for simplifying the problem in lieu of sophisticated perception (Laiacker et al., 2016), and also calibration144

and mapping (Nissler et al., 2018). However, as the herein aim is on real-time VR creation, this use-case demands145

stringent requirements on their limitations in run-time, inherent time-delays and robustness. Therefore, an extension of146

ARToolKitPlus is provided (Wagner and Schmalstieg, 2007) with an on-board visual-inertial SLAM system.147

For LiDAR, point cloud registration is often used for pose estimation. By finding the transformation between the148

current scans and a CAD model of an object, we can obtain 6D pose of an object. Broadly, point cloud registration149

algorithms can be classified as local (Park et al., 2017; Rusinkiewicz and Levoy, 2001; Besl and McKay, 1992) or150

global (Zhou et al., 2016), and model based (Pomerleau et al., 2015) or learning based (Wang and Solomon, 2019;151

Zhang et al., 2020a). As CAD models of objects are often not available in the given industrial scenario, a DNN based152

detector and the idea of LOAM with pose graphs are combined, in order to obtain robust object pose estimates that cope153

with occlusions, moving parts and view point variations in the scene.154

Active Learning for Neural Networks The motivations are the considerations of field robotic applications of DNN155

based object detectors. Here, the need for labeled data can cause overhead in development processes, especially while156

considering a long-term deployment of learning systems in outdoor environments. For example, weather conditions can157

change depending on seasons, and we need to efficiently create labeled data. Active learning provides a principled way158

to reduce manual annotations by explicitly picking data that are worth being labeled. One way to autonomously generate159

the ”worth” of an unlabeled sample is to use uncertainty of DNNs. In the past, for robot perception, we find active160

learning frameworks using random forests, Gaussian processes, etc (Narr et al., 2016; Mund et al., 2015) while for161

DNNs, MacKay (1992) pioneered an active learning approach based on Bayesian Neural Networks, i.e., a probabilistic162

or stochastic DNN (Gawlikowski et al., 2021), which offers a principled method for uncertainty quantification. Recent163

works can also be found on active learning for DNN based object detectors (Choi et al., 2021; Aghdam et al., 2019),164

where the focus is on adaptations of active learning to existing object detection frameworks. These include new165

acquisition functions (or selection criteria) and how uncertainty estimates are generated.166

For uncertainty quantification in DNNs, so-called Monte-Carlo dropout (MC-dropout Gal and Ghahramani (2016)) has167

gained popularity recently. The main advantage of MC-dropout is that it is relatively easy to use and scale to large168

data-set. However, MC-dropout requires a specific stochastic regularization called dropout (Srivastava et al., 2014).169

This limits its use on already well trained architectures, because the current DNN based object detectors are often170



trained with other regularization techniques such as batch normalization (Ioffe and Szegedy, 2015). Deep ensemble171

(Lakshminarayanan et al., 2017) is another scalable framework with a relaxed assumption on the model. Unfortunately,172

deep ensemble requires training of several large DNN models to form an ensemble. This technique is popular generally,173

but it is difficult to be utilized in active learning due to the inefficiency in training. In this article, a previous work (Lee174

et al., 2020b) on uncertainty quantification of DNNs is instead utilized. The main motivations are the scalability to large175

architectures and data-sets, training-free feature that needs no changes in network architectures and no re-training, and176

the ability to model every layer of DNNs as Bayesian. These aspects can make the given framework well suited for177

active learning in practice, and thus, this work attempts to provide an extension to active learning for its real world178

applications in robotics.179

Aerial Robotics: Perception in Outdoor Environments The research area on the aerial robotic perception in outdoor180

environments is a fast growing field with several ground breaking results. For example, Saska et al. (2017, 2014)181

pioneered the area of swarm robotics, while Loquercio et al. (2021); Foehn et al. (2022) demonstrated impressive results182

in agile flights of micro aerial vehicles. Aerial robotics, with fully on-board perception, have also been part of the183

recent DARPA subterranean challenges (Rouček et al., 2022; Tranzatto et al., 2022; Agha et al., 2022; Hudson et al.,184

2022). Vision based localization methods have also made tremendous progress (Ebadi et al., 2022; Weiss et al., 2012;185

Scaramuzza et al., 2014; Lutz et al., 2020). We note that, on the other hand, this paper contributes to orthogonal areas186

namely, VR, telepresence robots and aerial manipulation, which differs from tackling navigation problems for aerial187

robots.188

3 System Description, Problem Statement and Identified Challenges189

This paper investigates how a robot can create a VR of a remote scene using on-board sensors and computations. This is190

to enhance the situational awareness of the human operator in real world applications. To set the scene for the work, we191

first describe the system integration that are needed to implement the proposed VR based telepresence concept. Then,192

the problem of VR creation, using on-board sensors with a scene graph approach, is formulated. The limitations of the193

off-the-shelve methods are then presented, which hinder realization of the proposed system in outdoor environments.194

3.1 System Description195

This section describes the used robotic systems with a focus on robot hardware, haptic device and VR interfaces, and196

sensors. Main features of the system is also discussed. Figure 3 depicts an overview of our physical hardware.197

Robot Hardware DLRs’ SAM (Sarkisov et al., 2019) is a novel aerial manipulation system for inspection and198

maintenance applications. SAM is composed of three modules, namely a carrier, a cable suspended platform and a199

seven degrees of freedom (DoF) industrial robotic arm - KUKA LWR (Albu-Schäffer et al., 2007). The purpose of the200

carrier is to transport the manipulation system to a desired location. We use a crane in this work which provides safety,201

versatility, robustness and applicability for the considered industrial scenario3. Then, a platform attached to the carrier202

via a rope, autonomously damps out the disturbances induced by the carrier, the environment, and the manipulator. This203

oscillation damping control is performed using eight propellers and three winches. Another important component of204

our system is the seven Dof torque controlled KUKA LWR (Albu-Schäffer et al., 2007), which features significantly205

more powerful versatile manipulation capabilities than many existing smaller manipulators. The main feature of the206

cable-suspension concept is that the weight of SAM is supported by the carrier. Thus, the required energy to carry207

an aerial robot arm can be reduced. This allowed us to scale down the overall size, from a helicopter based system208

(Kondak et al., 2014) to a relatively smaller robot, which enables operation in confined spaces. The helicopter based209

system had two rotors with overall diameter of 3.7m, while SAM can fit within 1.5m diameter. Moreover, the cables210

from the carrier can also be used to power SAM, which gives theoretically unlimited operation time. In the appendix,211

more details are provided regarding the platform control and different architectures. Sarkisov et al. (2019) can also be212

referenced for conceiving design and control aspects of SAM in detail.213

3On the other hand, there is no free lunch. Cranes may not be able to reach all the desired location as they require available access routes by
ground. There are also several industrial tasks where smaller robotic arms with less DoF may be sufficient.
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CAM 1: mako CAM 2: hc3D Lidar
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Figure 3: The concept of SAM with its integrated sensors and human-machine interfaces. Left: the concept involves
the carriers such as a manned helicopter or a crane, which transports SAM to a desired location. Middle: SAM is
equipped with a stereo camera at the end effector or the manipulator, a monocular camera as well as a LiDAR on the
cable suspended platform. Right: haptic interfaces are integrated for teleoperating the robotic arm. Robot hardware
constitutes of SAM, and the carriers (helicopter or crane), while the used haptic devices are Force Dimension Lambda
and Space Joystick. Finally, the integrated sensors are a monocular camera (dubbed mako), a 3D LiDAR, and a stereo
eye-in-hand camera (dubbed hc).

Haptic Devices and Virtual Reality Interfaces In this work, two haptic devices, namely a space qualified haptic214

device called the Space Joystick RJo (Artigas et al., 2016), and also a six Dof force feedback device, Lambda (Force215

Dimension), are integrated in order to teleoperate the LWR on SAM. This work’s VR interface is based on Instant216

Player (Thomas et al., 2012), which is a lightweight software that runs on standard laptops without GPUs (enhancing217

portability). Instant Player also supports various hierarchies of a scene graph to create the required display. Facebooks’218

head mounted display Oculus is also integrated as an option and use Ubiquiti Bullet for the WiFI connection. The219

robot is equipped with advanced control strategies, namely whole body teleoperation, and adaptive shared control.220

The time-domain passivity approach of Artigas et al. (2016) is employed to obtain stable teleoperation control under221

communication time delays, packet loss and jitters. These control methods advance aerial manipulation capabilities.222

Coelho et al. (2021) and Balachandran et al. (2021a) present these concepts in more detail. The former presents a223

passivity based framework to enable time-delayed teleoperation of different hierarchically-sorted tasks through the224

use of multiple input devices. Balachandran et al. (2021a) present a method to stabilize on-line adaptation of control225

authorities for the operator and the virtual assistance system in haptic shared control.226

Sensor Choices and Integration We integrate several sensors for measuring the robot’s own states as well as to227

perceive the environment. More specifically, a KUKA LWR (Albu-Schäffer et al., 2007) is equipped with torque and228

position sensors, which measure its joint torques and angles. Furthermore, we integrate other sensors on SAM for the229

perception tasks. Firstly, a camera (the Allied Vision: mako) is integrated on the frame of SAM to stream the overall230

operational space of the robotic arm. This is because the operator prefers an eye-to-hand view, which is more natural231

to a human. The camera provides color images of 1292 by 964 px at 30Hz. Secondly, a stereo camera is integrated232

near the tool-center-point (tcp) of the robotic arm. This eye-in-hand set-up avoids occlusion of the camera view by the233

robotic arm, and ensures proximity to the considered objects. These are crucial for the success of our image processing234

algorithms, i.e., the accuracy of visual marker tracking depends on the size of the markers and their distance to the235

sensors, while the depth sensing from the stereo depends on the baseline. We use a commercial 3D vision sensor the236
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Figure 4: Illustration of the scene graph representation for the proposed VR framework. The root node is the base frame
of the robot, while robot arm, industrial objects, scenes, and sensors are object nodes with transformation matrices
as the edges. Forward kinematic provides state of the robot arm, and the fixed transformations to the robot sensors
are obtained from extrinsic sensor calibrations. Then, the 6D estimates of object pose are obtained online using robot
perception. Therefore, this work focuses on the object pose estimation for the realization of the proposed system.

Roboception Rcvisard that provides built-in visual-inertial SLAM. The SLAM system originates from (Schmid et al.,237

2014; Lutz et al., 2020) but we refer the reader to the company for more details. Rcvisard streams 1280 by 960 px238

images at 25Hz and SLAM estimates can be acquired at 200Hz by fusing it with an IMU. Lastly, as a step towards239

industrial application of SAM, we mount Velodyne PUK-LITE LiDAR on the frame of SAM, which provides 3D point240

clouds of the scene at 10Hz. We intend to use LiDAR for 3D object pose estimation as well as navigation of SAM241

in outdoor environments. Note that the minimum range is set to 0.9m while the maximum range of 100m is utilized.242



We designed and integrated the sensor stacks so that the close range perception is not affected. All the perception243

algorithms are executed on the NVIDIA Jetson TX2.244

In Appendix A, more details on platform control, telepresence systems and IT architectures are presented.245

3.2 Problem Formulation and Identified Challenges246

Assume that SAM is performing manipulation tasks far away from the human operator. So, the operator does not have247

direct visual contact to the scene, and the robot has to enhance the situational awareness of the operator. For this, SAM248

creates a VR of its environment and workspaces using on-board sensing and computations, and further provides haptic249

guidance via virtual fixtures (Rosenberg, 1993). Followed by the system level requirements, the problem formulation250

and the challenges of realizing such VR based telepresence concept are introduced next (see Figures 4 and 5).251

The system level requirements are highlighted as follows. Firstly, the created VR has to accurately match the real252

remote site in real-time. This is because the operator needs visual feedback that reflects reality, and the performance of253

haptic guidance depends on the positioning accuracy and run-time. The latter is due to potential movements of the254

robot while hovering. Second, the robustness of the created VR is crucial to give a sense of trust to the human operator255

and further provide reliable haptic guidance. This means that the abnormalities in the object pose estimators are to be256

coped with, which often arises in outdoor environments. Last, the algorithms must run on-board the robot, and only257

send the transformation matrices through WiFi network (apart from an initialization phase, where surface reconstructed258

3D models are sent). This is to avoid overloading of the communication channel for stable bilateral teleoperation. For259

example, both the sparse LiDAR point clouds and the dense stereo point clouds must be processed first, and only the260

pose of the objects must be sent through the WiFi network. The pose information contains only six float values, while261

continuous streaming of the point clouds require much more memory that grows with the number of points.262

For VR creation that addresses aforementioned requirements, this work relies on a scene graph approach (shown in263

Figure 4). A scene graph is general data structure with graph or tree like representations. It is used by the VR/AR264

softwares (Thomas et al., 2012), in order to produce the real-time 3D visualizations. Mathematically, let S be a scene265

graph. It constitutes of sets of nodes and edges, denoted by (V, E). The nodes V are any 3D models, while the edges E266

represent the spatial relationships. The root node Vroot is chosen to be the robot’s base frame, which is a fixed coordinate267

of the SAM platform. Then, a flat hierarchy of the scene graph (Thomas et al., 2012) is assumed. This means the root268

node is a single ”parent” to all other ”child” nodes. In the given scenarios, the models to be displayed in VR are the sets269

of industrial objects, reconstructed external scenes, robotic arm, and the robot sensors. For a node of robotic arm VLBR,270

the corresponding edges Eroot
LBR are readily provided by the forward kinematics. Similarly, the edge of three sensors,271

Eroot
hc , Eroot

mako and Eroot
LiDAR, are the outputs of the extrinsic camera calibration. These spatial relations or the relevant272

transformation matrices are therefore fixed for the sensor nodes Vroot
hc , Vroot

mako and Vroot
LiDAR.273

On the contrary, the spatial relations of industrial objects and external scenes are constantly changing, leading to the274

problem of pose estimation. Here, we divide the problem formulation into two sub-problems. The first sub-problem275

is when the object is known a-priori with available 3D models (Vroot
o1 , Eroot

o1 ), while the second sub-problem is when276

the object is semantically known a-priori, but no primitives on the geometry exist (Vroot
o2 , Eroot

o2 ). For the former, the277

corresponding edges are to be estimated. The latter involves the estimation of both the nodes and the edges. As278

articulated in Section 3.1, the available raw sensor data are RGB camera images I ∈ RH×W×3, where H and W are the279

image height and width, respectively. The images are obtained either from the eye-in-hand stereo camera (denoted by280

hc), or a monocular camera at the base (denoted by mako). A LiDAR, which is located also at the base, generates scans281

that are represented by the point clouds P = (p1,p2, ...,pN) ∈ R3×N . We also have a visual-inertial SLAM system at the282

end effector of the robotic arm, which outputs the rotation matrix R and translation vector t between the coordinate283

frames of the camera and a fixed world frame. In summary, the problem of VR creation can be formulated as estimating284

Eroot
o1 , Vroot

o2 and Eroot
o2 using the available sensory data from different cameras, an IMU and a LiDAR.285

For this problem, several existing approaches can be applied. However, several practical challenges of directly applying286

these approaches have been identified from the field work (depicted in Figure 5). For objects of known geometry, we287

can resort to marker based object pose estimation methods. For this, we cannot assume the holistic view of the markers.288



(a) nominal for marker (b) nominal for icp (c) nominal laboratory

(f) env 1: stair case

(g) partial view

(d) loss-of-sight (e) unknown geometry

(j) shadows (k) occulusions

(i) env 2: summer(h) view point changes

(l) env 3: winter

Figure 5: Identified challenges for realizing our VR based concept. Top: (a,d,g,j) show the challenges associated with
a marker tracking algorithm. Middle: (b,e,h,k) depict the challenges associated with directly applying point cloud
registration methods for pose estimation. In particular for (e), precise geometry of objects are not available for pipe
inspection scenario as an example, and therefore, its CAD models must be reconstructed online. Bottom: (c,f,i,l)
visualize different scenes that a learning based method must cope with, when deployed for real world applications. For
example, a DNN trained in a laboratory, may not generalize to the scenes with (f) stair cases.



Violations of this assumption are caused by shadows, loss-of-sight or partial views of the markers. This results in289

failures while using off-the-shelf marker tracking methods. Moreover, in an industrial scenario, we cannot assume the290

availability of precise CAD models. Thus, point cloud registration methods cannot be directly employed. Tracking is291

also subject to occlusions and moving objects in front of the LiDAR, e.g. the robotic arm, and significant view point292

changes also result in less accurate 6D object poses while employing off-the-shelf methods such as iterative closest293

point algorithm. Finally, while deploying data-driven approaches for field robotics, key to its success is preparation of294

the data. The main challenges are the variations of scenes encountered during long-term deployment; darkness in the295

evenings or snow in winter are such examples. This means data has to be repeatedly collected for varying environment296

conditions, which is a laborious process. So, the question is: how to make the data collection procedure more efficient so297

that DNNs can generalize. In the next section, these challenges are revisited after providing mathematical formulations298

of existing methods, which is then followed by our extensions to resolve these challenges.299

4 The Proposed Methods300

The aim is to create a 3D display of the robot and the objects so that the human operator can remote control the robotic301

arm from a distance. If done in real-time, the operator can see the VR and perform the tasks. Haptic guidance via302

virtual fixtures can further help the human operator during the execution of challenging manipulation tasks. So far,303

we have formulated the problem and also outlined the practical challenges. As previously discussed, the scene graph304

creation problem relies on the accurate, fast and reliable 6D object pose estimation algorithms for the industrial objects305

of known and unknown geometries. This section describes the proposed pipeline for the object pose estimation.306

4.1 The Proposed Pipeline for Objects of Known Geometry307

Once the objects to be actively manipulated are known a-priori, i.e., the CAD models are available and the objects are308

physically accessible, the fiducial marker systems (Wagner and Schmalstieg, 2007) can be exploited. These systems309

consist of a marker, which is a physical plane with black and white squared shapes (similar to QR codes), and a detection310

with a decoding algorithm. The key idea is to artificially create features on a plane that are physically attached to an311

object. Then, we can compute the pose of a camera in relation to a coordinate of the plane via a homography. Concretely,312

using the eye-in-hand (hc) camera, the goal is to find the transformation matrix of the markers T hc
m , expressed in the313

coordinate system of the camera, which constitutes of the rotation matrix Rhc
m and the translation vector thc

m . To do so,314

four corner points of the markers are extracted, which are expressed in the marker coordinates pm = (xm,ym,0)T (hence315

zm = 0 and given the size), and the image plane with pixels pimage = (um,vm,wm)T . Then, the optimizer:316

h(t) = arg min
h

4∑
i=1

ρ(pi,image(t),Hm
image(t)pi,m(t)) where

Hm
image(t) =

(
Rhc

m (t)+
thc

m (t)
d

nT
)
,

(1)

is the solution to the homography problem. Here, t denotes time, Hm
image is the homography matrix with h being317

its vector form, and ρ is a distance based cost function. Knowing the homography matrix, the desired rotation and318

translations can be obtained given the parameters of the intrinsic camera calibration: d and n. Typically, an algebraic319

formulation is used with the Direct Linear Transformation (DLT) algorithm (Andrew, 2001). We note that the fidicual320

marker systems are widely adopted as ground truths in the robotics community for its accuracy (Wang and Olson, 2016).321

Challenges However, many existing fiducial markers systems (Wagner and Schmalstieg, 2007; Wang and Olson, 2016;322

Malyuta et al., 2020; Laiacker et al., 2016) do not address this work’s application scenarios, where aerial manipulation323

tasks in outdoor environments are considered. For example, shadows that are created by the robot can often destroy324

certain shapes of the markers and as a result, the methods would fail as the artificial visual features in the markers are325

occluded. Similarly, the eye-in-hand camera can lose the view on the marker as the manipulator and the base can move326

rapidly. Lastly, time delays that are inherent in these systems must be corrected in order to create a real-time virtual327

display of the scene. Next, the proposed solution to these challenges are described.328



Algorithm 1: Robust marker localization algorithm with Visual-Inertial SLAM

input :

I camera images from the eye-in-hand (hc) camera.
m target marker identification.
i identification numbers of additional markers i = 1,2, ..n.
td time delay parameter, either online computed or prespecified.
T w

hc SLAM estimates of hc camera w.r.t a world coordinate.
output : T hc

m 6D pose of the target marker m w.r.t the hc camera.

1 begin
2 /* Initialization */

3 T hc
m (0), T hc

i (0)← multiART+(I) ∀i ; // detect all the markers (Equation 1)

4 T i
m ← marker init(T hc

m (0),T hc
i (0)) ∀i ; // save all the relative poses

5 /* Main Loop */

6 while True do
7 T hc

m (t), T hc
i (t)← multiART+(I) ∀i ; // detect the markers (Equation 1)

8 if all markers detected then
9 T hc

m (t), T hc
m,i(t)← trafo2m(T hc

m (t), T hc
i (t), T i

m) ∀i ; // transform to target

10 T hc
m (t)← ransac avg(T hc

m (t), T hc
m,i(t)) ∀i ; // ransac and average

11 T i
m ← init update(T hc

m (t), T hc
i (t)) ∀i ; // update all the relative poses

12 else if not all marker detected then
13 T hc

m (t), T hc
m,i(t)← trafo2m(T hc

m (t), T hc
i (t), T i

m) ∀i; // transform to target

14 T hc
m (t)← ransac avg(T hc

m (t), T hc
m,i(t)) ∀i ; // ransac and average

15 else if no marker detected then
16 T hc

m (t)← slam integrate(T hc
w (t), T w

hc(t−∆t), T hc
t (t−∆t)) ; // Equation 2

17 T hc
m (t+ td)← delay integrate(T hc

w (t+ td), T w
hc(t), T hc

m (t)) ; // Equation 3

18 end
19 end

Our Solution To tackle these problems, we propose a robust marker localization pipeline (depicted in Algorithm 1) as329

an extension to ArtoolKitPlus (Wagner and Schmalstieg, 2007). As an overview, the proposed pipeline utilizes multiple330

markers as well as the robots’ SLAM system. To explain, multiple markers are placed on an object, where there exist a331

predefined target marker ID m and n additional markers with unique identifications, i.e., i = 1,2, ...,n. This results in332

total k = n+1 markers. At initialization, the algorithm detects all the markers, where multiART+ is the function that333

executes a variant of marker tracking method: ArtoolKitPlus (Wagner and Schmalstieg, 2007)). Using the eye-in-hand334

camera image I (either the left or the right camera of the stereo setup), we obtain the initial 6D pose of the target335

marker T hc
m as well as all n additional markers T hc

i at t = 0. Then, we save the relative poses of all n markers to the336

target marker m (denoted T i
m for i = 1,2, ...,n). This step is executed within the function marker init.337

Then, the 6D pose of the target marker T hc
m can be obtained in the main loop of Algorithm 1. The first step is to338

execute multiART+. Then, if all the k markers are detected, we transform the 6D pose of n additional markers to339

the target marker: T hc
m = T hc

i T i
m (executed with a function trafo2m). As this results in n additional 6D poses of the340

target marker m, we note them as T hc
m,i for i = 1,2, ...,n. Then, RANSAC (Fischler and Bolles, 1981) is applied to these341

estimates to remove the outliers, and then we perform averaging to reduce the variance (ransac avg). Then, the relative342

transformations T i
m are updated. If at least one marker is detected, the same step is applied to estimate the target marker343

without updating the relative transformations T i
m. We also note that RANSAC is skipped when less than three points are344

available. The described steps have two advantages. First, the accuracy and the orientation ambiguity of ArtoolKitPlus345

can be improved with RANSAC, and second, the algorithm is robust to loss-of-sight of the target marker, i.e., detecting346

only one of the markers is enough to still estimate the 6D pose of the target. Similar steps have been presented in the347

past with several variants (Laiacker et al., 2016; Nissler et al., 2016; Malyuta et al., 2020).348

However, the algorithm must be robust to loss-of-sight on all the markers, and further compensate for the time delay.349



Figure 6: The proposed extension of ARToolKitPlus. Left: the position and orientation estimates of camera motion
from a SLAM system infer the object when the markers are not detected. Right: linear and angular velocity estimates
of the SLAM system are used with the time delay term td to predict the motion of the camera in t+ td seconds.

This is achieved by extending the algorithm with SLAM estimates. The overview is depicted in Figure 6. As a first350

step, we propose to address the problem of complete loss-of-sight on all the markers by integrating SLAM estimates of351

camera motion with respect to its inertial coordinate, i.e, utilize the estimated transformation between the hc camera to352

a world coordinate of our SLAM system w: T w
hc(t). If no markers are detected in the main loop of the algorithm, one353

can still estimate the target marker T hc
m (t) by integration (executed within the function slam integrate):354

T hc
m (t) = T hc

w (t)T w
hc(t−∆t)T hc

m (t−∆t). (2)

In Equation 2, T hc
w (t)T w

hc(t −∆t) is a relative transformation of camera motion from time t-1 to t and we assume355

a static object. In a similar fashion, the time delay of the system td can be computed (executed with a function356

delay computation) and corrected with SLAM algorithm by kinematics:357

T hc
m (t+ td) = T hc

w (t+ td)T w
hc(t)T hc

m (t), (3)

which is executed within a function delay integrate. Note that the time delay is present in any perception system (e.g.358

rectifying an image), fiducial marker systems as well as the communication delays. In Equation 3, T w
hc(t) and T hc

t (t) are359

computed using SLAM and multi-marker tracking. On the other hand, T hc
w (t+ td) can be computed using linear and360

angular velocity estimates of SLAM, multiplied by the delay time td. These two steps have several advantages. The361

algorithm is robust to the found failure modes of fiducial marker systems as it copes with missing marker detection, and362

time delays are incorporated by using velocity signals and computed delay time. Furthermore, maximum run-time of363

the algorithm can be pushed upto 200Hz, which is the rate of visual-inertial SLAM estimates. The algorithm deals also364

with drifts of SLAM estimates by using relative motion estimates only when the marker detection is lost. Note that365

the proposed method is simple but can be an effective way of exploiting the commodity vision sensors with SLAM366

modules in order to improve the robustness of the fiducial marker systems.367



4.2 The Proposed Pipeline for Objects of Unknown Geometry368

Whenever we cannot assume the availability of the markers, the 6D pose of the objects can be estimated using depth369

sensors such as a LiDAR with the point cloud registration methods. For example, within the intended industrial370

application, the markers cannot be used for estimating the pose of the pipe. This is because in oil and gas refineries, the371

pipes are often very long while their inspection points are generally unknown a-priori. Concretely, given the incoming372

streams of point clouds P (t) and the point clouds of the object Q from a CAD model, the goal is to find the rotation and373

translation between P (t) and Q. Here, the point clouds P (t) contain the points pi(t)∀i with its coordinate lying at the374

weighted centroid cp. Similarly, the point clouds Q contain the points qi(t)∀i with its coordinate system defined at the375

weighted centroid cq. Defining cq to be aligned with the coordinate system of the LiDAR l, the 6D pose of an object o376

can be obtained by matching the two point clouds: pi =R
l
oqi + t

l
o. This goal of finding Rl

o and tl
o is often formulated as377

an optimization problem:378

Rl
o,t

l
o = arg min

Rl
o,t

l
o

∑
i

ρ(
∥∥∥pi−R

l
oqi− t

l
o

∥∥∥), (4)

where ρ is again a distance based cost function, e.g. typically a mean squared error.379

Commonly, the solution is obtained by first computing the rotation, and then the translation. Centering all the points:380

p̄i = pi−cp and q̄i = qi−cq such that Rl
o = arg min

Rl
o

∑
i

ρ(
∥∥∥p̄i−R

l
oq̄i

∥∥∥), (5)

the goal is to find the rotation matrix that aligns the centered point clouds. Defining the correlation matrix as381

C =
∑

i p̄cq̄
T
c and its singular value decomposition as C = UΣV T , the rotation can be estimated by the orthogonal382

Procrustes algorithm, while the translation can be obtained from the weighted centroids cp and cq after rotation:383

Rl
o =UV T and then tl

o = cq−R
l
ocp. (6)

This assumes the correspondences between each points to be known. In practice, however, the correspondences are384

often not known and the Iterative Closest Point (ICP) algorithm is often used (Park et al., 2017; Rusinkiewicz and385

Levoy, 2001; Besl and McKay, 1992). Intuitively, the ICP algorithm iterates the following steps: (1) finding the closest386

point in the transformed point cloud for each point: min ρ(P ,Q), (2) estimating the transformation using Equation 6,387

and (3) applying the found transformation to all points and iterate all the steps until a convergence criterion is reached.388

As ICP algorithm is subject to local minima, ICP is often initialized by employing the global registration methods such389

as Zhou et al. (2016) or using higher level features at the first step of the ICP algorithm.390

Challenges Unfortunately, such a strategy does not fully address the current use-case of the point cloud registration391

methods. This is because of the aerial manipulation tasks for an inspection and maintenance scenario. We outline the392

resulting failure modes in Figure 5. First, the strategy assumes the availability of a precisely known object geometry Q,393

which can be obtained through CAD models. Unfortunately, this assumption is invalid in our industrial scenario, as the394

CAD model of the objects that belong to external environments are unknown, e.g. CAD model of oil or gas pipe. Even395

though the refineries may have a 3D geometry of the site, there exist erosion and other changes to their initial model.396

Second, a holistic view of the object cannot be assumed. In the set-up, robotic arm and other objects can occlude the397

object of interest, resulting in partial and overlapping view of the point cloud. Lastly, as we deal with a floating base398

system where the base of a robotic arm is not fixed, view point challenges can occur. This challenges the out-of-box399

point cloud registration methods for LiDAR systems in Equations 4, 5 and 6, which contains sparse point clouds.400

Our Solution To this end, we propose a 6D object pose estimator using a LiDAR. The pipeline is depicted in Figure 7.401

For an overview, the proposed algorithm constitutes of an initialization step and a multi-process main loop. At402
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Figure 7: The proposed LiDAR pose estimation pipeline. (a) Initialization. Using an object detector, the point clouds
that belong to the objects of interest can be obtained for a surface reconstruction technique. (b) Main loop. The object
poses are estimated by combining a SLAM technique with local object poses from a point cloud registration method.
An object detector computes the regions of occlusions and dynamic objects for masking out.

initialization, the CAD model of the scene is reconstructed online by exploiting an object detector. In the main403

loop,three parallel processes are created: a bounding box estimator that computes the locations of the occluding and404

moving objects to be masked out, a SLAM pipeline that computes the object poses in a global reference frame, and a405

local object pose estimator that estimates the object poses locally. The combination of local and global methods is to406

mitigate the challenges related to non-holistic view of the object. The SLAM estimates can deal with large perspective407

changes by matching the scans sequentially, but suffers from drift. The local method, whenever is reliable, can be408

exploited to reduce the drift of the SLAM system. Lastly, what motivates the multi-process architecture is the efficiency,409

i.e., LiDAR odometry can be executed at a faster rate than the other processes that can be executed only at a slower rate.410

First, the pipeline is initialized by creating the CAD model of the object online. This is because one cannot always411

assume a known geometry of the object in the targeted application scenario, i.e., the target point cloud Q is not available,412

and consequently its CAD model O for the VR. Yet, from the specification of the given task, e.g. pick and place an413

inspection robot on a pipe, what we know a-priori is the semantics of the objects of interest, e.g. a pipe. Therefore,414

one can still create the CAD model of the object O online by finding the point clouds that belong to the objects of415

interest Po(0) ∈ P (0) and applying a surface reconstruction technique once. For this, we train a DNN based object416

detector (Redmon et al., 2016) using the eye-to-hand camera (mako). Defining this DNN as a parametric function fθ417

with its input as an image I , the goal of a 2D object detector is to classify and locate the objects in an image; for the418

object semantics c, e.g. c ∈
{
pipe, robotic arm,cage

}
, the classification probability pc (a score between 0 and 1), and the419

location as a bounding box bc ∈ R
4 in the given image, the 2D object detector returns the tuples:420

{c, pc,bc} = fθ(I) with bc =
[
uc,1 vc,1 uc,2 vc,2

]T
. (7)

Here, the bounding box is described by two points in the image with the heights (h = uc,1 and h = uc,2) and the widths421

(w = vc,1 and w = vc,2) which are the top left and the bottom right corner of the box that contains the object c. Further422

defining the target object c = o and using the extrinsic calibration parameter between the LiDAR and the eye-to-hand423

camera T l
mako to transform all the point clouds P (0) to the image plane, we can find the point clouds that belong to o:424



Po(0) =
[
p j = (x j,y j,z j)

]
such that j =

{
i | uo,1 ≤ xi,image ≤ uo,2,vo,1 ≤ yi,image ≤ vo,2∀i

}
. (8)

This means that all the LiDAR scans pi(0) to the image plane are transformed, which results in pi,image = (xi,image,yi,image).425

Then, we obtain the indices j of the point clouds that lie inside the bounding box of our target object bo and crop the426

original point cloud P (0) to obtain the point clouds Po(0) that only contain the information about our target object.427

Applying a surface reconstruction technique (Kazhdan et al., 2006), the CAD model of the target object O can be428

created. In this way, we can still create the VR of the scenes with the objects of unknown geometry.429

Next, the main loop of our algorithm is described, where the first process is the bounding box estimator. This process430

tackles the problem of occluding and moving objects c = u by estimating the bounding box of other objects u in the431

LiDAR coordinate system, which is for actively removing the points that belong to the occluding and moving objects u.432

Concretely, similar to before, the object detector and the extrinsic calibration can be used to obtain:433

Pu(t) =
[
pu = (xu,yu,zu)

]
s.t u =

{
i | uu,1 ≤ xi,image ≤ uu,2,vu,1 ≤ yi,image ≤ vu,2∀i

}
, (9)

where Pu(t) is the point cloud that belongs to the objects u at time t. Then, the bounding boxes of the objects can be434

computed in xy-plane of the LiDAR coordinate system. Defining this as bl
u, and examining all the point clouds:435

bl
u =

[
min(xu) min(yu) max(xu) max(yu)

]T
. (10)

Note that the projection of all the point clouds to the image plane can be inefficient for embedded CPU computations.436

Therefore, a separate process is assigned. Also, moving averages and a margin are also implemented. Lastly, these437

bounding boxes are used to mask out the occluding and moving objects in all other modules.438

Then, in the main loop, a LiDAR based SLAM system (inspired by LOAM Zhang and Singh (2017)) is employed to439

address the problem of view point changes. Again, a naive strategy is to perform point cloud registration between440

the reconstructed CAD model of the target object O and the incoming point cloud scans P . However, if the initially441

constructed object O is significantly different from the current point cloud P , the point cloud registration method may442

perform poorly due to less overlaps between the two scans. Therefore, our key idea is that a LiDAR odometry pipeline443

that performs the registration between the consecutive point clouds and sets the coordinate of the constructed object O444

as a global reference, do not suffer from significant view point changes. As this approach, however, suffers from drift,445

i.e., accumulation of errors, two mechanisms are introduced. The first is a posegraph optimization:446

{Ti} = arg min λ
∑

i

∑
(P ,Q)∈Ki

∥TiP −Ti+1Q∥
2+

∑
i< j

∑
(P ,Q)∈Ki j

ρ(
∥∥∥TiP −T jQ

∥∥∥), (11)

where λ determines the weight of a cost between two consecutive scans within the keyframes, and ρ is a robust function,447

e.g. set to L2 norm in our case. Here, the framework of Choi et al. (2015) that performs robust pose graph optimization,448

is applied, which is less prone to the errors of pairwise registration. Second, we propose to combine a local object poses449

that are obtained by performing point cloud registration of incoming scans with the target object O. Whenever the450

confidence estimates of the local object poses are high (or above a specified threshold), we reset the SLAM system with451

initialization from the local object pose estimator. In this way, we account for the drift of the SLAM system.452

4.3 The Proposed Active Learning Framework453

So far, the proposed object pose estimators are described for realizing the VR based telepresence system. Here, our454

pipeline relied on a DNN based object detector. This has been used for the online creation of a CAD model, and to rule455



Figure 8: Active learning pipeline for generating labelled data more efficiently. Instead of randomly selecting the
images to be labelled, we query the most informative samples from Bayesian Neural Networks - an uncertainty-aware
Deep Neural Networks for the state-of-the-art object detection frameworks.

out any occlusions and moving objects. As our entire system relies on a DNN for the VR creation, we next propose an456

active learning framework to obtain the required performance in DNNs within the context of field robotics.457

Challenges The problem is on the training and the deployment of DNN based systems for various environments458

including both the indoor and the outdoor conditions. The challenge lies in realizing a DNN based system for long-term459

operations in outdoor environments. This is due to the necessity and the manual preparations of large amounts of high460

quality, annotated data which can cover the variety of the operation conditions. For example, as illustrated in Figure 5, a461

DNN trained from the annotated images of the laboratory environments, may not generalize to outdoor environments.462

Similarly, the seasonal variations of the scene from summer to winter can cause similar effects in deterioration of the463

generalization performance. Therefore, each change in the scene may require an iterative process of collecting and464

annotating the data. As this can be a long and tedious process, we attempt to find a principled solution that guides the465

process of gathering the required data for the field deployments of the DNN based systems.466

Algorithm 2: Deep Active Learning using Bayesian Neural Networks

input :

Dinit The initial annotated training data.
Dpool The unlabelled data.
Q The number of query steps.
K The size of the query per step.

output : fθ The trained DNN based object detector.
Dtrain The annotated training data.

1 begin
2 /* Initialization */

3 p(θ|Dinit)← create BNN(Dinit) ; // Apply Lee et al. (2020b); Humt et al. (2020)

4 Dtrain ← update data(Dinit) ; // Initialize the training set from Dinit

5 /* Main Loop */

6 for all the number of query steps Q do
7 p(y∗i | x

∗
i ,Dtrain)← prob detector(Dpool) ∀i ; // Evaluate uncertainty on a pool set (Equations 14, 13)

8 Dselected ← query(Dpool, K) ; // Query from the pool set (Equation 15)

9 Dnew ← generate annotations(Dselected) ; // The user or human supervisor annotates the images

10 Dtrain ← update data(Dnew) ; // Update the training set by adding new annotated data

11 p(θ|Dinit)← create BNN(Dinit) ; // Apply Lee et al. (2020b); Humt et al. (2020)

12 end
13 end
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Figure 9: Collected sets of pool data from different scenes. Six different scenes cover indoor environments, varying
backgrounds and height, and the scenes with snow and at night.

Our Solution To this end, we now describe the proposed pool based active learning framework (Cohn et al., 1996) (also467

known as ”experiment design”). To explain, active learning is a class of machine learning paradigm, where labelled468

data is not available for a supervised learning problem. Instead of obtaining annotations for all available unlabelled469

data, active learning attempts to only label fewer but the most informative data. Intuitively, the aim of active learning is470

to create a learning system that chooses by itself what data it would like the user to label. As opposed to the heuristic471

choice of the user, active learning enables a DNN to select small amounts of data, guiding the user in the data creation472

process. In practical applications of robotics, this indicates that first, a pool of unlabelled data needs to be collected473



by the robot. As we use visual learning methods, a camera set-up could replace the deployment of the robot for data474

collection. We note that upto this stage, the procedure is similar to a standard supervised learning settings in robotics.475

Then, instead of annotating all the available data manually, fewer images are then autonomously selected by the active476

learning algorithm. Deep learning models are trained from these fewer images, and finally deployed to the robot.477

Figure 8 illustrates the overall idea behind active learning. In a pool based approach, a model is trained on an initial478

training set, which is often small. Then, the model selects a subset of data points from a pool of unlabeled data, and479

asks a human to label the selected data points. The selection involves a decision making process, which is performed480

through the choice of an acquisition function. Based on the updated training set, a new model is trained. Repeating481

this process, we can reduce the amount of labeling required to train a learning system. We present such a system for482

DNNs, which relies on an uncertainty quantification technique for DNNs. These are namely Bayesian Neural Networks483

(BNNs) and probabilistic object detection. To explain, our algorithm 2 depicts the working principle overall. Using an484

initial training set Dinit, we train a BNN which is denoted as p(θ|Dinit). Then, for a user specified number of query485

steps Q, we first select the most informative, top K samples from the pool of unlabelled images: Dpool. This is achieved486

by estimating the uncertainty from BNNs (denoted p(y∗i | x
∗
i ,Dtrain)). Then, we label the selected images, and the BNN487

is updated with the new training set. For more explanation in detail, we next present each of these components namely488

the BNNs, the uncertainty of BNN based object detector, and query step through the acquisition function.489

4.3.1 Bayesian Neural Networks for Uncertainty Quantification490

One of the crucial components of the proposed active learning framework is BNNs. Intuitively, BNNs are Bayesian491

reasoning applied to DNNs which allows for the uncertainty quantification in DNN predictions. We note that our492

previous works on BNNs (Lee et al., 2020b; Humt et al., 2020) are being extended to active learning framework for493

object detection. While we refer to Lee et al. (2020b); Humt et al. (2020) for in-depth treatment, our description below494

aims to provide the basic formulation within the context of its application to active learning.495

For this, consider a supervised learning set-up with input-output pairsD =
{
X,Y

}
=

{
(xi,yi)

}N

i=1
, where xi ∈R

D, yi ∈R
K .496

Similar to previous sections, we define a DNN as a parametrized function fθ : RD→ RK , where θ ∈ RP is a vectorized497

form of all DNN weights or parameters, e.g. all the weights of convolution kernel or the weights and biases of a multi-498

layer perceptron. In a standard DNN, we typically aim to minimize the loss function: minθ
1
|D|

∑
(x,y)∈DL( fθ(x),y)+499

δ
2θ

Tθ where δ is an L2-regularizer, and B ⊂ D denote mini-batches. The resulting solution is a single hypothesis500

of a local maximum-a-posteriori (MAP) solution θ̂. To the contrary, BNNs explicitly express DNNs as probability501

distributions over DNN model parameters θ given the data p(θ|x,y), which is also known as the posterior distribution502

over the DNN model parameters:503

p(θ|x,y) =
p(y|x,θ)p(θ)

p(y|θ)
=

p(y|x,θ)p(θ)∫
p(y|x,θ)p(θ)dθ

. (12)

As a direct application of Bayes theorem, where a prior distribution over the model parameters p(θ) is specified,504

along with the likelihood p(y|x,θ) and the model evidence p(y|θ). Once the posterior distribution over the weights is505

obtained, the prediction of an output for a new input datum x∗ can be obtained by marginalizing the likelihood p(y|x,θ)506

with the posterior distribution. This step is called Bayesian Model Averaging, which can be used for active learning:507

p(y∗|x∗,D) =
∫

p(y∗|x∗,θ)p(θ|D)dθ. (13)

This indicates that the uncertainty estimates for a DNN prediction y∗ can be obtained through combining different508

hypotheses of model parameters, resulting in the predictive distribution p(y∗|x∗,D). Another implication of the509

formulation is the reliance on posterior probabilities p(θ|D) for uncertainty quantification.510

Unfortunately, estimating the weight posterior is a challenging task, and has been one of the central topic in research of511

BNNs (Gawlikowski et al., 2021). While the reasons are multitude, one of the primary reasons is the lack of a closed512

form solution due to the nonlinearities of DNNs that prohibit the validity of conjugate priors (Bishop, 2006). As a result,513



the use of approximation techniques of Bayesian inference such as variational inference or Monte-Chain Monte-Carlo514

(MCMC) sampling have been researched with a focus on dealing with the high dimensionality of DNN weight space515

and the scalability with respect to large amounts of data that DNNs typically assume. For the computations of the516

weight posterior, the proposed pipeline relies on the approaches of Lee et al. (2020b); Humt et al. (2020). These works517

are well suited for active learning in robotics, due to the demonstrated scalability to large architectures and dataset518

(Lee et al., 2020b). The extension of Lee et al. (2020b) in the automation of the hyperparameter tuning via Bayesian519

Optimization (Humt et al., 2020) can also be exploited in every query steps of active learning.520

4.3.2 Uncertainty Estimation for Object Detectors521

Having obtained the posterior probabilities of BNNs, the uncertainty estimates can now be computed for the underlying522

object detector. A key challenge is the adaption of BNNs for the object detector that may rely on several post-processing523

steps (Harakeh et al., 2020). As we use an anchor based detectors such as Retinanet (Lin et al., 2017) (as these types of524

object detectors can provide real-time performance on the Jetson TX2 as oppose to regional-proposal approaches or525

end-to-end pipelines), one needs to deal with miss-correspondence between the anchor predictions and final outputs,526

and (ii) hard cut-off behavior in non-maximum suppression (NMS) step (Lin et al., 2017).527

For these, the BayesOD framework (Harakeh et al., 2020) is employed, which infers the output distributions from the528

BNNs predictive distributions. In BayesOD, the samples of the BNNs predictive distributions are clustered in anchor529

level in order to derive the uncertainty estimates of the object detection. For this, one can assume that the clusters530

contains M number of anchors. We further assume the highest classification score as the center of this cluster (indexed531

by 1) and other anchors of the cluster are considered as measurements to provide information for the center (denoted as ĉi532

and b̂i). Then, the uncertainty estimates for classification p[ĉ1,...,ĉM ](c|x∗,Dtrain) and regression p[b̂1,...,b̂M ](b|x
∗,Dtrain)533

are:534

p[ĉ1,...,ĉM ](c|x∗,Dtrain) ∝ pĉ1 (c|x∗,Dtrain)
m∏

i=2

p(ĉi|c,x∗,Dtrain),

p[b̂1,...,b̂M ](b|x
∗,Dtrain) ∝ pb̂1

(b|x∗,Dtrain)
m∏

i=2

p(b̂i|b,x∗,Dtrain),

(14)

where pĉ1 (c|x∗,Dtrain) indicates the per-anchor predictive distribution of the cluster center and
∏m

i=2 p(b̂i|b,x∗,Dtrain)535

is the likelihood term. We refer to more details on the BayesOD in Harakeh et al. (2020).536

4.3.3 Acquisition Functions for Query Generation537

Another crucial component of active learning is the acquisition function, which relies on the uncertainty estimates from538

the BNN based object detector, in order to rank the images in the pool set. In other words, the defined acquisition539

function uses the uncertainty estimates to evaluate how informative each images in the pool set are. In case of an object540

detector, as there could be several object instance in an image, the information scores for each detected instances within541

an image are aggregated into one final score. Once such scores are obtained for all the images in the pool set, the top K542

images can be queried for the human annotation, which is then stacked into the training set. The model is then retrained543

with the new and larger training set, and the process repeats. As the acquisition function is a selection mechanism of544

active learning, its design can influence the performance of the learning framework.545

Within a BNN based object detector, the uncertainty estimates can be obtained for both the classification and the546

bounding box regression (Feng et al., 2022a). Hence, one of the design choices are on how to effectively combine the547

two different types of uncertainty measures - one on semantic uncertainty, and the other on spatial uncertainty (Feng548

et al., 2022a). Defining the combination function comb(·) as a weighted sum or max operation (Choi et al., 2021), and549

also the aggregation function agg(·) as a sum or average operation (Roy et al., 2018), it is chosen;:550

A(xk) = agg j∈Nk

(
comb(U j,cls,U j,reg)

)
, (15)
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Figure 10: A summary statistics. Root Mean Squared Error (RMSE) and run-time are reported for the baseline methods
and the proposed extension to the ARToolKitPlus. Lower the better for both the measures.

whereU j,cls andU j,reg are the information score of the j-th detection instance on an image, for the classification and the551

regression tasks respectively. A mechanism of this acquisition function is to first combine both the semantic and spatial552

uncertainty by either a weighted sum or maximum operation, and then sum or maximize over the combined score per553

detection instances. What motivates the given choice is the handling of the problem itself. The combination operation554

are to deal with having to combine the two different tasks per instance of an object detector, and the aggregation555

operation are to handle the multiple instances in an single image (Feng et al., 2022b). What remains is then the design556

of the information scores for both classification and regression tasks: U j,cls andU j,reg respectively. Then,557

U j,cls =

|C|∑
i=1

H
(
p(ci|x

∗,Dtrain)
)

and U j,reg =H
(
p(b|x∗,Dtrain)

)
, (16)

which rely on the Shannon Entropy measureH(·) - an indicator of how uncertain a distribution is. In case of classification,558

we assume categorical distributions over the classes ci, while we assume multivariate Gaussian distributions for the559

bounding box regression b. Importantly, what motivates for optimizing the given entropy measure is its equivalence to560

maximizing the information gain of a model (MacKay, 1992).561

5 Experiments and Evaluations562

In this work, a VR based telepresence system is proposed, which is to provide real-time 3D displays of the robots’563

workspace and also a haptic guidance to a human operator. The main contribution is the realization of such a system564

using robotic perception and active learning methods. This section therefore evaluates the proposed pipelines by565

examining how the created VR can match the real remote scenes, and if the identified challenges (in Figure 4) are566

addressed by the proposed pipelines. Then, the results from the field experiments are presented, in order to characterize567

the effectiveness of the overall system in advancing aerial manipulation for real world applications.568

5.1 Ablation Studies and Evaluations569

Several ablation studies are provided for the insights behind the presented algorithms. In particular, empirical evaluations570

of the devised algorithms, when facing the outlined challenges in Figure 4, are the aim.571

5.1.1 Visual Object Pose Estimation for Known Objects572

To recap, the marker tracking algorithms can be exploited for creating the VR with the known sets of objects. Here,573

the identified challenges are the shadows, the loss-of-sight or the partial views of the markers, which can cause the574

mismatch between the real remote scene and the VR. To address these challenges, the SLAM estimates of commodity575

visual-inertial sensors have been integrated, and here, validation of the devised algorithm is performed. To this end, the576

accuracy, the run-time and the robustness of the proposed algorithm are examined.577
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Figure 11: Qualitative results of the proposed marker tracking algorithm. (a) The existing marker tracking algorithms
under the loss-of-sight of the markers are evaluated. (b) The proposed extension of the marker tracking algorithm
with SLAM estimates is evaluated under the same scenario of the loss-of-sight. (c) The estimated positions from the
baselines and the proposed algorithm are compared. These results indicate that the proposed algorithm can cope with
the loss-of-sight of the markers and the time-delays, thereby justifying the design choices of the algorithm. Three
markers of size 2.5cm, a marker of 6.25cm and a marker of 10cm are used in this evaluation scenario.

Experiment Setup For this, the ground truth of the relative poses between the objects and the camera are measured578

using a Vicon tracking system. Then, the algorithms are evaluated on the sequences that simulates the peg-in-hole579

insertion tasks. The Vicon measurements represent the ground truth of the object poses for the indoor environments.580

To evaluate the effectiveness of the proposed algorithm against the identified challenges, the observed failure modes581

of the existing marker tracking systems are manually created. The baselines are the Apriltag3 (Wang and Olson,582

2016) (denoted as AP3) and the ARToolKitPlus (Wagner and Schmalstieg, 2007) (denoted as ART), which represent a583

plug-in-and-play alternatives. Particularly, as the proposed algorithm extends the ARToolKitPlus with SLAM estimates,584

this choice of the baseline enables a direct comparison. Five repetitions of these experiments are conducted in total.585

Results The quantitative and qualitative results are reported in Figures 10 and 11 respectively. In Figure 11, the586

estimated trajectories of the relative poses are compared with the Vicon measurements. As depicted, the proposed587

algorithm is robust against the lost-of-sight problems of object localization with a hand-eye camera. On the other hand,588

the alternatives namely AP3 and ART produce jumps as no markers are detected (between t=2 to t=8 as an example)589

when the camera loses the sight of the markers. This is due to the design of the algorithm where the SLAM estimates of590

the camera pose are integrated out, whenever the markers are not detected. Furthermore, ART suffers from a time delay,591

while AP3 has both the time delay, and the slow run-time. Moreover, the proposed algorithm can compensate the time592

delay, resulting in slightly more accurate estimates. The corresponding Root Mean Squared Errors (RMSE) is reported593

in Figure 10 along with the run-time. We observe that AP3 is slow when using high-resolution images, and this results594

in more errors as the trajectories are compared. In the approach, these trajectories are relevant for creating the VR with595

object localization methods. In this experiment, the proposed method yields the least errors and fastest run-time. We596

attribute the former to the robustness against the loss-of-sight of the markers, while the later is due to the integration of597

the inertial sensors. These analysis of the accuracy, the robustness and the run-time validates the proposed algorithm.598

Moreover, the success of the algorithm is visually demonstrated in the video attachment, in addition to Figure 11 (a-b).599
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Figure 12: Statistical analysis of the baselines and the proposed method per scenario. Lower the better for the RMSE
and run-time, and higher the better for the number of valid point cloud matches. These results indicate that the proposed
algorithm can cope with the identified challenges, thereby justifying the design choices of the algorithm.

5.1.2 LiDAR Object Pose Estimation for Objects of Unknown Geometry600

For the external scenes without the availability of a precise geometry, a LiDAR based object pose estimation pipeline601

has been proposed. The features of the pipeline are to deal with the challenges that are outlined in Figure 4. Thus, the602

aim now is to validate the components of the pipeline using the collected visual-inertial-LiDAR data-sets.603

Experiment Setup For this, the point clouds and the visual data are collected in various situations. Within the controlled604

lab environment the following scenarios are created: a ”nominal” scenario where the sensors ideally are pointed to an605

object statically, a ”shaking” scenario in which imperfect hovering of the robot creates sensor movements, a ”rotation”606

scenario where the robot rotates around the object, and a ”occlusion” scenario in which the robot arm and other objects607

moves to occlude the target object. These scenarios represent the identified challenges during a manipulation task (e.g.608

see Figure 4). To further evaluate the proposed pipeline in a realistic use-case, additional scenarios are considered609

in outdoor environments. These are: a ”night” scenario where the sensor data were collected during a manipulation610

task in the night, a ”tower 1” and ”tower 2” scenarios where the data is similarly acquired at two different locations.611

Importantly, the given extensive evaluations over varying conditions are motivated by the considered industrial scenarios612

where this paper aims to build a working system that goes beyond the proof-of-concept prototypes.613

For the baselines, the off-the-shelf methods such as point-to-point ICP (Besl and McKay, 1992; Babin et al., 2019),614

point-to-plane ICP (Park et al., 2017; Rusinkiewicz and Levoy, 2001) and the combination with the global registration615

methods (Zhou et al., 2016) are compared. The pairwise registration is denoted pICP (with coarse-to-fine matching616
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Figure 13: Qualitative results for the LiDAR based object pose estimators. (a) Evaluation of a vanilla object pose
estimator. (b) Evaluation of the proposed object pose estimator. (c) Plots of the estimated positions from a baseline
(pFOFH) and our approach (all) against the ground truth (gt) measurements. The qualitative results over occlusion and
rotation scenarios justify the design choices of the proposed method. The monotonic gray indicates the source point
cloud while the colored point cloud refers to the current scan. All point clouds are cropped for the visualization purpose.

strategy) whereas pFPFH denotes the global registration method. These are to examine the vanilla object pose estimators617

without specific measures to address the identified challenges. For brevity, only the best performing ones between the618

point-to-point and the point-to-plane methods are reported. Furthermore, we compare our method without different619

components to evaluate the contributions of each modules to the final performance. These are the pure odometry620

(odom), odometry with posegraph backend (backend), combination of odometry and local object poses (comb) and621

the proposed object pose estimator (all). For better insights, we evaluate these methods with masked out dynamic part622

of the scene while existing works motivate the importance of masking out the dynamic parts of the scene in SLAM623

context. With these baselines, closely following Babin et al. (2019); Park et al. (2017), the RMSE of the translation624

(RMSE t) and the rotation (RMSE R), the number of valid matches, and the run-time of each algorithms are measured.625

Results The quantitative and qualitative results are reported in Figures 12 and 13 respectively. In these experiments, the626

proposed object pose estimator yielded the least RMSE for both translation and rotation. Odometry with and without627

the back-end suffers from drift over time, while the vanilla methods such as pICP and pFPFH performs poorly when628

the view point changes are significant. The later is qualitatively shown in Figure 13, while the number of matches in629

Figure 12 also indicate their relatively poor registration between the target and the source point clouds. supports the630

claims of this work on the identified challenges. Moreover, as shown in Figure 12, it can be seen that all the components631

introduced namely pose-graph, local object poses and odometry, contributes to the accuracy of the estimates. With632

respect to the run-time, the odometry based methods are real-time capable, which we attribute to the significant overlap633

between two consecutive LiDAR scans that helps ICP algorithm to converge faster. On the other hand, pFPFH is634

the slowest in terms of run-time because it relies on several components such as feature extraction, correspondence635

matching, and refinement through ICP. All these results are consistently observed across seven scenarios with varying636

degrees of severity. hese experiments justify and validate the proposed methods and its design choices. Importantly, the637

key take-away is the effectiveness of combining object pose estimators with SLAM methods for floating-base system,638

which can handle the failure cases of conventional object pose estimators via introspection.639
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Figure 14: Results of active learning (AL) compared to the training set-up that uses 100% of all data over different
scenes. AL is used for the acquisition sequence of 5%, 10%, 25%, 50% and 75% of all data. Higher the better for mAP.
The results show that one can save upto 75% of data, in order to reach more than 95% of the total performance.

5.1.3 Bayesian Active Learning for Field Robotics640

Lastly, the proposed Bayesian active learning framework is evaluated within the context of field robotics. To recap, the641

main challenge is to deal with the large variations in the environment, which may hurt the performance of an object642

detector that has never seen such data in the training set. The natural question to evaluate here is the amount of labeling643

efforts that the active learning framework can save. As an application of the Bayesian active learning paradigm for field644

robotics, we focus on the impact of the system performance rather than the algorithmic advances.645

Experiment Setup To this end, the visual data in various locations and conditions have been gathered. These are not646

only the (i) laboratory environments, but also (ii) the outdoor environments in different locations. These environments647

are denoted as scenes 1-6 or S1-6, which are visualized in Figure 8. To evaluate the system performance, the manual648

annotations within these images have been created. The objects are cage, pipe and robotic arm. In total of about 20k649

images, we randomly label 5k images. The splits are performed at the ratio of 7.5:2:0.5 respectively to a pool, test650

and validation set. This is to simulate the real world scenario where the training data is initially limited (e.g. the data651

collected in summer, and having to test in the winter). We add uniform sampling from pool data (denoted as random)652

and MC-dropout (Gal and Ghahramani, 2016) as the baseline. While deep ensembles (Lakshminarayanan et al., 2017)653

are another popular baseline, the suitability to active learning is limited due to the excessive training time. Here, the654

sampling strategy chosen from Feng et al. (2022b), and therefore, the only difference between the baseline methods are655

the uncertainty estimates.656

Implementation details are as follows. the Pytorch implementations are used, namely the Retinanet implementation657

from Detectron2 (Lin et al., 2017) and the official implementation of BayesOD (Harakeh et al., 2020) with slight658

modifications for better performance. These modifications include the use of Bayesian inference only for the bounding659

box regression, instead of also applying to the classification head. The learning rate has also been tuned to obtain better660

convergence. The monte-carlo samples of 30 are used for computing the uncertainty estimates, and the rank of 100661

and 50 BO iterations are used. The latter is applicable to only the Laplace Approximation, which was applied to all662

the layers in the Retinanet. On the other hand, only the existing dropout layers within Retinanet have been used for663

MC-dropout. Such implementations are motivated by the promise of each methods. MC-dropout assumes dropout layer,664

and have been popular in practice as one could make use of existing dropout layers, while Laplace Approximation can665

directly render every layer as Bayesian, given an already trained parameters.666

Results Firstly, it is evaluated, how much data annotations one can save by comparing the training set-ups that uses667

100% of the annotated training data against the acquisition sequences of 5%, 10%, 25% 50% and 75% of the total data.668

Repeated sequentially over each scenes, the performance of the resulting object detector with mAP as a metric, are669

measured. The test set contains samples from each scenes and therefore, this repetition shows how the performance670

gap due to scene variations are being closed. The results are depicted in Figure 14. We observe that the gap between671

the active learner (AL) and the Retinanet with 100% of annotated data (denoted 100%), reduces as we increase the672



Figure 15: Comparisons of the proposed pipeline (INF) with other baselines such as random sampling (random) and
MC-dropout (MCD) over six different scenes. The mean mAP during the active learning process is displayed along
with the labels of the curve. The standard deviation is shown in shade. Higher the mean mAP, the better.

acquisition size from 5% to 75% of the total data. In particular, in these scenarios, AL with only 25% of the total673

annotated data can reach more than 95% of the 100%s mAP values, which results in saving upto 75% of the annotated674

data. This results are due to the redundancy in the data. We believe this result can motivate AL for field robotic675

applications, where the data preparation can be inherently more expensive than the laboratory settings.676

Next, the design choices of the proposed active learning pipeline are examined by comparing the method against the677

selected baselines. The results are depicted in Figure 15. Here, the transfers between the scenes are assumed. As678

the robots may operate at different environments, we attempt to evaluate by starting the active learning with a neural679

network in an indoor scene, and acquiring the data over different outdoor scenes. For all the results, we acquire 5% of680

the data per iterations, and repeat 10 iterations to reach the 50% of the all data. In total, three random seeds are used to681

compute the standard deviation (also in Figure 14) for the statistical significance. Examining the mean mAP over all682

the iterations, the data suggests that the performance increases over using MC-dropout. The results are consistently683

observed in several settings with different magnitude of the improvements. We attribute the reason to post-hoc nature of684

our Laplace Approximation based approach. To elaborate, the methods that are based on variational inference, such as685

MC-dropout, might be at disadvantage in active learning settings, where each loop involves training a DNN. Naturally,686

as variational inference rather learns uncertainty during training, finding hyperparameters that deliver good performance687

over many loops is difficult. On the other hand, post-hoc methods such as ours, the uncertainty estimates are obtained688

after training the DNN. This decoupling enables us to extensively search for hyperparameters, which is feasible within689

each active learning loop. Therefore, we interpret these results to show the validity of the design choices of the proposed690

active learning pipeline. In summary, the key take ways are the redundancy of the data when training a neural network691

in dynamic and unstructured environments, and an active learning framework with well-calibrated uncertainty estimates692

can produce a practical and positive impact by guiding the data preparation steps towards efficiency.693

5.2 Field Testing and User Validation694

While the previous focus was on the validation of the methods for VR creation, the flight experiments with SAM is695

now presented. The main purpose is to evaluate the benefits of the proposed system in advancing aerial manipulation696

capabilities. To this end, we examine two industrial scenarios in outdoor environments. Then, the robustness of the697

proposed system is examined by varying environments and users.698

Experiment Setup The design of our experiment setup is to account for real world applications of aerial manipulators.699



(a) (b) (c)

Figure 16: Qualitative results for peg-in-hole task with the aerial manipulator. (a) Approach phase, (b) precise
positioning and (c) successful insertion. Top: overview of the robot’s remote workspace, where SAM is suspended by
a crane. Middle: the operator view with live video streams, and the created VR, which displays four different view
points simultaneously, and provides haptic guidance in both position and orientation. Bottom: close view on the robot’s
workspace. With the proposed VR based system, the operator is able to achieve precise peg-in-hole task with the robot
in outdoor environments. The markers of size 2.5cm (x3), 6.25cm (x1) and 10cm (x1) are used in this scenario.

As a first step, the description of two industrial scenarios with SAM are provided, which involve the following aerial700

manipulation tasks in dynamic and unstructured environments:701

• Industrial task 1: Peg-in-hole Insertion As one of the benchmarks for manipulation, this task involves702

inserting an object (attached to the end-effector) into a hole. An example is depicted in Figure 16. Industrial703

tasks such as valve opening and closing in high altitude areas, or in-air assembly of structures require the704

execution of this task. In this work, the peg-in-hole task with an error margin of less than 2.5mm is considered.705

This is a challenging task for aerial manipulation, since the robotic arm is on a floating base.706

• Industrial task 2: Pick-and-place and Force Exertion Two other benchmarks for manipulation are combined,707

which are pick-and-place and force exertion, in the second task. In particular, our scenario, designed under the708

scope of the EU project AEROARMS, involves deployment and retrieval of an inspection robotic crawler. An709

example is depicted in Figure 17. It requires grasping of a cage (as a carrier of the crawler robot), placing the710

cage on a pipe, and pressing the cage onto the pipe while the crawler moves in and out of it for pipe inspection.711

Note that, for the execution of these two tasks, the operator is located far away from the robot without direct visual712

contact to the workspace of the robot. More concretely, as shown in Figures 16 and 17, the robot operates in an outdoor713

environment, while its operator remotely commands the robotic arm from a ground station. This simulates a real world714

application scenario of a teleoperated aerial robot.715

To evaluate the feasibility and benefits of the proposed telepresence system in advancing aerial manipulation capabilities716

of SAM, four sets of experiments are considered:717

• Set 1: Repetitions of Peg-in-hole Insertion Several repetitions of the peg-in-hole insertion task are performed718
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Figure 17: Qualitative results for deployment of robotic crawler within an industrial inspection and maintenance
scenario. (a-c) The carrier brings the robot from the ground to the remote location. (d) The robot picks the cage that
carries the inspection robotic crawler. (e) The robot places the cage on a mock up of an industrial pipe. (f) The robot
exerts force on the cage, so that the crawler can roll out of the cage without falling. The operator can use the VR
(bottom), which contains 3D information as opposed to 2D camera images (middle). Live video stream is also subject
to over and under exposure when under a shadow on a bright day. With the proposed VR based system, the robot is able
to execute advanced aerial manipulation tasks for the considered real world application. Four markers of size 5cm are
used for the cage hosting the mobile robot. The first experiment used a marker of 25cm on the pipe with its CAD model.
Later these primitives were replaced by the proposed LiDAR based pose estimation algorithm.

(as shown in Figure 16). Here, we vary the conditions by executing the manipulation tasks with three modes,719

namely (a) VR and haptic guidance mode (denoted VR+HG), (b) VR mode (denoted by VR+Tele), and (c)720

only with live camera streams (denoted CAM). Eight repetitions are performed for each mode, and the total721

time for a successful execution is chosen as an evaluation metric.722

• Set 2: Repetitions of Pick-and-place Several repetitions of the pick-and-place task are performed (similar to723

the environment in Figure 16 without the crane and the markers on the pipe). Here, we also consider three724

modes, namely (a) VR and haptic guidance mode (denoted by VR+HG), (b) VR mode (denoted by VR+Tele),725

and (c) only with live camera streams (denoted CAM). Six repetitions are performed for each mode, with the726

total time for a successful execution as an evaluation metric.727

• Set 3: User Validation In a laboratory setting, a user validation study is conducted with three subjects. The728

variations of the users are to demonstrate that the considered manipulation tasks can be performed by different729

users. The considered tasks are force exertion onto a pipe for three seconds (denoted by validation task 1), and730

also placing a cage on a pipe with and without moving base (denoted as validation tasks 2 and 3 respectively).731

With VR and haptic guidance mode, the total time for a successful execution is chosen as an evaluation metric.732

• Set 4. Operations at Night with VR For both the industrial tasks, we perform experiments at night without733

sunlight. With flash light from an external source, the feasibility and benefits of the proposed system are734

demonstrated. At night in outdoor environments, this functionality of being able to perform manipulation735

tasks is important to increase the range of operation hours including emergency services for several industrial736

use-cases of aerial manipulators.737

With these sets of experiments, the aim is to examine the following aspects. For Set 1, the VR+HG mode are examined738
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Figure 18: Performance of SAM in terms of execution time. Left: the results of the comparison study is depicted, where
we compare pure VR based telepresence (VR+Tele), VR with haptic guidance (VR+HG) and a solution using only
a camera (CAM). The statistics are computed over 24 and 16 successful executions in outdoor environments for the
peg-in-hole and pick-and-place tasks, respectively. Right: the results of user validation is shown, where three users
performed three pre-designed tasks, namely force exertion and placing the cage on the pipe. The statistics are computed
over 27 successful executions in an indoor environment. Lower the execution time, better the performance.

for achieving manipulation tasks with a high precision. The proposed marker tracking algorithm is utilized here. With739

Set 2, the benefits of VR in providing depth information to the operator with haptic guidance only for the orientation,740

are examined. The LiDAR based object pose estimator is utilized here for pipe localization, while the pose of the cage741

is monitored with the marker tracking method. Set 3 aims for a user validation, while with Set 4, we attempt to push the742

limits of the proposed system. Again, the use-case of the developed system is to augment the live video streams by743

providing 3D visual feedback and haptic guidance. The use of VR interface only, is not the intended use-case of the744

system. Besides, in industrial scenarios of pipe inspection and maintenance, the pipes are often very long and their745

inspection points are unknown a-priori. Therefore, the proposed Lidar based pose estimation method is used to localize746

the pipe. This use-case justifies the assumption that the object is semantically known, but no geometry is available.747

Results The results of Sets 1, 2 and 3 are depicted in Figure 18. First and foremost, the comparison study of the748

peg-in-hole insertion tasks with 24 successful executions shows that VR+HG requires the least execution time, while749

VR+Tele and CAM took similar mean execution times. Note that the executions with CAM used an automated750

initialization of the end-effector orientation, which was to make the task execution successful. The superiority of751

VR+HG is expected as the human operator is assisted by the haptic guidance system. Similarly, the comparison study752

of the pick-and-place task shows similar trend, where the statistics are computed using 18 successful executions in an753

outdoor environment. As a third point, the user validation demonstrates that all the tasks can be executed by different754

users with different performance characteristics. Results from the scenario with a moving base, namely validation task 3,755

required more time for execution, which indicates that the tasks are more challenging with a moving base. Overall, these756

studies indicate the performance benefits of the system including feasibility and robustness of the proposed system.757

The qualitative results of Set 4 are depicted in Figure 19. The figures show the live-stream view from the eye-in-hand758

camera, and also from the VR. Lights are provided from an external source and the camera exposures are tuned to759

achieve balance between noise, brightness and stability of streaming. Poses of the end-effector are plotted to illustrate760

task executions. These plots are also similar for the peg-in-hole and the pick-and-place tasks from previous sets of761

experiments. Notably in (b) of Figure 19, peg-in-hole insertion is best characterized in z-axis between 50s and 60s. In762

(d) of Figure 19, the placements are observed in z-axis between 28s and 35s, while the effects of haptic guidance is763

shown between 8s and 15s. These experiments show that the proposed concept can also work under the unfavorable764

lighting conditions, thereby extending the operation range of the aerial manipulators. Additional plots for the interaction765

wrenches during the manipulation task executions can be found in the appendix.766

5.3 Discussion767

The results obtained with ablation studies and field experiments suggest successful development and deployment768

of the proposed VR based telepresence system for advancing aerial manipulation. For providing both the sense of769



touch and the sense of vision to the human operator, the proposed system featured not only a haptic device, but also770

a VR interface that provides a real-time 3D display of the robot’s workspace as well as a haptic guidance. In the771

experiments, it is shown that the system neither requires any external sensors nor pre-generated maps, copes with the772

challenges of a floating-base manipulation systems, i.e., induced motions of attached sensors due to coupling between773

the manipulator and the base, fuses multiple sensors whenever appropriate, and has been exhaustively evaluated outside774

laboratory settings. These features of the proposed VR system are requirements for several industrial applications of775

aerial manipulation technologies. To the best of our knowledge, using on-board robotic perception only, this work is the776

first of its kind to demonstrate the feasibility of such VR based concept in dynamic and unstructured environments,777

which includes several outdoor locations, days and nights, as well as different seasons.778

To build such a system, several methodological insights are provided, from the identification of practical challenges to779

their working solutions, both of which are validated using the real data from robot’s sensors. In particular, the object780

pose estimators are subject to non-holistic view of the objects, which includes loss-of-sight, partial view and occlusions781

as examples. For this, we have combined the object pose estimators with ego-motion tracking of the environments782

using real-time SLAM estimates. In the custom data-sets that emulate these challenges, the results show that the783

identified problems can be coped with, which has resulted in the pipelines that meets the requirements of VR creation784

in accuracy, run-time and robustness. Moreover, when one aims for a long-term deployment of a learning system in785

outdoor environments, we find that data collection and preparation become a practical problem. To this end, a pool786

based active learning pipeline has been evaluated, which used a previous work on uncertainty quantification (Lee et al.,787

2020b). In a field robotics settings, the results show that only 25% of total data is enough to reach 95% of a solution788

with all data points and other baseline approaches can be outperformed, overall improving the sampling-inefficiency of789

DNNs.790

Overall, the experiments of this work illustrate several benefits of the proposed VR based telepresence system for791

advancing aerial manipulation capabilities in real world applications. Intuitively, a virtual environment allows the human792

operator to change its sight-of-view, zoom in and out, and provides a haptic guidance. In the presented comparison793

study (with 40 task executions in outdoor environments; a single user), the results show significant reduction in the794

total execution time when using the proposed system with haptic guidance. The user validation study (three users with795

28 total task executions) suggests that three different users can execute the tasks successfully with varying degrees796

of performance. Moreover, with the demonstration of the operations at night, the range of operation hours has been797

extended for the current aerial manipulation systems. All these results are obtained within two industrial scenarios that798

requires advanced aerial manipulation capabilities, namely pick-and-place, force application and peg-in-hole, which799

goes beyond a contact based inspection. Therefore, these results demonstrate the viability of the proposed VR based800

telepresence concept for industrial applications in the real world.801

5.4 Lessons Learned802

During the flight campaigns with SAM, we learned a few lessons, which we would like to share with the community.803

These lessons learned are centered around the proposed VR based telepresence system. Note that the focus herein is on804

the use-cases of the proposed system, the design choices, and the limitations.805

On Use-cases of VR with Haptic Guidance for Aerial Manipulation The necessity of VR with haptic guidance806

for SAM (or robots with similar morphology) largely depends on the choice of the haptic device and difficulty of the807

manipulation tasks. In the initial flight experiments using only the 2-DoF Space Joystick Rjo in Lee et al. (2020a),808

the operator could not easily complete the considered manipulation tasks by only relying on live camera streams. On809

the other hand, at the later stages of development, it was much easier for the operator to complete the tasks, when810

we augmented the system with the 6-DOF haptic device Lambda. With the 6-DoF device Lambda and a whole-body811

controller of the suspended platform to handle occlusions and enhance the camera’s field of view (e.g., in Coelho et al.812

(2021)), the operators could also complete the tasks using only live video streams, despite slower execution time.813

However, while the necessity of VR and haptic guidance may depend on the system and the complexity of tasks, we find814

that the combination of VR, haptic guidance and live video stream resulted in the best performing system. Intuitively,815

the live video stream can provide situational awareness to the human operator, but suffers from over- and underexposure816
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Figure 19: Qualitative visualization of aerial manipulation performed during the night. (a, c) The camera view and the
VR. (b, d) The translation and the orientation of the robots’ end-effector. The corresponding pairs are (a,b) and (c,d).
These results suggest that the proposed system can extend the operational range of SAM, which further establishes its
viability for real world industrial applications. External views are depicted in Figure 20.

depending on the light conditions, camera jitters due to the movement of the platform under severe winds, lack of817

complete 3D information and inability to provide haptic guidance. The proposed VR system can complement the818

live video stream as it does not degrade with outdoor conditions, provides complete 3D information with an option819

to change the field of view, and supports haptic guidance. Another benefit is that VR enables seeing the ”full model”820

instead of the limited field of view of the camera at its current position, which includes configuration of the robotic arm.821

On Scene Graph Verses 3D Reconstruction. The VR creation from robot perception can either rely on scene graph or822

3D reconstruction techniques, where the choice of the approach largely depends on the validity of either static-base823

or floating-base assumptions. For example, a ground based mobile manipulators can first stop, and then perform824

manipulation. If the scene and objects are static, the relative motion between the sensors and the objects can be easily825

estimated, and the real-time capability from the perception algorithm is not required. In such a scenario, relying on the826

outputs of 3D sensors such as RGB-D or stereo would be the simplest option to implement. The robot can map the827

environments and the objects first to ensure a good field of view, e.g., avoiding occlusions, and then use the map to828

create a VR. On the other hand, if the relative motion between the sensors and the objects are consistently changing, e.g.,829

in a floating-base system like ours, we find that the scene graph approach can be better suited. The scene graph approach830

can rely on the object pose estimators that are fast and accurate, and the existing corner cases such as occlusions and831

loss-of-sight can be handled by using the proposed pipelines. Another consideration is bandwidth, i.e., the object832



Figure 20: Aerial manipulation at night. The views of the scene from an external camera are depicted. Left: SAM
performing peg-in-hole insertion task at night. Right: SAM placing a cage onto a metal pipe for the deployment of a
robotic crawler. SAM and the objects are highlighted in white.

poses require only 6D vectors while streaming point clouds is more expensive. The 6D pose representation can also be833

plugged in directly for the shared controllers with position based visual servoing (as in VR+HG).834

On Inherent Uncertainty in VR Creation. The proposed VR from robot perception cannot match the reality perfectly.835

In spite of this limitation, the considered task could be successfully completed even for several challenging outdoor836

environments. What attributed to the successful deployment of the proposed VR system was identifying when the837

VR was prone to failures (see Figure 5). The provided object pose estimators mitigates the identified failure cases by838

combining a standard object pose estimator with tracking of the environments. Here, the combination is facilitated by a839

module that identifies the failure cases, e.g., self-evaluation of point cloud processing methods, and missed detection of840

the markers while using visual-inertial systems. Moreover, in the proposed active learning pipeline, a more explicits841

representation of uncertainty is used to improve the data preparation steps for our DNN based component. Therefore,842

we find that reliability awareness of an algorithm is crucial for the robotic systems to achieve complex tasks in dynamic843

and unstructured environments. This is in line with Thrun et al. (2000).844

The current use of DNN’s uncertainty has been off-line, like pool based active learning, while its use on-board the robot845

could potentially offer several more benefits. In this regard, combining a real-time uncertainty estimation method (Lee846

et al., 2022) with a reliability-aware shared control architecture (Balachandran et al., 2020), could be an interesting847

direction of future research for reliable operations of complex systems in unstructured and dynamic environments.848

Lastly, a full-scale user study is envisioned, which is tailored on telepresence robots with aerial manipulation capabilities,849

in outdoor environments.850

6 Conclusion851

In this article, the real world applications of aerial manipulation in dynamic and unstructured environments are852

envisioned. A novel telepresence system has been proposed, which involves not only a haptic device for the sense of853

touch, but also a virtual reality (VR) for enhancing the sense of vision and further providing haptic guidance. To create854

such system, we identified challenges while using off-the-shelf methods, and devised several extensions to address855

them. These techniques include pose estimation pipelines for industrial objects of both known and unknown geometries,856

and also a deep active learning pipeline to efficiently collect and annotate training data. Empirically, we validated the857

proposed methods using data-sets collected from the robot’s sensors. With these, the influence of each component858

is examined with regard to mitigating the identified challenges, and we demonstrate the feasibility of creating the859

real-time and accurate VR. Methodologically, the key to success was an awareness of the algorithms’ own failures860

and uncertainty – also known as robotic introspection. One example is the combination of object pose estimation861

and SLAM, which is facilitated by a module that identified the failure cases. Another example is the active learning862

pipeline, where information gain is computed from an explicit representation of uncertainty. Most importantly, with the863
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DLR’s SAM platform, we conducted exhaustive experiments over extended durations in which we executed over 70864

complex aerial manipulation tasks to characterize the performance of the resulting system. The obtained experimental865

results show that the proposed system can reduce the execution time of both pick-and-place and peg-in-hole insertion866

tasks by approximately 1.8 times. The system is also demonstrated to operate at night without any direct sun light.867

Therefore, the effectiveness of the proposed telepresence system is demonstrated for future industrial applications of868

aerial manipulation technology.869

A Platform Design, Control, Teleoperation and IT Architectures870

In this section, we present the details about platform design and control, teleoperation system and IT architectures.871

A.1 Platform Control872

The control framework of SAM is depicted in Figure 21. It includes three separate controllers for three sets of actuators.873

Each of these blocks are to fulfill three different control tasks. The first controller is a propeller based oscillation874

damping and yaw motion control using IMU as a single main sensor. The main task herein is to damp out oscillations875

and control yaw motion. Oscillations occur due to the forces and moments caused by the robotic arm, which interacts876

with the environments. In outdoor settings, severe wind, motion of the carrier, and other external disturbances cause877

such oscillations. Damping out these undesired motions are to perform precise manipulation tasks with the robotic arm.878

Similarly, yaw motion controller is to change the orientation of the platform, which can position the manipulator in a879

convenient pose. To do so, the robot actuation is performed by eight propellers attached to each BLDC motors. The880

Electronic Speed Controllers (ESCs) regulates BLDC motors to rotate at specific speed. The used sensors are again881

a single IMU attached to a fixed point of the platform. The control signals are generated by the propeller controller,882

which is essentially a PID control algorithm. These control signals are mapped to PWM signals per each motors using883

the known configurations of motors and propellers. The frequency rate is 200Hz in a real-time computer. Secondly, a884

feedforward position controller is used to control three winches. These winches are connected to cables that suspend885

the platforms. Maxon motors are used without any feedback signals. The main feature is to control the length of the886

cables. With these, the pitch and the roll orientation of the platform can be adjusted with slower dynamics. Another887
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advantage is to move the platform up and down, without moving the carrier. Here, a simple feedforward position888

controller is integrated where desired relative cable length are converted into the motor movements. The frequency rate889

of the controller is again 200Hz in a real-time computer. Lastly, the robotic arm attached to the platform, is controlled890

using impedance based torque control algorithm. Torque control is the current golden standards for such robotic arms.891

The main task here is to perform grasping and manipulation tasks, using the torque control capabilities of the robot.892

This means that, in teleoperation mode, the robotic arm must follow the command from the human operator, while893

autonomously taking care of local redundancy of the joints. Joint encoders and torque sensors provide such feedback894

signals. The manipulator’s internal joint torque controller uses sampling rate of 3kHz.895

A.2 Teleoperation System896

The used bilateral teleoperation system is depicted in Figure 22. The main challenge is ensuring a stable bilateral897

teleoperation with force feedback. Instabilities can be caused by time delays, packet loss and jitters, which are898

characteristics of imperfect communication.899

In the paper, a two channel architecture with time-domain passivity approach is used, which works as follows. The900

human operator sends both position vm(t) (velocity analogously) from the haptic device device to the robot at time t.901

Due to the time-delay T, the robot receives them as vsd(t) = vm(t−T ) where Gh is a scaling factor that can be tuned902

to match both system dynamics. A local impedance controller then generate reference force fs(t) based on command903

position. If K terms represent controller gains and xs, vs ∈ R
2 are the respective feedback signals from the robot which904

enables position tracking, then the total commanded force can be written as:905

fs(t) = Kds(vsd(t)− vs(t))+Kps(xsd(t)− xs(t)). (17)

The computed force fm0(t) =Gs fs(t−T ) and measured forces at the end effector fme(t) =Ge fe(t−T ) are sent back to the906

haptic device resulting in the force feedback term fm(t) in Equation 18 where we additionally add a feedforward term907

with vm(t). The feedforward terms add transparency to the system and is known to be advantageous over a 2-channel908

architecture:909

fm(t) = fm0(t)+ fme(t)+Kdmvm(t). (18)

As the signals pass through communication channels, time-delays, jitter and packet losses are typically present and can910

cause instability of overall system. To cope with this issue, we use TDPA which constitutes two components namely911

Passivity Observer (PO) and Passivity Controller (PC). Briefly speaking, PO monitors the energy flow of a network912



whereas PC dissipates the energy introduced by the network. A key underlying idea is PC’s control law ensures passivity913

of the system by damping out the energy that is more than the stored amount. Since passivity is a sufficient condition914

for stability, TDPA ensures stability in trade-off to performance. Therefore, POPCs are placed for delayed signals at the915

robot side vm(t−T ), and haptic device side fs(t−T ). For brevity, let us denote the haptic device signals received and916

sent as um(k−D) and ym(k), and the robot input and output signals as us(k−D) and ys(k). Here, k is a discrete time and917

D is a discrete time delay. Then,918

um,c(k) =

 um(k−D) if Wm(k) > 0
um(k−D)− Wm(k)

Tsy2
m(k)

ym(k) else (19)

is the governed control law at haptic device. The same rationale applies at the robot side. In Equation 19, Ts is the919

sampling time and Wm(k) is the energy flow at haptic device, which is observed by the PO. In this way, PC modifies the920

delayed signal so that passivity condition Wm(k) ≥ 0 for all k is met:921

Wm(k) = Es,in(k−D)−Em,out(k)+Em,PC(k)
Es,in(k−D) = Es,in(k−D−1)+TsPs,in(k−D)
5Em,out(k) = Em,out(k−1)+TsPm,out(k).

(20)

PO essentially estimates Wm(k) for PCs control law. This is achieved by Equation 20 which uses the delayed energy922

Es,in(k−D) input from the robot side, the energy exiting at the haptic device side Em,out(k) and the dissipated energy923

by PC Em,PC(k). As the signals being exchanged are velocities v and forces f , the energy can be computed by inner924

products and sampling time. The power contributions should take into account the direction of energy flow. For example,925

Ps,in = 0 if Ps,in ≤ 0) and otherwise, Ps,in = fs(k)(−vm(n−D)). Taking into account time-delays, jitter and packet-loss,926

TDPA works on energy level and it ensures stability in teleoperation.927

Besides, the presented perception algorithms are executed in the robot, providing the information about the object poses.928

This information is feed into the ground station for creating VR. Another usage of perception is haptic guidance via929

virtual fixtures. Virtual fixtures (Bettini et al., 2004) are artificial walls that, by means of force feedback, helps the930

human operator for high performance task execution. Once the human operator is trying to move outside the artifical931

walls, certain computed forces are activated and sent to the haptic device through TDPA. This then limits the motion of932

the human operator by inserting certain forces and moments in the haptic device. Because these artificial walls are933

obtained from the perception system of the robot, the proposed telepresence system supports the haptic guidance. More934

details about virtual fixtures and other means of haptic guidances are presented by Thomas et al. (2012); Sagardia and935

Hulin (2018); Martins et al. (2018).936

A.3 IT Architectures937

In Figure 25, an overview of the used IT architecture is shown. Broadly, the set-up can be divided into the ground station938

components and the robot itself. To emulate real industrial scenarios of telepresence robots, the connection between939

the robot and the ground station is established through a WiFi router. The ground station constitutes of a laptop (Dell940

Latitude 5591), a haptic device (Force dimension Lambda or DLR SpaceJoystick Ryo), VR headset (Meta occulus)941

and a computer monitor. VR headset is optionally used. From the robot side, the Flight Control Computer (FCC)942

is employed, which is a product from the DLR aerial robotic spin-off Elektra UAS. FCC is a QNX based real-time943

system and contains a field-programmable gate array (FPGA) based safety switch. FCC is connected to winches,944

servo motors (Futaba S3152) and ESCs with custom written drivers. Oscillation damping controller, yaw controller945

and on-and-off of servos are executed within FCC. This modules read data from IMU (Xsens MTi 100-Series). In946

addition, FCC is also connected to the manual command transmitter via a radio link. The robot control unit (RCU)947

is based on Kontron KTH81 Flex board and uses real-time linux patch of open suse operating system. Ethernet for948

Control Automation Technology (EtherCAT) protocol is used to communication with the robotic arm. We note that949

EtherCAT is a standardized real-time bus that enables synchronous actuation of all the joint motors. RCU executes950
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Figure 23: Wrench forces and moments from the peg-in-hole experiments. The poses of the end-effector are alternatively
depicted in Figure 19. In Fz, between 50s and 60s, a drop in force is observed due to the successful peg-in-hole insertion.

TDPA, haptic guidance and impedance controller, while reading joint and torque information from the robotic arm.951

The last computing module is NVIDIA Jetson TX2 which contains all the sensor drivers, perception software stacks,952

and other GPU processing modules for running deep learning models. The sensors are all connected via Ethernet953

interface. For this, Cogswell carrier board is employed, which supports five Ethernet ports with Power of Ethernet (PoE)954

functionality. With this, Mako camera is easily powered. The carrier board also handles high data throughput from all955

these sensors. The robot is additionally equipped with safety switch for the robotic arm, power distribution system and956

battery. All the computers and WiFi routers are connected via an Ethernet switch (Netgear GS105). The communication957

between the ground station and the robot is through the point-to-point communication channel by opening an access958

point. Ubiquiti Bullet M5 is employed for the access point.959
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