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Comparative Analysis of Force Myography and Electromyography
Signals in Isokinetic Ankle and Knee Joint Motion
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Abstract— Exoskeletons aim to enhance mobility by integrat-
ing muscle-level biomechanics and by addressing limitations
like personalized control, with sensing methods such as elec-
tromyography (EMG) and force myography (FMG) to provide
biofeedback. Previous comparative analyses of EMG and FMG
were focused on specific classification and regression tasks
without accounting for the full range of motion (RoM) of the
human joints. This paper presents a descriptive analysis of
both FMG and EMG signals of eight leg muscles obtained in
a user study with ten participants, comparing both signals and
their variations across the complete RoM of the ankle and knee
joints during isokinetic motion at four different joint angular
velocities. Results indicate that FMG signals exhibit higher
repeatability in maximum amplitude and the corresponding
joint angle, though they show higher variability in the signals’
full width at half maximum. While EMG features are influenced
by changes in angular velocities, FMG signals appeared to
be more susceptible to cross-talk caused by opposing muscle
activities. This analysis contributes to a better understanding
of the relationship between FMG and EMG and their potential
applications in the control of assistive wearable technologies.

I. INTRODUCTION

Wearable robotic systems such as exoskeletons are created
to aid or enhance mobility. While the primary focus of these
devices has been on joint biomechanics, there is a growing
interest in integrating muscle-level biomechanics for more
effective interaction with the user’s musculoskeletal system.
Incorporating muscle-level biomechanics into the design and
control of exoskeletons has the potential to address current
limitations, such as the lack of personalized control. This
includes the manual adjustment of control parameters for
each user and monitoring user fatigue or energy expendi-
ture [1]. Research on muscle biomechanics offers valuable
data and insights for understanding human movements and
joint function, thereby enhancing the effectiveness of ex-
oskeleton control [2].

Muscle contraction is influenced by the frequency of elec-
trical action potentials. The central nervous system activates
slow muscle fibers at low frequencies and fast muscle fibers
at high frequencies. Engaging more motor units, especially
fast ones, during movement leads to greater force and more
dynamic contractions [3]. Electromyography (EMG) gives
the quantitative and objective recording of muscle function
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during a contraction and thus the recording of muscle ac-
tivity [4]–[6]. Additionally, this facilitates the detection of
changes in contraction patterns due to fatigue during pro-
longed exertion. Changes in EMG signals can generally be
utilized to control the exoskeleton in various applications [7],
[8]. Force myography (FMG) detects mechanical changes
associated with muscle contraction rather than electrical
effects. It measures the normal forces resulting from changes
in muscle volume during contraction, which is related to the
muscle activity [9], [10].

To integrate muscle biomechanics into the control of
exoskeletons, sensors and methods are required to acquire
or approximate biosignals. Non-invasive technologies such as
EMG or FMG offer the potential to measure muscle activity
and integrate this information into control [1], [11]. The
quality of the EMG signal is influenced by factors such as the
positioning of the electrodes, tissue properties, physiological
cross talk, and changes in the distance between the muscle
and the electrodes due to muscle movement [12], [13].
Therefore, the recording of EMG signals involves precise
preparation for data acquisition and extensive signal post-
processing. On the other hand, FMG does not necessitate
direct skin contact or as precise sensor placement and
complex post-processing as EMG [9], [10].

Various research studies have been conducted on the
performance of FMG and EMG in upper limb motion control
applications. The findings suggest that FMG offers greater
accuracy and repeatability compared to EMG, as well as
higher stability over time, in both offline and online usability
tests, particularly when there is a time gap between training
and testing [9], [14]–[17]. This makes FMG more suitable

Fig. 1: Schematic demonstration of the experimental setup
and process of data acquisition, feature extraction, and anal-
ysis.
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for assistive exoskeleton applications for daily activities, as
it does not require users to undergo retraining after frequent
use. In contrast, EMG is better suited for rehabilitation
applications where continuous monitoring of muscle activity
is required [14]. And while an EMG signal can indicate
the onset of contraction, an FMG signal is better suited for
identifying the end of contraction [18]. Overall, FMG-based
methods appear to be more effective for classification and
regression control in daily exoskeleton use and are preferred
by users [15]. This makes FMG a promising yet less explored
technology for the control of wearable systems.

Recent studies [16], [19]–[23] indicate that combining
FMG and EMG sensing enhances muscle activity analy-
sis. This integration can benefit from their complementary
strengths for a more thorough assessment of muscle function.
While most co-located, sensing devices are used in forearm
or hand motion recognition, Wang et al. [23] introduced a
dual-mode wearable system for monitoring lower-extremity
muscular activity. It utilizes a multi-channel pressure sensing
matrix to map FMG in a single muscle while simultaneously
capturing electrophysiological signals with a custom EMG
module. Experimental results indicate that this system ef-
fectively captures both the activation and structural changes
in the tibialis anterior and gastrocnemius medialis muscle.
Both sensor modalities demonstrate high stability and re-
peatability during walking, and the measured data of muscle
activity complements each other during certain gait phases,
enhancing gait phase recognition accuracy.

In our previous research, we investigated the application
of FMG for exoskeletons, utilizing barometric pressure-
based FMG units [10] and compared it to EMG regarding
its positioning. Our current work diverges from previous
studies by providing a comprehensive descriptive analysis
of both FMG and EMG signals gathered concurrently and
collocated. This study explores the similarities and variations
in signal amplitude, occurrence of maximum amplitude, and
variability between these two signal modalities throughout
the full range of motion (RoM) of the ankle and knee joints
in isokinetic sagittal motion. By examining these parameters,
we aim to enhance our understanding of the relationships
between FMG and EMG signals and their dependence on
joint angle and joint velocity. The findings from this analysis
not only contribute to the existing knowledge of FMG
and EMG but pave the way for future research focused
on optimizing exoskeleton performance through customized
design options and control mechanisms.

II. METHODS

This section outlines the sensor setup and the user study
used for data acquisition, followed by the signal processing
and feature extraction, and concluded by the analysis meth-
ods as indicated in Fig. 1.

A. Sensor Setup

The sensor unit for FMG, as explained in [10], detects the
normal force resulting from alterations in the volume and
stiffness of the human muscle beneath the cuff during leg

movement. It contains five barometric pressure sensors on a
single printed circuit board (PCB), all housed under a silicon
dome. Changes in pressure identified by these sensors signify
changes in the forces exerted on the silicon dome.

The muscle activity of rectus femoris (RF), biceps femoris
(BF), semitendinosus (ST), vastus medialis (VM), vastus
lateralis (VL), gastrocnemius medialis (GM), gastrocnemius
lateralis (GL) and tibialis anterior (TA) was measured using
eight FMG units and eight EMG electrode pairs placed at
specific anatomical locations, as indicated in Fig. 2. The
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Fig. 2: EMG (white electrodes) and FMG (black straps)
sensor positions on the back (a) and front (b) of the left
leg.

placement of the sensors was determined based on recom-
mendations from SENIAM [24] and real-time feedback from
the EMG sensor. Each EMG electrode pair was positioned
directly above and below the FMG sensor unit, leaving a
distance of about 20 mm between the electrodes, along the
muscle to ensure common measurement points. In addition,
the respective angular position θJ of the joints were recorded
via the IsoMed 2000 device (Fig. 3).

B. User Study

The user study was conducted in a controlled laboratory
setting using an IsoMed 2000 device. This device offers an
integrated mode enabling isokinetic motion of one joint at
a time in the sagittal plane (Fig. 3). In isokinetic motion,
the velocity of limb movement remains constant even as
muscle forces vary. Additionally, it provides a direct on-axis
measurement of the true joint torque.

For this study, we analyzed ten healthy adults, their
characteristics are detailed in Table I. The experimental
protocol received approval from the Ethics Committee of the

TABLE I: Participant Information

Age (y) Thigh length (cm) Max. thigh circ. (cm)
26.8±3.2 44.0±1.72 53.5±4.28

Height (cm) Shank length (cm) Max. shank circ. (cm)
175.2±6.78 42.0±1.96 35.7±1.44

Values represent the mean and standard deviations.



Karlsruhe Institute of Technology (KIT) as part of the JuBot
project. All participants provided written informed consent
before participating in the experiment, and all methods were
conducted in accordance with the Declaration of Helsinki.

The experiment was conducted with participants seated
on the IsoMed device, secured with their left leg on a foot
or shank support. This enabled pure sagittal motion of the
ankle or knee joint respectively (Fig. 3). Each participant had
a familiarization period of up to 10 min with the IsoMed de-
vice. During this time, the alignment of the device’s rotation
axis with the sagittal joint axis of rotation was manually
optimized using an integrated laser pointer. Additionally, the
mechanical end stops of the device were adjusted to align
with each user’s maximum RoM within their anatomical
limits. Following this, the participants performed two tasks
in a random order:

• Ankle: The ankle joint was initially positioned at max-
imum dorsiflexion. The participant then performed five
swing motions (Fig. 3a), including both dorsiflexion
and plantarflexion, within their maximum active RoM.
The five swing motions were repeated at four different
angular velocities vi: 30 ◦/s, 60 ◦/s, 90 ◦/s, and 120 ◦/s.

• Knee: The knee joint was first set to maximum extension
for initialization. The participant then performed five
swing motions (see Fig. 3b), including flexion and
extension, within their maximum active RoM. These
motions were executed at four different angular veloci-
ties vi: 60 ◦/s, 90 ◦/s, 120 ◦/s, and 150 ◦/s.
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Fig. 3: Participant set-up on the IsoMed 2000 device for
ankle motion (a) and knee motion (b) and the corresponding
definition of the joint angle θJ .

The five swing motions of each joint were repeated three
times for each velocity. For calibration, FMG was initialized
before accessing the IsoMed device. This was done by
standing upright and relaxing on both feet for approximately
10 seconds. Calibration measurements of the joint angle were
conducted at each initial position θJ = 0◦ as marked in Fig. 3.

C. Signal Processing

To process the EMG signals, a band-pass filter with a
frequency range of 20 Hz to 500 Hz was applied, followed by
rectification and a low-pass filter set at 6 Hz. All filters used
were fourth-order zero-phase Butterworth filters. Outliers in
the EMG signals were identified using a Hampel filter and

replaced with linearly interpolated values derived from the
neighboring non-outlier values. The baseline offset of the
FMG was removed using the mean values obtained from the
calibration measurements, no filter was applied to this signal.

The FMG sensor units have a maximum sampling rate of
200 Hz, while the EMG signals were sampled at 2000 Hz.
To align and concatenate all the datasets, each dataset was
linearly interpolated to achieve an equidistant number of
data points. This process resulted in the down-sampling of
the EMG data to match the FMG data. Both signals were
normalized according to the minimum and maximum values
measured for each participant and muscle after filtering.

The segmentation of each complete motion including
flexion and extension of the knee joint and dorsi- and
plantarflexion of the ankle joint was performed based on
the joint angle and thus corresponding change in motion
direction.

D. Analysis Methods

The analysis focused on the complete time-series signals
during each swing motion, as well as specific features namely
the peak amplitude and its corresponding joint angle, as well
as the full width at half maximum (FWHM) (Fig. 4). The
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Fig. 4: Signal features analyzed in each complete swing
motion over the full RoM.

peak amplitude is a distinct feature to evaluate the amount
of muscular activity measured, the corresponding joint angle
provides information on the amplitude distribution within the
RoM and the FWHM indicates the the range of joint angles
during which a muscle is active.

The variations of each feature were evaluated based on
the coefficient of variation (CV), calculated for each feature
over all swing motions of each participant and over all partic-
ipants. The CV also known as relative or normalized standard
deviation, is a standardized measure of signal variability.
A lower CV corresponds to a lower variation and thus a
higher repeatability of the signal. The variation analysis was
conducted on the data of all four angular velocity recordings
for each joint.

In a manner similar to the primary flexor and extensor
muscles involved in the movement of each joint, the analysis
of ankle joint motion focused on the TA (dorsiflexion), GM
(plantarflexion), and GL (plantarflexion). For the knee joint
motion analysis, the muscles examined included the RF
(extension), VM (extension), VL (extension), BF (flexion),
and ST (flexion). It’s important to note that the effects of bi-
articular muscles, which influence the movements of multiple
joints simultaneously, were not considered in this analysis.
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Fig. 5: Muscle signals. Mean and standard deviation of the EMG and FMG signals over all participants. Each muscle is
displayed separately for (a)-(c) ankle and (d)-(h) knee motion. Each graph includes all four velocities (v1: solid, v2: dashed,
v3: dash-dotted, v4: dotted) of each EMG (orange) and FMG (blue) signal.

III. RESULTS

This chapter presents the results from the comparison
between EMG and FMG signals after segmentation of all
measurements to each complete swing motion, with a par-
ticular emphasis on three essential features: the maximum
amplitude, the corresponding joint angle, and the FWHM,
also considering each feature’s variability.

Figure 5 displays the mean and standard deviation of the
normalized EMG and FMG signals over one complete swing
motion and across all participants. Each muscle is presented
separately for both ankle and knee movements, and each
graph includes data for all four angular velocities of the EMG
and FMG signals. The transition between motion directions
is emphasized in the middle of one swing motion by a
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Fig. 6: Peak signal amplitude. Mean and standard deviation of the maximum signal amplitude for ankle (a) & (c) and knee
(b) & (d) joint displayed for each motion direction. Muscle groups are categorized by the four velocities (from v1 left to v4
right) and by EMG (square) and FMG (circle).



vertical line. In most muscles, the EMG signal exhibits a
single prominent peak, whereas the FMG signal tendentially
shows two peaks, one peak per motion direction. Notably,
one of these FMG peaks is generally more pronounced than
the other. In the muscles contributing to knee motion, most
dominantly in BF, ST, RF and VM, the muscles tend to show
contrasting activity behavior between EMG and FMG. On
the other hand, the TA and the VM muscle display no peak
and thus consistent activation in EMG during the complete
swing motion. Furthermore, the signal FMG shows a notable
drop in its signal amplitude in the middle of the swing
motion, coinciding with periods in which the angular velocity
of the joint is zero and the direction of motion changes.
This effect is not prominently observed in the EMG data.
Furthermore, the EMG activation pattern appears to shift to
the left with increasing velocity. In contrast, the FMG signal
maintains a consistent activation pattern across all velocities.

The mean and standard deviation of the normalized maxi-
mum amplitude observed during flexion and extension in the
knee joint and plantar- and dorsiflexion in the ankle joint is
shown in Fig. 6. In both joints and both, EMG and FMG
signals, it can be observed that the amplitude displays a
contrasting behavior in its height between the flexor and
extensor muscles in both motion directions. While the BF
and ST muscle show a higher activity in the FMG signal
during flexion of the knee joint, the opposite can be observed
for the RF, VL and VM muscle. However, an opposing effect
is displayed in the EMG signal. Generally, the effect is more
prominent in the knee joint than in the ankle joint and the TA
displays no such effect at all. Again, the FMG signal displays
a higher consistency regarding the height of the maximum
amplitude than the EMG signal throughout the four angular
velocities.

Figure 7 shows the mean and standard deviation of the
occurrence of the maximum amplitude during flexion and
extension in the knee joint and plantar- and dorsiflexion in
the ankle joint, dependent on the corresponding joint angle.
The FMG signal demonstrates a higher consistency in the
joint angle at which the maximum amplitude occurs, while
the EMG has a higher dependency on the angular velocity
at which the signal was obtained. It is especially notable in
the EMG signal during knee joint motion that the flexor and
extensor muscles (e.g. BF and ST compared with RF and
VL) display a contrasting shift of the maximum amplitude
within the RoM with increasing angular velocity. This shift
is more pronounced in the flexion than in the extension of
the knee joint. In the ankle joint this effect is less notable
though still present.

Variability was evaluated on the basis of the CV of the
maximum signal amplitude and the FWHM (Figs. 8 and 9)
in each muscle as the mean and standard deviation over all
ten participants. The FMG generally demonstrates a lower
CV for the peak signal amplitude compared to the EMG, both
in terms of its mean and standard deviation. Only the TA and
GL muscle demonstrate higher mean variation in FMG than
in EMG at 120 ◦/s, RF muscle at both 120 ◦/s and 150 ◦/s.
The highest variation can be observed in the EMG signal of

the GM muscle in the ankle joint motion at 60 ◦/s and the
BF muscle in the knee joint motion at 120 ◦/s. In contrast,
the variation in the FWHM is higher for the FMG than for
the EMG signal not only in its mean but also its standard
deviation throughout all muscles and angular velocities. The
greatest variation can be observed in the TA muscle for the
FMG at 30 ◦/s during ankle joint motion and in the ST muscle
at 120 ◦/s in the knee joint motion, whereas the EMG signal
does not show one muscle standing out specifically.
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Fig. 7: Joint angle at peak amplitude. Mean and standard
deviation of the joint angles at the maximum signal ampli-
tude for ankle (a)-(b) and knee (c)-(d) joint displayed for
each motion direction. Muscle groups are categorized by the
four velocities (from v1 at the top to v4 at the bottom) and
by EMG (square) and FMG (circle).
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Fig. 8: Coefficient of variation (ankle). Mean and standard deviation of the CV of (a) the maximum signal amplitude and
(b) the FWHM of each EMG (orange, left) and FMG (blue, right) signal of each swing motion over all participants for the
ankle joint.

IV. DISCUSSION

The evaluation of both FMG and EMG signals during
isokinetic motion focused on maximum amplitude, the cor-
responding joint angle, and the FWHM. The first and last
features were specifically examined for their variability. This
evaluation explored the similarities and differences between
these two signals throughout the RoM of the ankle and knee
joints of ten participants.

Higher variations in the mean value of the maximum
amplitude and the corresponding joint angle in the EMG
signal (e.g. in the muscles BF and ST in Figs. 6d and 7d)
suggest that EMG is more dependent on the angular velocity
than FMG. The shift in the EMG signal amplitude with
increasing angular velocity shown in Fig. 5 indicates a
dependency on the joint angle. This observation supports
the findings of Hahn et al. [25], who discovered that the
excitation of all lower limb muscles measured by EMG
changes based on knee flexion angles. This is also evident
in the high mean values recorded for only the first angular
velocity, as illustrated in Fig. 6. Notably, this includes the

GL muscle during dorsiflexion, the RF and VL muscles
during extension, and the BF and ST muscles during flexion,
shifting them towards the opposing motion direction. On
the other hand, the FMG signal exhibits a visible drop in
amplitude during the transition between motion directions,
as shown in Fig. 5. This occurs when the angular velocity is
momentarily zero, indicating that the FMG signal is sensitive
to sudden changes in angular velocity suggesting that joint
acceleration has a larger influence on FMG. This supports
the idea that a combination of both sensing methods could
be beneficial not only in motion recognition but also in
estimating kinematic and kinetic joint data.

The EMG signals show only one prominent peak during
the swing motion, as displayed in Fig. 5. In contrast, the
FMG signals exhibit two distinct peaks (e.g. RF, VL, and
VM), corresponding to each direction of motion or a peak
where no muscle activity was expected (e.g. TA) in Fig. 5.
Whereas this effect is generally, more pronounced in the knee
joint compared to the ankle joint, it is most drastic in the TA
muscle. Since the TA muscle acts as a flexor of the ankle
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Fig. 9: Coefficient of variation (knee). Mean and standard deviation of the CV of (a) the maximum signal amplitude and
(b) the FWHM of each EMG (orange, left) and FMG (blue, right) signal of each swing motion over all participants for the
knee joint.



joint, its peak amplitude during plantarflexion should not be
as prominent. A possible explanation for this is the cross-
talk produced by the muscles that are covered by the strap
attaching one or more FMG sensor units to the leg. Changes
in shape and volume from the antagonistic muscle can affect
the pressure signals measured from the agonistic muscle,
either due to its muscle being activated in parallel or due to
the passive motion of the leg. The soft tissue may function
as a damper with its stiffness dependent on the subject or
motion [26], affecting the transfer of forces between the
agonistic and antagonistic muscles within the straps. Since
the lower leg generally has less soft tissue than the upper leg,
and the shinbone is situated close to the surface, the cross-
talk observed in the TA muscle could be more pronounced.
In the future, the effect based on passive motion could be
studied and potentially excluded by measuring the FMG
signal obtained by leg motion while the participant is in a
relaxed state. Additionally, it is important for the design of
an exoskeleton to consider the sensitivity of FMG sensors
to cross-talk. When these FMG sensors are integrated into
the cuffs of an exoskeleton, they should be designed to be
as decoupled from one another as possible.

The analysis of the EMG signals from both the TA and
VM muscles reveals a generally low signal amplitude, as
depicted in Fig. 5, with a slightly lesser effect observed in the
VM muscle. Enhanced noise can obscure significant maxima,
leading to the filtering of insufficiently pronounced peaks
and complicating data interpretation. The stochastic nature
of EMG signals, characterized by rapid fluctuations, con-
tributes to challenges in post-processing, potentially resulting
in undetected outliers and reduced normalization quality.
Furthermore, peaks in muscle activation may occur at varying
stages of the swing motion for each participant, which
could lead to cancellation when calculating the mean across
participants. Addressing these limitations is essential for
advancing our understanding of muscle activation patterns
and improving the efficacy of wearable robotic systems in
clinical and rehabilitative contexts.

The signals from EMG and FMG exhibit nearly oppo-
site behaviors with respect to their signal amplitude. This
phenomenon can be observed during a complete swing
motion, where the normalized maximum amplitude occurs
in contrasting phases/directions of the motion, which is es-
pecially prominent in the knee joint motion. This distinction
may account for the improved performance of classification
methods in [19]–[23] that combine both EMG and FMG
signals, as their differing features and variability provide
a complementary advantage for feature-based, data-driven
machine learning approaches.

The EMG signals exhibit greater variability in the activa-
tion patterns between the participants compared to the FMG
signals. Specifically, the FMG signals demonstrate enhanced
repeatability in terms of maximum amplitude across multiple
participants, aligning with the observations reported in pre-
vious studies [16], [17]. In contrast, the duration of muscle
activity, as measured by FWHM, shows greater consistency
in the EMG signals, as evidenced by their lower CV. This

discrepancy suggests that while FMG signals may provide
more reliable peak amplitude readings, the EMG signals
offer a more stable representation of the duration of muscle
activation. However, no general trend regarding variations
within any angular velocity can be extracted from either
EMG or FMG in the peak amplitude and the FWHM.

However, it is important to note that a limited number
of participants exhibited a small subset of muscles with
either a markedly elevated or non-existent CV. For instance,
the VM muscle in two participants displayed such outlier
behavior. In particular, these outliers did not correlate with
any identifiable characteristics of the participants, suggesting
that external factors may play a role in these variations.
One plausible explanation for this phenomenon is sensor
misalignment or interference caused by the attachment of
participants to the IsoMed device. The necessity for precise
positioning of the IsoMed actuation levers to avoid inter-
ference with the EMG and FMG electrode locations may
have inadvertently introduced variability in the signal quality.
This highlights the importance of ensuring optimal electrode
placement and minimizing external influences to enhance the
reliability of EMG and FMG readings.

The study’s findings are based on a relatively small sample
size of ten participants, which may limit the statistical power
necessary for rigorous hypothesis-driven analysis. Conse-
quently, we advise that these results be interpreted as prelim-
inary indicators that warrant further investigation. It would
be beneficial to explore these findings in subsequent research
with a larger and more diverse participant group to enhance
the validity and generalization of the conclusions drawn.
Such efforts would contribute significantly to advancing our
understanding of the topic.

Although the data presented in this paper provide valuable
information on both EMG and FMG, the untapped potential
remains to be explored. A more in-depth examination of
each specific motion direction, focusing on both agonistic
and antagonistic muscles, could yield additional information.
Furthermore, a closer analysis of the FWHM alongside the
corresponding joint angles may reveal relevant details about
the range of motion detectable by the muscular signals of
each sensing method and the extent to which they can be
measured. The results of this paper offer strong potential for
deeper exploration, especially in highlighting the benefits and
limitations of FMG compared to EMG.

V. CONCLUSION

The evaluation of FMG and EMG signals during isoki-
netic motion reveals that FMG signals demonstrate higher
repeatability in maximum amplitude and corresponding joint
angle both within and across participants compared to EMG
signals, which show more consistent muscle activity dura-
tion. Although high repeatability supports the generalization
of control methods for different users of wearable robots,
signals with higher variability can contribute to the per-
sonalization of control, allowing for the adaptation of the
controller to satisfy the particular requirements of individual
users. While EMG signals appear to be more affected by



angular velocity, FMG signals seem more sensitive to sudden
changes in angular velocity. The contrasting and augmenting
behavior of EMG and FMG signals, particularly in signal
amplitude during motion phases, suggest that combining
these signals enhances their performance in application due
to their complementary features and indicates their poten-
tial for comprehensive motion recognition and joint data
estimation. Future research could focus on exploring these
complementary strengths to develop more effective control
systems for wearable robotics, while also addressing FMG’s
sensitivity to cross-talk and EMG’s normalization challenges.
Furthermore, the results underscore FMG as a promising
method for the integration of biofeedback in the control of
wearable robotic technologies.
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