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Abstract— We present a novel approach for generating se-
quences of whole-body poses with multi-contacts for humanoid
robots, which is inspired by techniques from natural language
processing. To this end, we propose a probabilistic n-gram
language model learned from observation of human locomotion
tasks. Human motion data is automatically segmented accord-
ing to detected contacts of the body with the environment
to provide support, that is, support poses, which are further
subdivided with regard to whole-body configuration. These
poses are subsequently used to train a language model, whose
words are the poses, and whose sentences represent sequences
of poses. Then, we propose a planning algorithm that, given the
constraints imposed by a task, finds the sequence of transitions
with the highest probability according to our language model.
We have applied our approach to 140 motion capture recordings
of locomotion tasks that involve using one or both hands for
support. The evaluation demonstrates that our approach is
able to generate complex sets of pose transitions, and shows
promising results regarding its application to more complex
tasks.

I. INTRODUCTION

Whole-body motion planning with multi-contacts for hu-
manoid robots in unstructured environments constitutes an
open problem of vital interest for the humanoid robotics
community. In this work, we propose a data-driven approach
which uses human motion data for the autonomous genera-
tion of sequences of whole-body pose transitions for loco-
motion tasks that use the environment to enhance balance.
Given a motion, we automatically detect whole-body support
poses defined by the body parts used to provide support
[1], which are then further subdivided into different shape
poses. By analyzing large sets of motions showing humans
executing locomotion tasks, we can train a language model,
whose words are whole-body poses and whose sentences are
sequences of these poses that characterize a motion. Using
this language model, we can then plan a sequence of whole-
body pose transitions, which satisfies the constraints of a
given locomotion task. We formulate such a locomotion task
as the displacement of a certain distance and the availability
of environmental elements that can provide support and lean
affordances. We assume that such environmental knowledge
can be provided by visual perception following our previous
works in [2], [3], still under development. Fig. 1 shows an
example of a sequence of pose transitions obtained with the
proposed approach.
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Fig. 1. Visualization of the planned sequence of whole-body shape pose
transitions for a straight motion of 6 meters that allows for hand supports
from meters 2 to 4 (note that we do not plot the support surface here). In
red, we highlight the body segments that are in contact at each pose. Each
shape pose is drawn at a distance according to the associated translation of
the center of mass.

The problem of planning whole-body motions with multi-
contacts has been addressed in the robotics literature by many
authors. It is a challenging problem due to the complexity of
the kinematic chains, the dynamic constraints, and the multi-
dimensionality of the tasks. Some solutions exist that, despite
being computationally expensive, are successful in solving
the full problem including all the dynamic equations under
contact constraints, such as [4], [5], [6]. Other approaches
divide the problem into two independent subproblems that
can be solved separately. This division consists of first
finding a sequence of discrete sets of contacts, called stances
[7], [8], [9], and second, finding the continuous motion that
links the stances [10]. Dividing the problem allows to reduce
its complexity, without considerably reducing the quality of
the result.

We approach the problem from a different point of view,
but still suggest a division of the problem into two steps.
Our motivation relies on the fact that humans do not plan
specific contact locations in an early stage of the motion
execution. The first step of our approach consists of finding
sequences of whole-body poses. For each of the transitions
between consecutive poses, an associated dynamic movement
primitive (DMP) can be learned directly from human motion
capture data [11]. Then, in a second step, we will adapt the
transition DMPs to satisfy the specific constraints given by
the initial and final whole-body poses, the contact constraints,
and ultimately the dynamics. The work presented in this pa-
per deals only with the first part of the problem: the planning
of pose sequences. Examples in the literature show that the
second part can be solved using DMPs as demonstrated in
[12].

The idea of sequencing movement primitives (MPs) for



multi-contact motion planning was proposed earlier in the
literature. MPs were used to guide the choice of contact
points and correct the output motions generated by the
algorithm in [13] to appear more human-like. Later works
used sequences of MPs to form a continuous motion for
climbing a ladder [12]. However, these works focus on the
second part of the problem, which is obtaining the continuous
motion in joint space that satisfies a set of given constraints,
whereas the given set of MP transitions between support
poses is specified by hand. In contrast, in our work, we focus
on the autonomous generation of stance/pose sequences. As
stated in [14], this is considered one of the main challenges
in this area of research.

Still, the idea of autonomously sequencing MPs is not
new. In this sense, our work is closely related to works by
Kulić et al. [15], [16], [17], but with several differences. In
[15], the authors build a graph of transitions between MPs
directly from segmented human motion data and use this
graph to find paths which generate continuous motions. Our
work differs from this in several points. First, in our case,
the data is segmented according to support poses, while the
segmentation introduced in [16], [17] is based on visually
recognizable discrete segments of movements. Segmenting
using support poses allows us to provide a semantic inter-
pretation of each motion segment that is in accordance with
the previously mentioned works on multi-contact motion
planning. The graph of transitions built in [15] is similar
to the taxonomy of whole-body pose transitions that we
presented in previous work [18], [1], with the exception
that we focus on transitions between support poses. Another
important difference is that instead of planning paths on the
graph, our segmented motion data is used to train a language
model that allows us to derive a probabilistic model of our
data, which can be used for generating new sequences of
whole-body poses. It is important to note that for locomotion
tasks, the shortest path in our pose taxonomy graph from [18]
would not constitute a valid set of pose transitions, since the
graph does neither encode the cycles of steps, nor translation
information.

Our work can also be related to other high-level planning
works in robotics [19], [20], [21]. These works usually build
a model based on building worlds with a set of rules. The
planning problem is then formulated as finding a sequence
of actions from an initial state to a goal state following the
stated rules, and the search is guided by optimizing costs
and heuristics. Additionally, our work can be related to other
applications of linguistic methods in the computer vision and
robotics communities. Grammar-based approaches are used
in [22] and [23] to recognize and understand human actions.
In [24], context-free grammars are used for the representation
and verification of robot control policies.

One problem with the mentioned rule-based systems,
e.g. STRIPS planning or grammar-based approaches, is that
learning the rules gets more challenging with increasing
complexity and uncertainty of the environment. Therefore, in
fields where natural language is processed, such as automatic
speech recognition or machine translation, rule-based and
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Fig. 2. Relationship between components described in this paper.

grammar-based systems have been widely replaced by en-
tirely statistical approaches, such as n-gram language models
[25]. Techniques from statistical language modeling have
also provided solutions to other problems beside natural
language [26], [27]. With this work, we hence investigate
whether the problem of motion planning for humanoids can
also benefit from using statistical language models. To our
best knowledge, the use of statistical language models for
the sequencing of whole-body motion primitives is novel.

This paper is organized as follows. Section II describes our
approach for collecting motion data, segmenting it according
to whole-body support poses, and classifying these poses
with regard to body configuration. In Section III, we explain
how we learn n-gram language models and translation mod-
els from the motion data. Our planning algorithm is then
described in Section IV. Fig. 2 provides an overview of how
the motion acquisition and processing, the learned models,
and the planning build on each other. Section V presents the
results of our approach for three exemplary tasks. Finally,
we give conclusions and point out directions of future work
in Section VI.

II. MOTION REPRESENTATION

A. Motion Acquisition and Data Set Description

Our motion data has been acquired with optical motion
capture by using a Vicon MX10 system equipped with ten
T10 cameras running at 100 Hz. Motion recordings are based
on the KIT reference marker set, which consists of 56 pas-
sive (reflective) markers placed at characteristic anatomical
landmarks of the human body. More information about the
marker set and the procedures used for motion capture is
available in [28] and online1. All captured motions are post-
processed using the Master Motor Map (MMM) framework
described in [28], [29], [30]. The MMM framework provides
an open-source framework for the unified representation of
human motion, including a reference model of the human
body based on biomechanics literature. During reconstruc-
tion, the marker-based motion data are mapped to a motion

1https://motion-database.humanoids.kit.edu/marker_set/

https://motion-database.humanoids.kit.edu/marker_set/


Fig. 3. Experimental setup for motion capture. Left: Walking with a
handrail. Right: Walking on a beam using supports with both hands (on
a table and on a handrail).

of the MMM reference model, providing information about
the joint angles, the 6D root pose of the model, and the task
space location of every segment of the model. In this work,
we are using 40 degrees of freedom for the model kinematics
in body torso, extremities, and head while ignoring finger
joints and eyes.

In total, we have recorded 140 motions for our evaluation,
which are now freely available from the KIT Whole-Body
Human Motion Database [28], [31]. Our recordings consist
of 20 trials of seven different walking tasks using supports,
all demonstrated by the same subject. For each task, 10
trials were walking in one direction, and 10 in the opposite.
Hence, the data set is symmetrical concerning left/right hand
supports. The tasks include a normal walking task (without
hand supports), walking using supports from a handrail or
table on one side, walking on a beam using such supports,
and finally walking with or without the beam using supports
from the handrail and the table on both sides. Fig. 3 shows
the experimental setup for the recording of two of these tasks.

B. Motion Segmentation using Whole-Body Supports

In our previous work [1], we have presented a method to
segment human motion data according to the body segments
that are determined to be in contact with the environment to
provide support. One of the features of our MMM framework
described above is that it can utilize additional motion cap-
ture markers attached to objects and environmental elements,
e.g. surfaces of support, to include information about these
elements in the motion. This eases the detection of all the
support contacts as a combination of distance and velocities
of the contact points (see [1] for details). From the set of
supporting body segments used by the human subject at a
certain time, the respective support pose from our taxonomy
of whole-body support poses [18] is then determined and
each motion is represented as a succession of transitions
between whole-body support poses, which we can visualize
as a subgraph of the taxonomy introduced in [18].

C. Shape Pose Classification

In this work, we have added a further differentiation of
the support poses based on whole-body configuration. As
pointed out in the conclusions of our previous work [1],
a support pose can occur in many different body shapes,
depending on the task being executed. In order to obtain a
better classification of the transitions between poses, we are

⇒

Fig. 4. Exemplary configuration options considered for hands and feet.

therefore further subdividing each support pose into several
shape poses with regard to the configuration of the body
during the transition motion.

To explain the concept of shape poses, let us consider a
simple walking motion. In such a walking motion, the double
foot support pose has three possible shape poses: both feet
in parallel when the human is standing (blue pose in Fig. 4),
and left/right foot in front of the right/left, respectively.
The single foot support poses occur only in one possible
shape pose in this motion, with the foot which is not in
contact with the floor swinging next to the supporting foot.
Defining transitions between these shape poses provides a
good classification of motion primitives for such simple
walking motions. The shape classification becomes more
complex when more contacts are considered, e.g. when the
hands are used to reach for a support on the anterior left/right
side of the body or to leave a support on the posterior
left/right side of the body. To assemble the shape poses, we
are considering all combinations of different configuration
options for hands and feet, with the options of placing each
extremity in front of, near, or behind the body (along the
anteroposterior axis), which is exemplified in Fig. 4. For
each of these combinations, we have manually selected a
representative pose from our data set as the shape pose and
saved it in the form of its 40-dimensional representation in
joint space. In future work, we are planning to replace this
with a data-driven approach for the automatic extraction of
useful shape poses from motion data.

For the classification of poses from motion data into
shape poses, we found that direct comparison of poses
in joint space did not perform well. Therefore, we have
defined a metric in task space where each shape pose is
represented as a 12-dimensional vector corresponding to the
3D coordinates of the four end-effectors (feet and hands) in
the local coordinate system of the model. For each support
pose detected as described in Section II-B and [1], we
are considering the body configuration at the middle point
between when the current support pose is first detected and
when the next support pose is detected. Then, we compare
this body configuration to the available shape poses for
the given support pose and choose the closest shape pose
according to the Euclidean distance in the 12-dimensional
space. As a result, motions are represented as sequences of
shape poses that contain information not only on what body
segments are used to provide support, but also indicate a
whole-body configuration that will later help to adapt the
associated DMPs to the required environmental shape.



TABLE I
NUMBER OF OCCURRENCES AND NUMBER OF DIFFERENT SHAPE POSES

FOR EACH SUPPORT POSE FOUND IN OUR DATA SET

Support Pose Name # Occurrences # Different
Shapes Poses

1Foot RF 275 16
LF 384 15

2Feet - 662 14

1Foot-1Hand

LF-LH 170 6
LF-RH 130 6
RF-LH 123 7
RF-RH 191 9

2Feet-1Hand LF-RF-LH 244 6
LF-RF-RH 247 8

1Feet-2Hands LF-LH-RH 111 8
RF-LH-RH 89 8

2Feet-2Hands - 187 8
Total 2813 111

In summary, the segmentation of the motions in our data
set leads to 2813 detected support poses, which were either
single foot, double foot, 1Foot-1Hand, 2Feet-1Hand, 1Feet-
2Hands, or 2Feet-2Hands support poses. Table I shows the
number of occurrences for these support poses, together with
the number of representative shape poses determined from
our data set for each of them. Note that not all the possible
shape poses (as combinations of hands/feet configurations)
appear in our data. In total, our data set contains 111 different
shape poses and 442 different shape pose transitions (not
given in Table I), defined as a combination of a start and an
end shape pose. However, most of these transitions appear
only a few times and thus, we will need to collect more data
in the future to investigate whether some of these transitions
should be ignored. A total number of 74 transitions are used
at least ten times in our data set.

III. POSE TRANSITION MODELS

A. Learning the Language Model

Given the representation of human motion explained in
Section II, we describe a motion as a sequence of transitions
between whole-body shape poses. We propose to approach
this problem from a language processing point of view,
where one word represents a shape pose, and one sentence
represents a sequence of shape poses, i.e. a motion. In this
way, motions can be represented by a language model.

To learn this language model, we take a statistical ap-
proach and use an n-gram language model that can be
estimated from a textual representation of the motions by
using the SRI Language Modeling (SRILM) Toolkit [32].
Such an n-gram language model describes the conditional
probability P (wn| (w1, ..., wn−1)) of observing a certain
word wn given the history of the previous n − 1 words
(w1, ..., wn−1). By multiplying the conditional probabilities
of all words in an arbitrary sentence, the probability of
observing this sentence can be estimated.

The maximum length of the n-grams considered by an n-
gram language model is represented by its order n, where a
language model of order n considers the last n − 1 words
to determine possible successor words. Since the amount of

TABLE II
N-GRAM LANGUAGE MODEL PERPLEXITIES DETERMINED USING 5-FOLD

CROSS VALIDATION FOR DIFFERENT ORDERS (VALUES OF N) AND

DIFFERENT SMOOTHING METHODS

Order Good-Turing Kneser-Ney Witten-Bell
2 4.7125 4.7108 4.4668
3 4.1451 4.6747 3.9049
4 4.1759 5.1635 3.7684
5 4.2496 5.7179 3.7493
6 4.3471 6.2004 3.7511

necessary training data grows exponentially with the order of
the language model, sparsity of data can become a problem.
That means, n-grams that are considered as a perfectly valid
sequence of words still may not be observed in the training
corpus, which is especially true given the sparsity of our data
as explained in Section II-C. In natural language processing,
this is commonly countered by a technique called smoothing,
where the probability of seen n-grams is slightly reduced and
redistributed to allow n-grams not seen in the training corpus
to have a non-zero probability. A large number of methods
exist to perform such smoothing, with three popular methods
being considered by us: Good-Turing smoothing, modified
Kneser-Ney smoothing, and Witten-Bell smoothing [33].

For the parametrization of our language model, we per-
form a grid search across all combinations of language
model orders n ∈ {2, 3, 4, 5, 6} and the three aforementioned
smoothing techniques. We determine the best combination
by using a 5-fold cross-validation, where in each of five
rounds, the language model is trained using four fifths of our
available data. Then, using the remaining fifth as test data,
we compute the perplexity, which is a statistical measure for
how well a probabilistic model is able to predict a given
input. Table II shows the results of this grid search, with
the combined perplexities from all five rounds given and
the best value printed bold. As it can be seen, the 5-gram
language model using Witten-Bell smoothing exhibits the
lowest perplexity and is therefore the type of language model
which we consider for the rest of this work.

B. Learning the Spatial Translation for Pose Transitions

In addition to the language model, which describes the
probability of certain sequences of shape poses, we want to
associate a spatial translation of the whole-body center of
mass (CoM) with each shape pose transition and learn these
translations also from our motion data. The translation of the
CoM can be calculated for each transition by computing the
norm of the vector connecting the CoM at the origin pose
to the CoM at the destination pose. This is valid because all
motions in our data set are in a straight line, and therefore,
the spatial translation can be described by a scalar value.
However, in the future, we will consider the full 3D direction
of motion to allow for movements in a bend or with direction
changes. To determine the CoM translation associated with
a certain shape pose transition defined as a combination of
start and end shape pose, we are taking the mean translation
from all occurrences of this transition.



Algorithm 1 Pose Sequence Planning Algorithm
1: activePaths← heap()
2: insert Path(startPose) into activePaths
3: i← 1
4: loop
5: bestPath← path with max. score in activePaths
6: if (i mod prunePeriod) = 0 then
7: pruneDist← bestPath.distance− pruneThresh
8: newPaths← heap()
9: for all path ∈ activePaths do

10: if path.distance ≥ pruneDist then
11: insert path into newPaths
12: end if
13: end for
14: activePaths← newPaths
15: end if
16: if activePath.distance ≥ distance and

bestPath.endPose = endPose then // Solution found?
17: return bestPath
18: else // bestPath is not a solution
19: expandedPaths← expand-path(bestPath)
20: for all path ∈ expandedPaths do
21: score path using language model and penalty
22: insert path into activePaths
23: end for
24: end if
25: i← i+ 1
26: end loop

The determined translation values serve as an indication
for the extent of locomotion associated with a transition and
are used by the planner to estimate the distance towards
the target position covered by a sequence of shape pose
transitions. It should be noted though, that since many
transitions occur only a few times in the data, the estimated
translation should be considered only as an estimate. For the
future work of planning transition trajectories using DMPs,
these translations are not used and we can use the actual
CoM translations associated with the DMPs instead.

IV. PLANNING ALGORITHM

Given the language model and the CoM translations asso-
ciated with shape pose transitions, the process of planning
a sequence of whole-body shape poses to satisfy a given
locomotion task presents itself as a tree search problem
with side constraints. To solve this problem, we assume
knowledge about the environment that can be autonomously
extracted from visual perception. For instance, approaches
like [2] and [3] provide geometric primitives extracted from
point clouds with associated affordances for supports with
hands or feet. Such geometric primitives contain information
not only on the shape, but also on the location of the surfaces
for support with respect to the robot camera.

For this work, we assume that we always walk in a
straight line and that the robot is located aligned with the
considered environmental support objects. We formulate the
planning task by specifying sets of allowed body segments,
i.e. left/right hand or foot, to provide support contacts for
different intervals of distance that depend on the distance
from the robot to the support surfaces. For example, we

may start a motion with normal walking (only feet supports
allowed) until the first support surface, e.g. a handrail, is
reached. From that distance until the end of the support
surface is reached, hand supports for the left/right hand are
also allowed, depending on which side the support surface
is located with respect to the robot.

Formally, we want to find the sequence of words W =
(w1, ..., wn), of any length n, in the space of all possible
sentences that solves

argmax
W

(
P (W )− penalty(W )

)
(1)

where P denotes the decimal logarithm of the probability of
sequence W according to the language model. Since every
word wi represents a shape pose, the vocabulary size, i.e.
the number of valid words, is rather small compared to
natural language (111 in our case, see Table I). The penalty
function is explained below and serves to bias the planner
towards using poses with a higher number of contacts, as
these poses are associated with an increased level of stability
and robustness. The optimization is subject to the following
constraints:

1) The translations associated with the used shape pose
transitions must allow to cover the distance from the
start to the target position:

n−1∑
i=1

translation(wi → wi+1) ≥ |pend − pstart|

2) Each shape pose represented by the words w1, ..., wn

must respect the contact restrictions. That is, the shape
pose represented by wj , located at

j−1∑
i=1

translation(wi → wi+1),

may contain only support contacts using the body
segments allowed for the distance where it is located.

3) Any subsequence of W with the same body segment
used as a continuous support contact must not cover a
distance longer than a given maximum. Kinematically,
a fixed contact allows only for a certain amount of
translation before it has to be released to be able to
move forward. Since our approach to high-level plan-
ning does not explicitly model kinematic constraints,
this constraint is necessary to ensure that the same
contact is not continuously maintained for too many
transitions, e.g. continuously holding a handrail while
moving forward two meters.

4) The start and the end pose of the motion, represented
by w1 and wn respectively, must satisfy the given
task. In this paper, we are always assuming the neutral
double foot pose, shown in blue in Fig. 4.

The planning algorithm for expression (1) is shown as
pseudocode in Algorithm 1. We use an informed breadth-
first search with pruning to search the tree spanned by shape
pose transitions. Each path through this tree corresponds to a
possible sequence of words, i.e. shape poses. This approach



somehow resembles the beam search used in systems for
automatic speech recognition or statistical machine trans-
lation. In our algorithm, activePaths is used to track the
currently considered paths to all tree nodes that have not
been expanded yet. We use a heap data structure, which
allows us to find the active path with the highest score
in O(1) (line 5). The score of a path is composed of the
path probability determined by the language model and a
penalty value, as shown in expression (1). To compute the
penalty of a path, we iterate over its words and accumulate
the penalty according to unused support contacts in each of
the poses represented by the words, i.e. body segments that
are not used to provide support in a certain pose, although
our environmental knowledge would allow their use at the
respective position. In each iteration of the algorithm, the
best active path (bestPath) is retrieved from activePaths and
expanded (line 19), resulting in the creation of new possible
paths, which are formed by adding to the best path all words
that represent allowed shape poses regarding constraint 2.
These new paths are then scored and added to the heap
(lines 21 and 22). As breadth-first search in general has an
exponential time complexity with respect to the length of
the paths, we employ pruning techniques (lines 6 to 15) that
are run at regular intervals, determined by prunePeriod. The
pruning considers the translation associated with paths and
discards all paths that fall behind the current best path by
more than a given threshold (pruneThresh). The algorithm
terminates if a valid solution for the planning problem
has been found (line 16 and 17). Since P (W ) can only
decrease and penalty(W ) can only increase when a path W is
expanded by adding another shape pose, the score of bestPath
is monotonically decreasing with each iteration. Therefore,
it can be ruled out that better solutions could still be found
when the algorithm terminates.

V. RESULTS

To evaluate the ability of our approach to generate realistic
pose transitions, we have designed three exemplary scenarios
with different requirements. For reasons of simplicity, we
are using the morphology of the MMM reference model
for this evaluation. Of course, the kinematic of a humanoid
robot could be used as well, as long as it possesses an
anthropomorphic morphology, and thus, shape poses learned
from the human can be used. These shape poses could
then be transferred to the robot morphology by using the
retargeting procedure provided by the MMM framework
[28]. Also, the robot size should be considered in two ways.
First, the capabilities of the robot are implicitly considered
in the preceding determination of possible support contacts
[2]. Second, the CoM translations associated with shape pose
transitions should be scaled proportionally if the height of
the robot deviates from the height of the human from which
these CoM translations have been learned.

The first task consists of walking a total of 6 meters, al-
lowing right hand contacts from meters 1 to 3. The sequence
of pose transitions that is generated by our planner is shown
in the upper part of Fig. 5 together with a 3D visualization

TABLE III
DETAILS ON THE PLANNING RESULTS OF TASK 1

Origin Pose Destination P. Transl. Dist. LM Prob. Pen.
1 LFRF 1 LF 1 0.07m 0.07m 0.37 -2
2 LF 1 LFRF 2 0.25m 0.32m 0.60 0
3 LFRF 2 RF 4 0.09m 0.41m 0.17 -2
4 RF 4 LFRF 10 0.55m 0.96m 0.31 0
5 LFRF 10 LFRFRH 2 0.04m 1.00m 0.79 0
6 LFRFRH 2 LFRH 4 0.11m 1.11m 0.79 -2
7 LFRH 4 LF 3 0.38m 1.49m 0.79 -4
8 LF 3 LFRF 5 0.41m 1.91m 0.01 -2
9 LFRF 5 LFRFRH 5 0.10m 2.01m 0.54 0
10 LFRFRH 5 RFRH 2 0.09m 2.10m 0.05 -2
11 RFRH 2 LFRFRH 1 0.50m 2.61m 0.30 0
12 LFRFRH 1 LFRH 4 0.07m 2.67m 0.42 -2
13 LFRH 4 LF 3 0.38m 3.05m 0.08 -4
14 LF 3 LFRH 1 0.37m 3.42m 0.02 -2
15 LFRH 1 LF 3 0.58m 4.00m 0.15 -2
16 LF 3 LFRF 4 0.09m 4.10m 0.87 0
17 LFRF 4 RF 2 0.12m 4.22m 0.22 -2
18 RF 2 LFRF 3 0.50m 4.72m 0.55 0
19 LFRF 3 LF 1 0.11m 4.82m 0.42 -2
20 LF 1 LFRF 2 0.25m 5.08m 0.93 0
21 LFRF 2 RF 2 0.11m 5.19m 0.93 -2
22 RF 2 LFRF 3 0.50m 5.69m 0.93 0
23 LFRF 3 LF 2 0.10m 5.80m 0.50 -2
24 LF 2 LFRF 1 0.21m 6.00m 0.74 0

of the scenario. In red, we highlight the body segments that
are used as a support contact. Since each pose transition has
an associated CoM translation, we show each shape pose
at the corresponding accumulated distance. However, as we
mentioned before, this is just an indicative location that helps
our planner to decide how many steps are needed to reach
the required distance. For task 1, the total distance covered
by the CoM translations for the planned transitions is exactly
6.0m. We can see that most of the shape poses at the origin of
a transition anticipate hand contacts at the destination pose.
We believe that this will facilitate the adaptation of DMPs. In
addition, Table III shows details on the generated motion for
task 1, providing the list of shape poses together with their
respective CoM translation, the total distance traveled, and
the penalty value associated with each destination pose. The
suffixes of the pose names enumerate different shape poses
of the same support pose. Additionally, the column “LM
Prob.” shows the probability (between 0 and 1) of observing
the transition to the destination pose in the respective line
given the known history of the poses before, according to
our language model. Since we are using a 5-gram model,
the previous four poses are considered for this history.

Task 2 requires a total distance of 8 meters, and allows
right hand supports from meters 1 to 3 and left hand supports
from meters 4 to 6. Finally, task 3 covers a distance of 6
meters, allowing hand supports on both left and right side
from meters 2 to 4. The resulting sequences of shape poses
for tasks 2 and 3 are also shown in Fig. 5. The total distance
covered by the CoM translations for the used transitions
is 8.06m and 6.34m, respectively. The video attachment to
this paper demonstrates how our planning algorithm finds
its solution for the three presented examplary scenarios
by showing the path with the highest score (bestPath in
Algorithm 1) for every 100 iterations of the algorithm.
Additionally, the used support poses are depicted at the top
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Fig. 5. Visualization of the three different tasks with the tables affording hand supports, and the resulting sequences of shape poses along the translation
axis. The blue/green/orange lines represent the intervals where right/left/both hand supports are available, respectively. Labels indicate the body segments
used for supports, also highlighted in red in the figures. LF/RF stand for left/right foot, and LH/RH stand for left/right hand, respectively.

margin of the video using the icons introduced in [18].

We believe that the presented results are very promising
because they show that our approach is able to provide
complex pose transitions that resemble the way humans walk.
Despite its simplicity, our approach is able to plan non-
trivial pose transitions that provide a very good starting point
to plan movement primitives, which will result in specific
contact points and joint angle trajectories. The planning
algorithm has the advantage that it is computationally inex-
pensive, and only requires 5171, 7046, and 14052 iterations
for the tasks 1, 2, and 3, respectively. While we are currently
using only an Python-based prototype implementation of
the planning algorithm that is not optimized in any way,
future implementations compiled to native code should offer
a performance that allows their use in real-time, e.g. for
periodic re-planning several times per second.

VI. CONCLUSIONS AND FUTURE WORK

Multi-contact motion planning is a challenging problem
in humanoid robotics. In this paper, we have investigated
whether techniques from statistical language modeling can be
applied to the problem and proposed an innovative approach
that learns from human motion capture data and allows the
planning of whole-body pose transitions at a high level.
This approach is based on a probabilistic n-gram language
model, which is learned from sequences of whole-body pose
transitions extracted from human motion data. Our results
have shown that our approach is able to successfully generate
a complex sequence of pose transitions for locomotion along
a straight line with left or right hand supports, or both at the
same time. In the future, we will collect more motion capture
data to extend this to other types of locomotion, including
going up and down stairs or climbing a ladder.



Despite the promising results, some limitations of our
approach need to be addressed. The probabilistic approach
alone does not ensure kinematic and dynamic feasibility of
the resulting motion, and some transitions might need an
additional intermediate pose to make them feasible. These
limitations can be addressed by adding additional constraints
to our planner. Furthermore, as stated in the introduction, the
work presented here covers only the first part of the problem.
We are dividing the problem into a first step of pose transition
planning and a second step of DMP integration, and our work
has shown the feasibility of an efficient solution for the first
part. For the second part of the problem, we have already
started working on the extraction of DMPs for each type of
pose transition and we will use the results of the first step
as the starting point to adapt learned movement primitives
to the specific situation and shape of the environment.
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[15] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental
learning of full body motion primitives and their sequencing through
human motion observation,” The International Journal of Robotics
Research, vol. 31, no. 3, pp. 330–345, 2012.
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