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Force Myography Based Torque Estimation
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Abstract— The online adaptation of exoskeleton control based
on muscle activity sensing offers a promising approach to per-
sonalizing exoskeleton behavior based on the user’s biosignals.
While electromyography (EMG)-based methods have demon-
strated improvements in joint torque estimation, EMG sensors
require direct skin contact and extensive post-processing. In
contrast, force myography (FMG) measures normal forces
resulting from changes in muscle volume due to muscle activity.
We propose an FMG-based method to estimate knee and ankle
joint torques by integrating joint angles and velocities with
muscle activity data. We learn a model for joint torque estima-
tion using Gaussian process regression (GPR). The effectiveness
of the proposed FMG-based method is validated on isokinetic
motions performed by ten participants. The model is compared
to a baseline model that uses only joint angle and velocity as
well as a model augmented by EMG data. The results indicate
that incorporating FMG into exoskeleton control can improve
the estimation of joint torque for the ankle and knee joints in
novel task characteristics within a single participant. Although
the findings suggest that this approach may not improve
the generalizability of estimates between multiple participants,
they highlight the need for further research into its potential
applications in exoskeleton control.

I. INTRODUCTION

Lower limb exoskeletons are wearable devices designed to
assist or augment mobility. While their design and control of
these devices have traditionally focused on joint biomechan-
ics, there is growing interest in incorporating muscle-level
biomechanics to improve the effective interaction with the
wearer’s musculoskeletal system. Incorporating muscle-level
biomechanics into exoskeleton design and control has the
potential to overcome some of the current limitations, such
as lack of personalization in control strategies, including the
need to manually adjust control for each user or track fatigue
or energy expenditure [1]. Insights from muscle biomechan-
ics research can enhance understanding of human movement
and improve the effectiveness of exoskeleton control [2].

To incorporate muscle biomechanics into exoskeleton
control, methods are needed to measure or estimate these
biomechanics. Such methods should provide relevant biome-
chanical data in real-time during static and dynamic motion
and must be compatible with the physical structure of the
exoskeleton. Electromyography (EMG) is a widely recog-
nized approach to capturing the electrical effects of muscle
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activity [3]–[5]. However, ensuring high-quality EMG sig-
nals requires extensive filtering and signal post-processing.
Several factors can negatively affect signal quality, including
electrode positioning on the muscle, electrode skin contact,
and electrode displacement during muscle contraction. In
contrast, force myography (FMG) detects the mechanical
phenomena associated with muscle contraction rather than
electrical effects by measuring the normal forces resulting
from the muscle volume change. Consequently, it does not
require direct skin contact, precise sensor placement on the
muscle, and complex post-processing [6], [7]. Since only
contact between the body and the exoskeleton is required to
measure the interaction forces between both, force sensors
can be integrated into exoskeleton cuffs, making FMG-based
control of exoskeletons a promising approach.

Estimating human joint torques allows unifying exoskele-
ton control and thus reduces the user effort [8]. In our
previous work, we investigated the use of FMG for ex-
oskeletons using barometric pressure-based FMG units [7],
[9]. This paper extends our investigation of using FMG to
estimate joint torques of the knee and ankle joint based
on the combination of the joint angle and velocity with
muscle activity. To do so, we learn a model for joint torque
estimation using Gaussian process regression (GPR). We
consider the proposed FMG-based approach for estimating
joint torque an important initial step towards personalized
exoskeleton control. We demonstrate the potential of the
approach using data collected in a user study with ten
participants performing isokinetic exercises, in which the
velocity of the limb movement is maintained constant with
varying resistance and muscle forces. To evaluate the FMG-
based approach, we compared our model to a baseline model
that only uses joint angle and velocity, as well as a model
augmented by EMG data (Fig. 1).
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Fig. 1: Schematic overview of the process of data acquisition,
regression, and evaluation.
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The paper is organized as follows. Section II discusses
current related work while Section III describes the model
used to estimate the joint torques, the user study conducted,
the sensor setup used, and the processing of the recorded
signals. The quality of the torque estimation and its vali-
dation results are presented in Section IV and discussed in
Section V. Section VI concludes the paper.

II. RELATED WORK

The introduction of joint torque estimation in exoskeleton
control aims to provide momentous feedback in a closed-
loop control system. This enables task-independent control,
eliminating the need for discretization of human motion, re-
sulting in task-dependent feedforward control trajectories [8].
Using multiple sensing methods to capture muscle activity
has created an opportunity to optimize human joint torque
estimation during exoskeleton usage. Previous work has
explored a variety of EMG-driven methods for actuation
and estimation of joint torques in exoskeleton control, and
intention prediction.

EMG methods combined with neuromusculoskeletal
(NMS) models enhance human-robot cooperation in ex-
oskeletons by considering joint angles and muscle dynam-
ics [10], [11]. This combination performs best during high
muscle activation trials, but pairing it with artificial neural
network (ANN) showed superior performance with diverse
training data [12]. Recent hybrid NMS models combined
with ANN and convolutional neural network (CNN) have
been shown to outperform traditional NMS models in torque
estimation [13], [14]. Additionally, combining inertial sen-
sors with EMG-driven simulations supports the characteriza-
tion of knee joint mechanics during walking [15], [16], while
NMS models have been shown to enable personalized torque
estimations in the ankle joint using real-time EMG data [17].
Other EMG-based methods use deep learning methods [18]–
[20], such as temporal convolutional networks (TCNs) [21],
CNN [14] or ANN [13] directly to estimate lower limb
joint torques and optimize its performance. Although these
methods surpass traditional NMS models, their effectiveness
in a hybrid model with NMS varies based on the specific
model and application [13], [14]. Proportional myoelectric
control directly uses the muscle activity amplitude to control
the torque output of the exoskeleton [22]. Studies showed
that users of a proportional myoelectric controlled ankle
exoskeleton maintained their normal joint biomechanics [23],
however, the effect on metabolic cost was limited during
walking both on a treadmill and outdoors [24], [25]. More-
over, these controllers measure only the resulting behavior
of the muscle actions and thus do not fully capture the
muscle and body mechanics [1]. In general, these results
show the potential to integrate EMG signals, either directly or
in advanced algorithms, to personalize joint torque estimation
and torque control of exoskeletons.

On the other hand, FMG signals have been extensively
and successfully investigated in various wearable applica-
tions such as upper arm or hand motion classification and
intention detection [26]–[29], lower limb gait phase or event

detection [30], [31] and ankle position classification [32]
often showing to outperform EMG-based methods. Research
indicates a nonlinear relationship between muscle surface
deformation and torque, implying that muscle deformation
could be an effective signal for non-invasive, real-time torque
measurement [33]. Sakr et al. [34] demonstrated promising
results of using FMG signals from the lower arm to estimate
multi-directional isometric hand force/torque. The feasibility
of estimating lower-limb joint torques using FMG signals
has yet to be investigated and compared to methods based
on EMG and kinematic sensors alone.

III. METHODS

Accurate biomechanical models of joint kinematics in
combination with normal muscle forces are difficult to
obtain. To learn the relationship between kinematics and
muscle force, we propose a Gaussian process regression
(GPR) model. This section describes the model and the user
study, including the sensor setup used to provide data for the
training and validation of the model. A schematic overview
of the entire torque estimation and validation process is given
in Fig. 2.

A. Joint Torque Estimation Model

GPR models are a kernel-based probabilistic and paramet-
ric supervised learning method for input-output mapping of
empirical data that follows a joint Gaussian distribution [35].
In vector form, this can be expressed by

f (x)∼ GP(m(x),k(x,x′)), (1)

where an observed outcome f (x) is estimated from an input x
by a Gaussian process with the mean function m and the
covariance function k(x,x′). For the covariance function, the
radial basis function (RBF)

k(x,x′) = σ
2 exp(−|x−x′|2

2l2 ), (2)

with the length scale l and the error variance σ2 was chosen.
These hyperparameters are optimized with the mean func-
tion, maximizing the log marginal likelihood and minimizing
the cross-validation loss. The mean function is often used to
incorporate prior knowledge and is commonly set to zero if
no approximation model is known.

The input x is defined for three different configurations:

x =


(θJ ,ωJ)

T baseline

(θJ ,ωJ ,MEMG)
T EMG

(θJ ,ωJ ,MFMG)
T FMG

(3)

where θJ represents the joint angle, ωJ the joint angular
velocity, and M the muscle signals obtained either from FMG
or EMG signals. These result in the corresponding estimated
joint torques T̃J,baseline, T̃J,FMG and T̃J,EMG.

For each joint, the muscle signal M was selected based on
the primary muscles involved in the motion of that joint [36]:

M =

{
(MTA,MGM,MGL) ankle joint

(MBF,MRF,MST,MVM,MVL) knee joint
(4)
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Fig. 2: Schematic representation of the torque estimation and validation process for knee joint motion.

where MTA, MGM, MGL, MBF, MRF, MST, MVM and MVL
correspond to the muscular signals of the tibialis anterior
(TA), gastrocnemius medialis (GM), gastrocnemius lateralis
(GL), biceps femoris (BF), rectus femoris (RF), semitendi-
nosus (ST), vastus medialis (VM) and vastus lateralis (VL).
The effects of biarticular muscles, which influence the move-
ments of multiple joints at the same time, have not been
considered beyond the joints described in Eq. (4).

B. User Study

To validate the model combining joint biomechanics and
muscle signals in isokinetic motion, a user study was carried
out in a controlled laboratory environment using an IsoMed
2000 device. This device includes an integrated mode that
facilitates isokinetic movement of a single joint at a time
(Fig. 3) and offers a direct on-axis measurement of the
true sagittal joint torque. During isokinetic movement, the
velocity of limb motion remains constant while the muscle
forces can change. This provides a controlled experimental
setup with minimal disturbances or external forces acting on
the sensors during the motion.

In the study, ten healthy, able-bodied adults participated
(m = 5 | f = 5, age 26.8±3.2 years, height 175.2±6.78 cm,
weight 65.0± 6.8 kg). The experimental protocol was ap-
proved by the Karlsruhe Institute of Technology (KIT) Ethics
Committee under the JuBot project. Participants provided
their informed consent in writing prior to the experiment,
and all methods were performed following the Declaration
of Helsinki.

The experiment was conducted with participants posi-
tioned on the IsoMed device, where their left leg was
secured on either a foot or shank support. This arrangement
permitted pure sagittal movement of the ankle or knee joint
as shown in Fig. 3. Participants were given up to 10 min
to familiarize themselves with the IsoMed device, during
which the device’s rotation axis was carefully aligned with
the sagittal axis of rotation of the joint using a built-in laser
pointer. Furthermore, the mechanical end stops of the device
were positioned to correspond to the user’s maximum range

of motion (RoM) within their anatomical limits. Following
this, the participants performed two tasks in a random order:

• Knee: First, the knee joint was positioned at the max-
imum extension for initialization (Fig. 3a). Next, the
participant performed a series of five swing motions,
including flexion and extension within their maximum
active range of motion, maintaining a constant max-
imum angular velocity. These motions were carried
out at four different angular velocities: 60 ◦/s, 90 ◦/s,
120 ◦/s, and 150 ◦/s. The initialization procedure and
the five swing motions were repeated three times for
each velocity, resulting in three recordings per angular
velocity.

• Ankle: The ankle joint was first initialized in a posi-
tion in which the foot was orthogonal to the shank
(Fig. 3b). Next, the participant performed five swing
motions, including dorsi- and plantarflexion between
the maximum angles of their active joint range. The
initialization procedure and the five swing motions were
repeated three times for velocities: 30 ◦/s, 60 ◦/s, 90 ◦/s

and 120 ◦/s, resulting in three recordings per angular
velocity.
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Fig. 3: participant set-up on the IsoMed system for knee
motion (a) and ankle motion (b) and the corresponding
definition of the direction of the joint angle θJ .



For calibration purposes, the FMG sensors were initialized
before accessing the IsoMed device by standing upright
and relaxed on both feet for approximately 10 seconds.
Calibration measurements of the joint angle were conducted
at each initial position θJ = 0◦ as marked in Fig. 3.

C. Sensor Setup

The used FMG sensor unit measures the normal force
resulting from a change in volume and stiffness of the
human muscle underneath the cuff during leg motion. The
sensor unit comprises five barometric pressure sensors on
a single printed circuit board (PCB), covered by a silicon
dome. Variations in pressure detected by these sensors reflect
changes in the forces applied to the silicon dome. A detailed
description of the sensor unit is given in [7],

In our experiments, eight FMG units and eight EMG
electrode pairs were placed at anatomically relevant locations
to measure the muscle activity of RF, BF, ST, VM, VL,
GM, GL and TA as displayed in Fig. 4. The positions
were determined based on EMG placement recommendations
given in SENIAM [37] combined with an assessment of real-
time feedback of the EMG sensor. The two EMG electrodes
were attached above and below the FMG sensor unit along
the course of the muscle to ensure measurement at the same
point on the muscle. In addition, the respective angular
position θJ and torque of the joints TJ were recorded via
the IsoMed device.
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Fig. 4: EMG (white electrodes) and FMG (black straps)
sensor positions on the back (a) and front (b) of the left
leg.

D. Signal Processing

The amplitudes of the EMG signals are stochastic, and the
signal fluctuates rapidly around zero. Therefore, the signals
were band-pass filtered between 20 Hz to 500 Hz, rectified
and afterwards low-pass filtered at 6 Hz. Both filters applied
were fourth-order bi-directional Butterworth filters to achieve
zero phase distortion. The baseline offset was removed using
the mean values obtained from the calibration measurements

to calibrate both the FMG signal and the joint angle signal.
No further filtering was applied to the FMG signal.

The angular joint velocity was derived based on the joint
angle measurements. A second order Butterworth filter with a
cutoff frequency of 20 Hz was applied bi-directionally before
calculating the gradient. The segmentation of each complete
motion, including flexion and extension of the knee joint and
dorsi- and plantarflexion of the ankle joint, was performed
based on the filtered joint angle to make it easier to recognize
their extrema corresponding to the change in direction.

The FMG sensor units allow a maximum sampling rate of
200 Hz, while the joint angle, joint torque, and EMG signals
were sampled at 2000 Hz. To align and concatenate all
data, each dataset was linearly interpolated to an equidistant
number of data points, resulting in a down-sampling of
the joint angle and EMG data to fit the FMG data. To
ensure that the data can be easily compared, all values
were standardized using Z-score normalization, and after
regression, the estimated joint torque was denormalized to
its original scale.

To compare both the inter- and intra-participant perfor-
mance of the model, the evaluation of the estimation results
was based on a leave-one-participant-out (LOPO) and a
leave-one-velocity-out (LOVO) cross-validation. The LOPO
method integrates the concatenated data of all four velocities
for each participant, and the LOVO is performed separately
for each participant. Since the computational complexity of
GPR is O(n3), a sparse gaussian process regression (SGPR)
was used to train the model for LOPO. The initial inducing
points are a randomly selected subset of 0.25 % and 10 % of
the training data for LOPO and LOVO, respectively. Early
stopping was used with a patience of 50 epochs to avoid
overfitting, tracking the validation loss based on 20 % of the
training data, and restoring the best model if no improvement
was made over these 50 epochs.

The standard deviation of the model estimation was eval-
uated by root-mean-squared error (RMSE). A lower value of
RMSE implies a higher accuracy of the GPR model. Model
training and testing were done using TensorFlow.

IV. RESULTS AND ANALYSIS

The proposed GPR-based joint torque estimation approach
was evaluated using LOPO and LOVO cross-validations
to assess its performance. The RMSE values from these
validations are presented in Fig. 5 for both the ankle and knee
joints and the three model configurations. The performance
of the approaches varies between the LOPO and LOVO val-
idations. In the LOPO validation, the RMSE values indicate
that the baseline model is the most accurate of the three
approaches. Conversely, the LOVO validation shows that the
extended model with FMG signals achieves comparable or
better performance than the baseline model. In the LOPO
validation, the EMG-based model outperforms the FMG-
based model for most participants but performs worse in the
LOVO validation. However, the LOPO results indicate that
the FMG-based model performs better for the knee joint than
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Fig. 5: RMSE of the LOPO (a) and mean and standard deviation of the RMSE over all four velocities of the LOVO (b)
validation for all three model configurations, baseline (blue, left), EMG (orange, middle) and FMG (green, right) of both
the ankle (top) and knee (bottom) joint.

for the ankle joint, outperforming the EMG-based model for
four participants.

Figure 6 presents an example of joint torque estimation
from time series data of a single participant, comparing
estimated and measured joint torque during isokinetic motion
at 60 ◦/s based on the corresponding test data. The baseline
model, which considers only joint angle and velocity, pro-

vides a stable estimate but fails to capture the variations in
the true torque amplitude. In contrast, incorporating muscle
signals improves the model’s ability to capture the variations
in true torque amplitude that vary across participants and
speeds. However, this also results in greater variability com-
pared to true torque amplitude in the EMG or FMG based
torque estimates for LOVO and LOPO, respectively.
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Fig. 6: Measured and estimated torque over time for all three model configurations, baseline (blue, dashed), EMG (orange,
dash-dotted) and FMG (green, dotted) of both the ankle (top) and knee (bottom) joint. The exemplary data of (a) the LOPO
and (b) the LOVO validation is based on the testing data of one recording of the isokinetic motion of participant G at 60 ◦/s.



V. DISCUSSION

This work presents a FMG-based approach to estimating
torques in the knee and ankle joints. It uses joint angles
and velocities together with muscle activity in a GPR. The
effectiveness of this FMG-based method is validated through
a study with ten participants and compared to a baseline
model using only joint angle and velocity, as well as a model
based on EMG.

The LOPO validation showed that a model based on joint
angle and velocity is more effective for generalization across
multiple users, including novel ones. This observation may
be due to the comprehensive recording of the full range
of motion in each experiment, resulting in joint angle and
velocity data that are more consistent across participants.
In contrast, muscle activity is influenced by factors such as
varying fitness levels and fatigue, resulting in fluctuations
in amplitudes even after calibration. The results suggest
that the electrical activation of muscles tends to be more
uniform across individuals, as shown by the similar RMSE
of the EMG signals in the LOPO validation. In contrast,
the RMSE of the LOPO validation suggests that the volume
of muscle activity itself is less consistent across individuals.
These results may be attributed to the validation of isokinetic
motion focused on the sagittal plane. Previous research has
shown that the integration of muscle activity into joint torque
estimation models is more advantageous for non-cyclic than
for cyclic tasks [21]. Therefore, future research will include
a range of activities of daily living to confirm the findings
across a spectrum of combined motions and to determine
the comprehensibility of muscular signals during motions,
including multidirectional and non-periodic motions.

The integration of muscle activity into the joint torque
estimation appears to improve generalization to novel task
characteristics, such as changes in task velocity and varia-
tions in the torque amplitude. This is reflected in the low
RMSE values observed in the LOVO validation for several
participants and is supported by the visualization of the cor-
responding torque trajectories of the five exemplary swings.
In this context, the estimation based on FMG demonstrates
greater accuracy than the EMG-based model, which is almost
comparable to the baseline model. Belyea et al. [29] reported
similar findings in their study of human wrist motion utilizing
support vector regression (SVR).

The proposed GPR model uses a fully data-driven ap-
proach with a difficult-to-interpret model. Future research
will aim to integrate additional prior knowledge into the GPR
model, drawing inspiration from biomechanical models or
exploring other more interpretable model alternatives. This
has the potential to reduce the data requirements for model
training and provide a clearer understanding of how each
input signal influences the model output. In addition, it may
be possible to distinguish between a generalizable model
based on joint angles and velocities and a customizable
model based on muscle activity. This separation could allow
the general model to be optimized for each individual during
use. In contrast, less comprehensive and more data-driven

models such as ANN [12] and CNN [14] have so far proven
to be well suited for EMG-based joint torque estimation in
isokinetic and non-weight-bearing applications as well as
during walking.

In the future, when using an exoskeleton, it is expected
that the forces used to move the exoskeleton may interfere
with the measurement of muscle activity using FMG due
to potential disturbance forces caused by the interaction
between the exoskeleton and the user. Even within this
laboratory setup, it remains a challenge to eliminate the
possibility that other parasitic forces - arising from co-
contraction or external perturbations - may interfere with
FMG measurements. The decision to use the IsoMed device
was aimed at mitigating the influence of as many parasitic
forces as possible. In our previous work, we have shown
how motion restrictions due to an ankle exoskeleton can
affect FMG sensor signals [9]. Further research will reveal
the extent to which actuation can affect FMG-based torque
estimation and control.

The results emphasize that FMG technology offers a
promising alternative to EMG technology for the develop-
ment of a more personalized assistive exoskeleton, but further
research on its performance and applicability in exoskeleton
control is needed.

VI. CONCLUSION

Incorporating muscle activity signals is a promising ap-
proach for online personalization of exoskeleton control. In
this work, we proposed an FMG-based approach to estimate
knee and ankle joint torques using joint angles, velocities,
and muscle activity in a GPR model. To validate the ef-
fectiveness of FMG-based torque estimation, we conducted
a user study with ten subjects performing isokinetic ankle
and knee motion. A comparative analysis was performed
against a baseline model using only joint angle and velocity
data, and a model augmented with muscle activity signals
obtained from EMG sensors. The results reveal that incor-
porating EMG data into the exoskeleton control improves
the estimation of joint torque for the ankle and knee joints
in the presence of unknown task characteristics, such as
velocity changes, for each subject. While the results may
not show improved generalizability across different subjects,
the findings underscore the need for further research into the
potential of FMG as an alternative to EMG for developing
control strategies for exoskeletons.
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