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CLEVER: Stream-based Active Learning for Robust
Semantic Perception from Human Instructions

Jongseok Lee1,2, Timo Birr2, Rudolph Triebel1,2 and Tamim Asfour2

1. What is this object?

2. I am not confident.
Can you help me?

3. Yes. I can help you.
This is a T-shirt.

4. Ok. I learned that 
this object is a T-shirt.

5. What is this object?

6. I am confident that
this is a T-shirt.

Fig. 1: Imagine a robot encountering an unseen object, e.g., trained for apples but tested on a T-shirt. This problem of
distribution shifts induce learning algorithms to typically fail. With the proposed system, CLEVER, the robot queries a human
when the model is uncertain, and adapt itself to reduce that uncertainty. With human instructions, we demonstrate that such
query-and-adaptation capabilities can improve the robustness of DNN-based semantic perception against distribution shifts.

Abstract—We propose CLEVER, an active learning system
for robust semantic perception with Deep Neural Networks
(DNNs). For data arriving in streams, our system seeks human
support when encountering failures and adapts DNNs online based
on human instructions. In this way, CLEVER can eventually
accomplish the given semantic perception tasks. Our main
contribution is the design of a system that meets several desiderata
of realizing the aforementioned capabilities. The key enabler
herein is our Bayesian formulation that encodes domain knowledge
through priors. Empirically, we not only motivate CLEVER’s
design but further demonstrate its capabilities with a user
validation study as well as experiments on humanoid and
deformable objects. To our knowledge, we are the first to realize
stream-based active learning on a real robot, providing evidence
that the robustness of the DNN-based semantic perception can
be improved in practice. The project website can be accessed at
https://sites.google.com/view/thecleversystem.

Index Terms—Probability and Statistical Methods, Probabilistic
Inference, and Deep Learning Methods.

I. Introduction

W ITH deep neural networks (DNNs), the performance
of computer vision increased dramatically, achieving
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impressive results in the semantic perception tasks, such as
object classification, detection, and segmentation [1], [2]. How-
ever, such advancements in computer vision may not directly
translate to the robotic semantic perception. This is because,
in contrast to standard computer vision benchmarks, robots
are situated in the physical world, where unpredictable events
routinely occur and affect the robustness of the robot’s under-
standing of its own environments. An example is distributional
shift scenarios, where DNNs often make unexpected errors due
to test conditions being underrepresented in the training data
[3], [4]. Thus, to achieve robust semantic perception, several
probabilistic techniques have been investigated so far, so that
with uncertainty estimates, robots can reason when to trust the
predictions from DNNs and when not [5]–[9].

In this paper, we build upon such probabilistic techniques
and propose a system called CLEVER. The main idea behind
CLEVER is to not only obtain uncertainty estimates from
DNNs for probabilistic predictions, but to further reduce
the model’s uncertainty by asking support from humans and
adapting the model online. We achieve this query and adaptation
through so-called stream-based active learning (AL) – an
autonomous learning paradigm that involves continuously
selecting and labeling new data as they arrive in a stream,
allowing for adaptation of the model online to changes in data
distribution [10]. The outcome of CLEVER is an adaptable
DNN for semantic perception. For such capabilities, we equip
CLEVER with a continuously adaptable DNN, a Bayesian
learning algorithm, and an AL with temporal information. In
particular, our Bayesian algorithm learns informative prior
– a probability distribution over the model parameters that
incorporates domain knolwedge.

https://sites.google.com/view/thecleversystem
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TABLE I: The proposed system addresses several desiderata for demonstrating a stream-based AL with real robots.

Both uncertainty Ability to ask help Addresses catastrophic Update DNNs fast,
and generalization and select samples forgetting in DNNs e.g., less than 1 minute

Continual learning (i.e., [11], [12]) ✗ ✗ ✓ ✓
Existing stream-based AL (i.e., [13]–[15]) ✗ ✓ ✗ ✗

Interactive learning (i.e., [16]–[18]) ✗ ✗ ✗ ✓
Our system CLEVER ✓ ✓ ✓ ✓

CLEVER meets several desiderata of stream-based AL with
DNNs in practice. By learning priors, CLEVER is designed to
generalize and estimate well-calibrated uncertainty, even with
limited data availability. Such prediction capabilities are crucial
to request support from humans ("query") only when necessary.
CLEVER also addresses the issue of catastrophic forgetting,
i.e., the tendency of DNNs to abruptly forget about previously
learned tasks when continuously learning a new task [19].
Furthermore, CLEVER can learn a new task in one minute by
updating only the relevant parameters of DNNs online while
using only fewer but most informative and diverse training
data. In the experiments, we provide several ablation studies
and comparative assessments to motivate our design choices.
Finally, through a user validation study with 13 participants and
the deployment of CLEVER on the humanoid robot ARMAR-
6 [20], we demonstrate the enhanced robustness in semantic
perception with robots.

Contributions and major claims. To the best of our
knowledge, CLEVER is the first stream-based active learning
system with DNNs, shown in a physical system for robotic
perception tasks. Moreover, unlike existing works, we apply
stream-based active learning for securing robustness in semantic
perception tasks. To enable this novel capability, we identify
new system requirements and challenges (Section III), followed
by CLEVER’s design that meets these requirements within
a single framework (Section IV). CLEVER is evaluated in
response to these requirements. In particular, we show that
our Bayesian formulation with learning-based priors enhances
the practicality of CLEVER (Section V-A). Through a user
validation study that involves arbitrary objects (Section V-B),
and demonstrations on a humanoid robot for deformable
object perception (Section V-C), we create distributional
shift scenarios for evaluation. Even under these challenging
scenarios, we show that CLEVER can eventually accomplish
the given perception tasks, improving the robustness of the
DNN-based semantic perception in the real world.

II. RelatedWork

Our primary contribution is in the area of AL. For this, we
bring Bayesian methods for neural networks and interactions
with humans for robot learning. Thus, we locate our work
within these areas. Tab. I summarizes our main novelty.

Stream-based active learning. Active Learning (AL) is a
paradigm in which a learning algorithm identifies the most
useful unlabeled instances to learn from [10]. In the literature,
a pool of unlabeled instances is mostly assumed, resulting in
the so-called pool-based AL [21]–[23]. In contrast, we focus
on a setting in which data arrive in the stream, which is an
underexplored area of AL [10]. For robotic perception, the
early attempts for stream-based AL relied on classical learning

techniques such as Gaussian Processes [24], boosting [25]
and bagging [15]. Yet, the current de-facto standard in object
recognition relies on deep learning, urging for extensions of
stream-based AL to DNNs. Although current extensions [13],
[14] study the feasibility of stream-based AL using DNNs, the
discussions therein are centered on strategies for informative
data selection from the data stream.

Indeed, the central objective of AL is to reduce the cost
of labeling by querying and selecting the most informative
data [10]. In contrast, our focus is applying AL to enhance the
robustness of robotic perception by seeking human support and
updating DNNs online. A similar use case was also previously
mentioned by Triebel et al. [15], [24]. However, due to a
different focus, no real system was therein developed and
evaluations were limited to showing sample efficiency, i.e.,
accuracy increase per newly added data points. Instead, we
take a systems approach to the problem, thereby developing
CLEVER that meets various requirements reported in Tab. I.

Bayesian adaptation of neural networks. Learning seman-
tics from new streams of observation is a crucial capability
for our system. In robotics, such adaptations with DNN
have previously been investigated [11], [12]. Their findings
suggest that continual learning during deployment improves
the accuracy of the robot’s perception when compared to fixed,
pretrained DNNs. However, their applicability to stream-based
AL is limited, since no uncertainty estimates are available
for the query and selection step of AL. In contrast, our work
explores Bayesian methods that are well suited for stream-
based AL within a unified framework. For this, we extend our
previous work [26] to stream-based AL. We previously showed
how continual learning can be performed while obtaining well-
calibrated uncertainty estimates and generalization with DNNs
using few data samples [26]. We point out that such properties
are desired for developing a complete stream-based AL system
with real robots.

Robot learning from humans. In robotics, many works
on learning from demonstration focus on mapping the states
of robots to actions [27]. Yet, a recent work [7] shares a
similar spirit to ours, i.e., an algorithm is designed to ask for
human help using uncertainty estimates. However, their focus
is on robot planning using language models. An idea on the
correction of DNNs with language instructions from humans is
also being explored for policy learning [28]. Many researchers
have investigated incremental and interactive learning of new
objects using human instructions [16]–[18]. Among them, we
extend the works on a humanoid robot, ARMAR-III, where
the robot demonstrated interactive learning of unknown objects
from human instructions [18], [29]. These early attempts
showed that new rigid objects, such as books, can be learned
using hand-crafted visual features and a k-nearest-neighbor
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Fig. 2: Our prediction model for stream-based AL using DNNs. For semantic segmentation, our pipeline combines an unknown
object segmentation (Segment-Anything), foundational representations (DinoV2) and a classifier based on Bayesian Neural
Networks (BNNs) with multilayer perceptron. BNNs are represented as Gaussian distribution over the model parameters.

classifier. Our extensions provide (a) the use of DNNs, (b)
stream-based AL that reduces model uncertainty, and (c) fewer
prior assumptions about the object.

III. System Concept and Challenges

Whenever uncertain, our system seeks human support and
improves itself online based on human instructions. The
main problem encountered is distribution shifts that the robot
inevitably encounters during the deployment of a DNN-based
model, which ultimately produces misleading and overcon-
fident predictions. For example, a robot may face unknown
objects. Imagine a robot trained to classify apples but spots
bananas during deployment. Deformable objects present similar
challenges if the induced deformation in the object’s shape
is underrepresented in the training data. Given this problem,
the concept of our system is to ask for help from humans and
adapt the model online (see Fig. 1).

There are several challenges (see Tab. I). First, the system
should know when the model is uncertain. This requires a
probabilistic treatment that provides well-calibrated uncertainty
estimates under distribution shifts. Given a training data D
and a DNN, fθ, where all learnable parameters are stacked as
a vector θ, probabilistic treatments of the given problem infer
the posterior p(θ|D) and compute a predictive distribution
p(y∗|x∗,D) for new test datum (x∗,y∗) < D. Here, acquired
data cannot be of large amounts as we rely on manual human
instructions. Thus, we need DNNs that generalize with small
amount of data. Second, the system should adequately support
queries from the human and a decision-making framework that
enables effective instruction of the robot by a human. The
former minimizes the need for repeated human querying. We
select a subset of data D

∗
⊆D∗ that is the most informative to

learn. This reduces the training time. Third, the model should
continually learn and produce accurate predictions without
forgetting. Lastly, for demonstrations on a humanoid, DNNs
are to be trained fast, e.g., under one minute. To achieve this,
CLEVER trains only a subset of model parameters θ ⊆ θ and
selected data D

∗
.

IV. CLEVER – A Stream-based Active Learner

Having discussed the system concept and challenges, we
describe the design of CLEVER in more detail.

A. Underlying prediction model for continual adaptation

Our first component is a prediction model for semantic
perception (see Fig. 2). The overall model takes images as input
and outputs segmentation masks with their associated output
labels. For this, we rely on an unknown object segmentation
such as Segment-Anything [1] to generate the segmentation
masks. A tracker can be combined to achieve a faster runtime
of the model [1]. Then, we stack the obtained masks and
extract features using foundational models such as DinoV2 [2].
The obtained features are used as input of a classifier, which
generates output labels for each segmentation mask. In contrast
to existing models such as Mask-RCNN, our construction
allows open-set extraction of segmentation masks and state-of-
the-art visual features using pre-trained models. This means we
only need to train a classifier. In lieu of sophisticated pipelines
for semantic segmentation such as Mask-RCNN, we focus on
AL for classification tasks while also obtaining detection and
segmentation results.

Next, we present the design of our classifier for stream-based
AL. The classifier learns one multilayer perceptron (MLP) per
object class. We call each of these MLPs the heads of our
classifier. If we had an apple and a banana, our classifier would
have two heads, each responsible for only one object class. In
this way, a multi-class classification task is tackled using a
combination of binary classifiers with calibrated uncertainties.
The proposed construction brings two advantages. First, we
can mitigate catastrophic forgetting by design. As we create
a new head for a new incoming class, learning new objects
does not affect the previously learned heads. Moreover, in each
learning cycle, we can update only a head of our classifier.
For example, if a head responsible for an apple exhibits high
uncertainty, we can only learn to classify an apple better. Once
the classifier is confronted with an unknown object, we can
add and learn one new head. Training a smaller model can
be more efficient. Achieving these results with a multi-class
classifier might be difficult.

Within this construction, we apply probabilistic inference
on all MLPs to obtain Bayesian Neural Networks (BNNs),
which can provide well-calibrated uncertainty under distribution
shifts. Let us define the training data for the classifier as
D = ((xi,yi))N

i=1 where the inputs xi are the extracted features.
We use superscripts (c, t) to denote the available C classes
and T tasks, respectively. Then, a classifier fθ is now divided
into several binary classifiers fθ(c,t) that output yc ∈ {0,1}. The
corresponding DNN’s learnable parameters θ(c,t) belong to the
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Fig. 3: The proposed pipeline to learn a prediction model for stream-based AL. Left: Laplace Approximation (LA) infers the
posterior distribution of a DNN as a Gaussian distribution. Right: Using LA to obtain BNNs and further exploiting training
data that encodes our domain knowledge, we learn an informative prior from a posterior of a previous task. Bayesian learning
in sequence addresses the potential prior misalignment where humans provide the relevant task and data to learn the prior.

head c for the task t, which is obtained using the relevant
training data D(c,t). BNNs apply probabilistic inference to
DNNs, e.g., models are represented by the posteriors ρ(c,t) =

p(θ(c,t)|D(c,t)). BNNs predict through marginalization:

p(y∗c = 1|x∗,D(c,t)) =
∫

p(y∗c |x
∗,θ(c,t))p(θ(c,t)|D(c,t))dθ(c,t). (1)

Intuitively, instead of one model that best fit the data, BNNs
pay tribute to the model uncertainty for predictions. The
probabilities obtained better reflect the true belief in the class
y∗c than the often used softmax scores that tend to bias towards
higher probabilities, or overconfident predictions [26], [30].

We then combine the calibrated binary classifiers using BNNs
for handling the given multi-class classification task. Given a
single test input x∗, we obtain a vector of probabilities from all
heads: p= (p1, p2, ..., pC) where pc = p(y∗c = 1|x∗,D(c,t)). Then,
we pick the predicted class label by:

y∗ = argmaxc(p) with p(y∗ = c|x∗) = pc=y∗ . (2)

In this way, we select one output of a head with the highest
probabilities and choose the corresponding class label and
probability score. We do not consider one vs. rest multi-class
strategy. Hence, the vector p itself is not a valid probability
distribution. For querying from humans and selecting the most
informative data using uncertainty estimates, a valid probability
distribution for the most likely class is sufficient. Thus, we do
not require probabilities for all classes at once. Moreover, the
given design choice enables our system to be more efficient
when training, because we do not need to update all the heads
for training a single head – an assumption in one vs. rest multi-
class strategy. Instead, we can update each head individually
for efficiency.

B. Bayesian learning for uncertainty and generalization

We now present our training pipeline for the aforementioned
probabilistic model. Our goal is to obtain the posteriors
ρ(c,t) for the estimation of the uncertainty. We also aim to
address the challenge of generalization under a small data
regime with DNNs. For this, our main idea is to learn the
prior distribution over the parameters of DNNs. To explain,

according to Bayes rule, the posteriors are proportional to
the likelihood

∏N
i=1 p(yi|xi,θ

(c,t)) and the prior π(c,t) = p(θ(c,t)),
i.e., ρ(c,t) = p(θ(c,t)|D(c,t)) ∝ π(c,t)∏N

i=1 p(yi|xi,θ
(c,t)). Due to the

non-linearity of DNNs, no closed-form solution exists for the
posteriors. Thus, we need approximate Bayesian inference – a
set of algorithms that approximate the intractable posteriors.
For this, the first step is to define the priors over the DNN
parameters. Traditionally, a zero-mean isotropic Gaussian
prior – an uninformative prior that regularizes the overall
model – was seen to be sufficient for DNNs. However, when
no large amounts of data are available, the likelihood no
longer dominates the posterior. Thus, specifying an informative
prior can improve the approximate Bayesian inference [26].
Fig. 3 shows our pipeline, which we later combine with a
generalization framework called the PAC-Bayes theory.

The first step of our pipeline is to learn an initial prior
distribution offline using synthetic data (task 0 in Fig. 3).
Synthetic data for object recognition can be generated by either
photorealistic synthesizers such as BlenderProc2 or generative
models such as StableDiffusion with relevant prompts like "A
jersey on a table". Synthetic data has the advantage that large
amounts of annotated training data can be generated in a cost-
effective manner. Hence, for all the known classes of objects,
we generate training data D(c,t=0). Now, in order to learn an
initial prior, we apply Laplace Approximation (LA). LA is
an approximation inference method that imposes Gaussian
distribution on the DNN parameters around a local mode [30].
The obtained posterior has its mean as the maximum-a-posterior
(MAP) estimates µ(c,t) = θ̂(c,t), which can be obtained using the
standard DNN training procedure with a cross-entropy loss.
In LA, the covariance of the posterior Σ(c,t) is estimated by
an inverse of a loss landscape’s Hessian H(c,t), i.e., a second
order derivative of log posterior w.r.t the DNN parameters θ(c,t).
By definition, H(c,t) =H(c,t)

likelihood+H(c,t)
prior. Assuming an isotropic

prior,

Prior: π(c,0) =N(0,γI), (3)

Posterior: ρ(c,0) ≈ N(θ̂(c,0), (H(c,0)
likelihood+γI)−1),

are the prior-and-posterior pairs. The posteriors at t = 0 is then
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used as priors for task t = 1. We use a layer-wise Kronecker
factorization [26] to compute the Hessian or the covariance.

Having learned the priors, we now iterate the learning
process online. Examples of incoming tasks are semantic
segmentation on real images, or recognition of deformable
objects, as depicted Fig. 3. In each step, the approximated
posteriors from the previous tasks are used as the priors for
the current learning tasks. Intuitively, as we keep learning one
object class per head, such Bayesian learning results in positive
transfers across the tasks, i.e., posteriors that classify folded
clothes helps in learning unfolded clothes, even with small
amounts of data. For this, we repeat LA and obtain:

Prior: π(c,t) =N(θ̂(c,t−1), (H(c,t−1))−1), (4)

Posterior: ρ(c,t) ≈ N(θ̂(c,t), (H(c,t)
likelihood+H(c,t−1))−1).

The prior-and-posterior pairs are obtained with small modifi-
cations to LA. First, the maximum-a-posterior estimates are
computed using a more expressive prior, instead of initializing
around zero with one variance for all DNN parameters. Second,
for approximating the posteriors, the Hessian from the posterior
of previous task is used instead of an isotropic term γI. Our
pipeline adapts our previous method [26] to better fit our use
case. Unlike previously, we do not attempt to transfer across
heads. This enables class-independent learning. Moreover, we
embed the domain knowledge with synthetic data at task 0,
instead of foundational models.

For these steps of Bayesian learning, we can explicitly design
for improving generalization of the model under small data
regime. We achieve this by introducing hyperparameters τ,α
and β s.t. H = τ(βHlikelihood +αHprior), and optimizing for a
generalization objective called PAC-Bayes bounds. Note that
we dropped the superscript (c, t) for notation simplicity when
explaining PAC-Bayes theory. The hyperparameters α and β
decide how much weight should be given to the previous
task (prior) and the current data at hand (likelihood). If more
weight is given to the current data, the model may overfit,
while more weight to the prior may result in underfitting.
The tempering term τ scales the overall posterior. We pick
these hyperparameters by minimizing an upper bound to the
expected loss Eθ∼ρ[Ll

P( fθ)] on the true distribution P. A true
expected loss incurs over the true data distribution P – not
only on training and test data. Such generalization bounds
depend on empirical loss on the training data Eθ∼ρ[L̂l

D
( fθ)] =

1
N
∑N

i=1 L̂
l
D

( fθ) and the KL-divergence of the priors and the
posteriors. Our KL-divergence is dependent on τ, α and β. For
ϵ > 0, the so-called PAC-Bayes bounds are defined as:

PD∼P(∀ρ≪ π : Eθ∼ρ[Ll
P( fθ)] (5)

≤ δ(Eθ∼ρ[L̂l
D( fθ)],KL(ρ∥π),N, ε)) ≥ 1−ε.

For more details, we refer to our previous work [26] where
we devised a computationally tractable method for LA.

C. A temporal active learning system with humans

The remaining challenges are to develop a system that (a)
asks for help from humans and (b) selects the most informative
samples to learn from. For both components, we combine the
temporal information inherent in data streams.

begin
// Initialization
ρ(c,0) ← prior(D(c,0),π(c,0)) ∀c ; // Eq. 3
α(c,0),β(c,0), τ(c,0) ← pac-bayes(•) ∀c ; // Eq. 5

// Main Loop
while incoming image stream do

pc|x∗k ← marginalization(x∗k) ∀c ; // Eq. 1
pc|x∗1:k−1 ← filter(pc|x∗k) ∀c ; // Eq. 6 (option).
y∗, pc=y∗ ← prediction(p|x∗1:k−1) ; // Eq. 2
if query humans for head c then
D

(c,t)
new ← human-instruction() ; // Fig. 1

D̄(c,t) ← selection(D(c,t)
new) ; // Eq. 7

ρ(c,t) ← posterior(D̄(c,t),π(c,t)) ; // Eq. 4
α(c,t),β(c,t), τ(c,t) ← pac-bayes(•) ; // Eq. 5

end
end

end
Algorithm 1: CLEVER - stream-based active learner.

Our query strategy involves a recursive rule that keeps
the current probabilities about an object class given all
measurements until step k: p(y∗c = 1|x∗1:k). Defining l(•) =
logp(•)[1− p(•)]−1 from which we can retrieve the current
probabilities p(•) = 1− (1+ exp[l(•)])−1, our recursive form
based on a binary state Bayes filter is given by:

l(y∗c = 1|x∗1:k) = l(y∗c = 1|x∗k)+ l(y∗c = 1|x∗1:k−1)− l(y∗c = 1). (6)

The obtained probabilities are converted to a normalized entropy
as a measure of uncertainty, and we use a pre-defined threshold
for query decisions [24]. Here, temporal information may filter
the outliers and augment the tracking of object segmentation.
Our design choice on utilizing binary classifiers per head also
enables us to simplify the incorporation of temporal information.
Instead of complex models such as Dirichlet, we only modified
the algorithm behind the well-known probabilistic grid map
[31] that tracks uncertainty on binary states such as occupied
or non-occupied space.

Next, given a human demonstration, AL selects the most
informative data. For CLEVER, such a selection results in
smaller training data, which makes the continual adaptation of
the underlying model more efficient. We utilize the so-called
BatchBald [32] to select the top B̄ ⊂ B(c,t) data points:

Abatchbald(x∗1:B,ρ
(c,t)) = I(y∗c,1:B,θ

(c,t)|x∗1:B,D
(c,t)
new)

= H(y∗c,1:B|x
∗
1:B,D

(c,t)
new)−Eρ(c,t)H(y∗c,1:B|x

∗
1:B,θ

(c,t),D(c,t)
new). (7)

Intuitively, this acquisition function examines the mutual
information I between the multiple model predictions and
the model parameters. Such mutual information is obtained
by approximations to the entropy terms H. The coupling
between the model predictions for a batch of data points
and the model parameters is captured, and data points with
high mutual information would inform us more about the true
model parameters. This allows us to again combine temporal
information by considering a batch of data points. We further
combine a subsampling strategy [22], that is, we randomly
select a subset from the demonstration data before applying
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Fig. 4: Results from ablation studies and comparative assessments of various design choices. The unit for (h) is seconds.

BatchBald. This ensures the diversity of the samples while
speeding up the computations of BatchBald.

D. System overview and implementation details

Alg. 1 provides an overview of CLEVER, which shows how
all the components are integrated into a single algorithm. For
each task, humans instruct the semantic information about an
object using speech and demonstrate the given object from
different viewpoints. Negative examples from the previous
demonstrations are also provided for training each head. For
unknown objects, we add a new head and start the learning
process with an isotropic prior. In Alg. 1, • are used to indicate
any arbitrary but relevant inputs to a function.

V. Results

A. Ablation studies and comparative assessments

We provide ablation studies and comparative assessments to
provide insights into the design of CLEVER. The analysis is
focused on the continual learning architecture, the impact of
using posteriors as informative priors, and combining temporal
information. In particular, we focus on how our design choices
address the challenges listed in Tab. I. For this, we collect
a dataset from ARMAR-6, which consists of images from
ten household objects. CAD models of these objects are
obtained using an Android app called MagiScan. We also used
StableDiffusion for synthetic data generation. For each object,
we provided nine sequences of human demonstrations with
250 images each. We varied the difficulty level by providing
more deformations to the objects, for example. We note that
the dataset will be released to the public. There were no open-
source datasets which fit our stream-based AL scenario due to

the human element. We assumed that segmentation is given
by foundational models like SAM, and mainly evaluate the
underlying classifier.

Continuously adaptable model. First, we present our
analysis on CLEVER’s ability to perform continual learning.
We claimed that the proposed design enables training of DNNs
in less than one minute, while addressing the catastrophic
forgetting problem. To evaluate the training time, we vary the
number of layers from one to ten, and also vary the number of
training data points up to 1500. Because we only train the MLP
while fixing the representations from a foundational model, the
results show that our classifiers can be updated in less than 1
minute (Fig. 4h). We note that a three-layered MLP is used for
all other experiments. Regarding the catastrophic forgetting,
CLEVER adapts a progressive architecture where new heads
are trained for new incoming object categories. By design, such
architecture-based approaches mitigate the forgetting. However,
growing the DNN architecture may hurt the computational
scalability. To evaluate such computational scalability, we grow
the DNN architecture to accommodate 1000 object categories.
Comparisons in terms of memory and runtime are provided with
CLEVER without probabilistic treatments (denoted DET). The
results are depicted in Fig. 4g and 4e. Without an elaborated
mechanism to mitigate catastrophic forgetting, CLEVER can
learn 1000 object categories with less than 4GB of GPU peak
memory and interactive frame rates. We also note that forgetting
mechanisms can be introduced when an application scenario
demands many more object categories.

Bayesian learning algorithm. Secondly, we examine the
influence of prior learning method for both uncertainty and
generalization under small data regime. For this, we split the
dataset into training and test set with a ratio of 8:2. Then,
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Fig. 5: Results of a complete open-set evaluation with 13 users (x-axis). Number of queries to semantically segment the objects
with more than 85% confidence (lower the better), query success rate (higher the better), ECE as a measure of uncertainty
(lower the better), and training time (lower the better) are reported from the experiments per user. These experiments validate
that various users can perform active learning with CLEVER for semantic segmentation under open-set conditions.

TABLE II: Query success rates, ECE, accuracy, and number
of queries to reach 85% accuracy are reported.

Success rate ECE Precision Nr. Queries

CLEVERv1 0.887±0.049 0.060±0.017 0.933±0.020 1.539±0.544
CLEVERv2 0.826±0.053 0.092±0.036 0.900±0.034 2.440±0.866

Vanilla 0.801±0.054 0.177±0.021 0.817±0.039 4.320±0.992

we randomly pick N-shot images per object category up to
20 images. Using Google’s uncertainty baseline, we evaluate
various models (MC Dropout [9] as MCD, Deep Ensemble
as DE [8], Laplace Approximation as LA [30], and no-pac
means CLEVER without PAC-Bayes optimization [26]) with
expected calibration error (ECE), precision and area under
ROC curve (AUC) as the standard evaluation metrics. The
findings are shown in Fig. 4c, 4b and 4c, where the chosen
metrics are reported by averaging over the object categories.
Five random seeds were used. The results show that CLEVER
can outperform the chosen baselines. In particular, comparisons
to LA and no-pac show that learning the prior from simulation,
and optimizing for a generalization bound can improve the
performance for the chosen evaluation scenario of stream-based
AL.

Temporal information. Third, we examine the idea of
combining the temporal information when selecting the subset
of images to learn more efficiently, and also deciding to
query. For the former, we choose a uniform sampling, BALD,
BatchBALD and their combinations with sub-sampling as
baseline acquisition functions. For the latter, we train a model to
provide noisy confidence estimates, and display filtered output
against the raw output from a single query step of 100s. The
same train-test split of 8:2 was used for the comparisons on
acquisition functions. A total of 15 query steps were generated
for all object categories. Five random seeds were used to
obtain the results. For the combination of temporal data via
filtering, we observe that noises can be removed (Fig. 4d).
Moreover, BatchBALD with the sub-sampling strategy, as the
acquisition function looks at the batch of data points to measure
information gain, outperformed other baselines in Fig. 4f. These
findings motivate our design choice of integrating temporal
information for performance improvements.

Evaluation. Finally, we examine the final performance (see
Tab. II). We assume that images arrive in a batch of streams
over nine subsequent demonstrations with increasing levels

Fig. 6: Examples of arbitrary objects brought by different users.
The objects ranged from articulated, transparent, deformable,
industrial and planetary objects.

of difficulty. Metrics of choice were query success rate, i.e.,
if the model queried correctly, average ECE and precision,
and the number of queries required to reach more than 85
% precision. These metrics capture several requirements of
a stream-based AL system. 40 data points were selected for
training in each demonstration out of 250 data points so that
the training terminates in less than a minute. Five random seeds
were used. We compared three baselines. Vanilla corresponds
to a deterministic model of CLEVER without any priors.
Version 1 used the full formulation of the prior with both
mean and covariance, while version 2 only utilized the mean
by pretraining with the given synthetic data. We observe the
gradual increase in performance in all metrics. These results
justify our design choices, in particular, the prior learning with
the targeted synthetic data for stream-based AL.

B. A complete open-set evaluation with users

We evaluate the performance of CLEVER in an open-
set condition, where the model encounters unseen objects.
Furthermore, the goal is to perform user validation in order
to show that many users can use the system successfully. To
achieve this goal, we randomly invited 13 users and asked
them to bring any object of their choice. Fig. 6 shows the
example objects that were brought by the users to test the
system. Since we did not know these objects a priori, we could
create a truly open-set condition. Initial prior from Section
V-A was used by pretraining with object and no-object classes.
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The users were instructed to use CLEVER in order to perform
semantic perception of the objects they brought. Under these
conditions, we measured the number of queries to learn the new
object with more than 85% confidence, the number of query
failures, test ECE, and training time. The users only collected
80 images per query step. Out of 80 images, CLEVER selected
32 images to adapt the model. In each query step, posterior of
the previous task was used as prior, along with an optimization
for PAC-Bayes bounds.

The results are depicted in Fig. 5. The average number
of required queries was 2.0 ± 1.79, while we had a query
success rate of 91.20± 15.06% where CLEVER associated
well-calibrated confidence and appropriately asked for help.
The average ECE was 5.36±3.75%, and CLEVER consumed
17.79±4.717s training time. All users were able to work with
CLEVER, and perform stream-based AL under the replicated
open-set condition. We also believe that a training time of
less than 20s can be practical. Regarding limitations, small
distributional shifts seem to be an issue. For example, we found
it difficult to obtain well-calibrated uncertainty estimates when
training a DNN with an apple but testing with an object similar
to an apple in appearance, like a red pear. Nevertheless, all the
objects brought by the user could be eventually conquered with
CLEVER, which could have been difficult without adaptations
at test-time. In this sense, our experiments show the relevance
of stream-based AL in developing a persistent vision system.

C. Demonstration on a humanoid robot

Finally, we demonstrate CLEVER on the KIT’s humanoid
robot, ARMAR-6 [20] (see Fig. 1) where we examine the
feasibility of stream-based AL on a real robot. Three objects,
namely an apple, a banana, and a T-shirt, are considered.
ARMAR-6’s onboard cameras, speech interface, and NVIDIA
GeForce GTX 1080 are utilized [20]. Pre-designed language
prompts were used to allow robot-human communication. The
videos are on our project website. On ARMAR-6, we showcase
CLEVER’s ability to perform robust semantic perception. We
emphasize that, for all examined scenarios, deploying a standard
DNN without any ability to adapt would have failed to complete
the given perception tasks. In contrast, CLEVER is able to
improve the robustness of deploying DNNs on a real robot. That
is, CLEVER estimates uncertainties, asks for help from humans,
and adapts itself to finally accomplish the given perception task.
With these results, we illustrate robust DNN-based perception
by showing the feasibility of stream-based AL on a real robot.
1

VI. Conclusion

In this work, we propose a stream-based active learner
for robust semantic perception with robots. Experimentally,
ablation studies provide the insights behind the system’s design.
We also evaluate CLEVER in an open-set condition with a user
validation, in which participants brought various objects that are
transparent, deformable, articulated, industrial, and planetary.

1All implementation details including metrics, synthetic data generation and
in-depth discussions are in suplementary materials of our project website.

CLEVER is also integrated into a humanoid robot. These
results generally suggest the possibilities of robust semantic
perception, while embracing the predictive performance of
deep learning. In future, improvements in unknown object
segmentation techniques will also help our system. Thus, as a
next step, we envision active learning on foundational models
directly for open-set recognition tasks.
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