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Humanoids and Intelligence Systems Lab

Karlsruhe Institute of Technology
e-mail: {schill, asfour, dillmann}@kit.edu

ABSTRACT

In this paper, we present an approach for haptic object recognition
and its evaluation on multi-fingered robot hands. The recognition
approach is based on extracting key features of tactile and kines-
thetic data from multiple palpations using a clustering algorithm. A
multi-sensory object representation is built by fusion of tactile and
kinesthetic features.

We evaluated our approach on three robot hands and compared
the recognition performance using object sets consisting of daily
household objects. Experimental results using the five-fingered
hand of the humanoid robot ARMAR, the three-fingered Schunk
Dexterous Hand 2 and a parallel Gripper are performed. The re-
sults show that the proposed approach generalizes to different robot
hands. Keywords: Object Recognition, Bag of Keypoints, Robot
Hands, Tactile Sensing.

1 INTRODUCTION
Several applications of artificial haptic sensors have been envi-
sioned and studied over the past years. Especially in humanoid
robotics the interest is given by the goal of reproducing human-
like capabilities. A strong haptic sensing capability is essential for
autonomous action in unstructured environments as well as human-
robot interaction. The application domains that have been investi-
gated for touch sensors include contact detection, grasping, dexter-
ous manipulation, slip detection and object recognition. This work
concentrates on the latter topic with the major contribution being
the conceptual improvement of a previously proposed concept in-
cluding the key steps necessary for using the system with different
types of robot hands varying in the number of DoF and tactile sen-
sors.

Various approaches have been proposed for haptic object recog-
nition. In general it is difficult to compare and reproduce the results,
as the approaches use different and very often unique hardware.
They lack generality or have not been tested across several plat-
forms. Some approaches consider the use of only one sensor type,
that means, either tactile or kinesthetic modality [15]. A range of
approaches concentrate on classifying an object based on a point
cloud acquired from haptic data [2, 12]. These approaches are usu-
ally limited by the requirement of objects being fixed and station-
ary. Therefore, recent work tries to build an object model directly
from haptic sensor data without building a 3D-model. In [10], ob-
jects were categorized according to their shape perceived through a
single grasp.

A popular approach for pattern classification in vision is the so
called bag of keypoints that has been studied extensively [5, 1]. Ap-
plied to haptics it means that, like the human, when solving the task
of haptic object recognition, the robotic system relies on multiple,
partial observations. This has been studied by Schneider et al. [13]
and in our previous work [8]. These works report that a growing
number of combined observations improves haptic object recogni-
tion giving support to the bag of keypoints idea. This approach

also has the advantage of relying on the data as observed by the
robot hand without reconstructing geometric properties explicitly.
This way the problem of spatial registration of observations can be
avoided, meaning objects do not have to be fixed in the recognition
process.

In contrast to the work by other authors, our work evaluates
kinesthetic and tactile information separately, giving insight into
importance of tactile and kinesthetic information for the recogni-
tion process. Objects are held by the robot hands without support
during data acquisition, leading to high variability in the object’s
position and orientation. Additionally, the evaluation on diverse
robotic hands demonstrates the universality of the approach.

After this introduction, the object recognition framework is in-
troduced in section 2 followed by section 3, which explains how
the components of the recognition framework are linked. Then the
evaluated robotic hands and the tactile sensor system are presented
in section 4. The results of our approach are presented in section 5
and finally the conclusions are given in section 6.

2 OBJECT RECOGNITION FRAMEWORK
On one hand the algorithms presented in this section deal with the
elementary steps that transform haptic data from one representa-
tion to another and on the other hand they describe how to build an
object representation from these intermediate steps.

2.1 Principal Component Analysis
A principal component analysis (PCA) is used for identifying a
transform from a high dimensional feature space to a lower dimen-
sional subspace that best accounts for the variance present in the
data. In our work it is used to find characteristic features of con-
tact pattern examples (see sec. 3). For the PCA n features ~vi of
dimensionality s are given. The mean vector is computed to

~µ =
n

∑
i=1

1
n
~vi. (1)

The covariance matrix is given by

K =
1
n

n

∑
i=1

(~vi−~µ)(~vi−~µ)T (2)

which is of size s× s.
The principal component analysis of K results in s eigenvalues

Λi and the accordant eigenvectors γi, which span the orthogonal
eigenspace Γ = (γ1, · · · ,γp). This eigenspace describes the highest
variance between the features. The s× s-matrix, with each eigen-
vector as a column, is reduced to a s× d-matrix E by taking only
the first d eigenvectors with highest eigenvalues. Given an image
in vector presentation ~v and the reduced eigenvector matrix E the
image vector is reduced to a d× 1-vector by ~k = ET ·~v which is
used as the final presentation of a feature.

If using PCA for representing tactile features a tactile image I of
the size w×h can be represented as the vector~v of size s = w ·h.

I =

I11 · · · Iw1
...

. . .
...

I1h · · · Iwh





⇒~v =
(
I11 . . . Iw1, I12 . . . Iw2 . . . I1h . . . Iwh

)T

In a PCA context, the intrinsic dimensionality is the number of
eigenvectors γi that are sufficient to represent the variance present in
the data. The dimensionality reduction toolbox [16] that was used in
this work solves this with a threshold. For thresholding, the eigen-
values are normalized to [0,1] and eigenvectors with eigenvalues
< 0,025 are discarded.

2.2 Normalization of Contacts
A normalization of contacts may be profitable if the variance in the
tactile data does not represent variance in the object’s appearence.1
The grey values of an imprint vary depending on the applied pres-
sure. Thus, a tactile image is simply normalized for pressure by ap-
plying histogram equalization or a binarization procedure. As the
data of the tactile sensor matrix corresponds to a two-dimensional
planar image, these images are additionally analyzed using mo-
ments up to the 2nd order [9]. The moment analysis results into
the position and the orientation amongst other features. Using this
information, the centroid of the imprint is shifted into the center of
the image and the orientation of the imprint is aligned to the image
axes, as shown in Fig. 1.

Figure 1: Steps of the normalization procedure: (1) Starting from a
raw tactile image. (2) The image is normalized for pressure. (3) The
imprint is moved to the image center and the axes of the imprint are
aligned to the image axes.

2.3 Self-Organizing Maps
A clustering algorithm is needed for describing a feature space
in terms of salient features. A self-organizing map (SOM) [11]
is a neural network based clustering algorithm that describes a
structure-preservative mapping from high-dimensional input space
to a 2D map. Similar patterns in the input space lie in a geographi-
cal near position on the 2D map.

The SOM is described by a set of neurons ci. Each ci is as-
signed to a n-dimensional weight vector mi and a position ri on the
map. Each neuron represents a currently unknown category/cluster.
During the training process each input pattern is assigned to one of
these categories and simultaneously the discrimination between the
categories becomes more precise with each step of the training. The
SOM can be referred to as an unsupervised learning or clustering
method.

One training run t consists of 4 steps:

1. Pick a random input vector x(t).

2. Calculate distance between weight vectors and input vector:

Di(t) = ‖x(t)−mi(t)‖ .

3. Determine winner neuron c:

c = argmin
i

(Di(t)).

1In our experiments this was only the case for the Gripper (see sec. 5).

4. Adapt weight neurons in the neighborhood of the winner:

mi(t +1) = mi(t)+α(t) ·hci(t) · [x(t)−mi(t)].

The neighborhood function is given by:

hci(t) = exp
‖rc− ri‖2

2 ·σ(t)2 .

An adaptation means the movement of the weight vectors into the
direction of the input vectors. The learning process terminates by
reducing the learning rate α(t) and the neighborhood hci(t). The
SOM converges to a stable state if no further changes occur.

The use of a w×h SOM results into w ·h categories for describ-
ing an input pattern. After training, the SOM can be used for as-
signing a pattern to one of the determined classes by the function
S(x):

p = S(x) = argmin
i

(‖x−mi‖) ∈ [1,w ·h] (3)

In a vector representation this can be written as a w · h zero vector
with a value one at position p.

2.3.1 Activation
A soft decision can be made by weighting each weight neuron by
its distance to the input pattern. For a given feature vector x an acti-
vation vector a of length w ·h is calculated as follows: If x is closest
to the vectors mi, then the activation value ai < 1 is related to the
respective distances from x to every mi. Figure 2 shows an exam-
ple of a SOM and a activation vector calculated using the distances
between the clusters (neurons).

Figure 2: Left: distance relationship of the neurons (indicated by blue
points) on a SOM. Bright colors correspond to lower distances, dark
colors higher to distances. Right: 2D representation of an activation
vector.

2.4 Bag of Keypoints Approach
For the bag of keypoints approach a set of salient features is de-
termined by unsupervised learning/clustering on a representative
dataset of the object features. In our case such a training set XT
consists of tactile imprints or joint configurations. From the clus-
tering algorithm with input XT and an integer k results the keypoint
set Xd = {x1, . . . ,xk}.

A vector d = {d1, . . . ,dk} we call descriptor is used for repre-
senting an object. The descriptor is built up by summing the acti-
vation vectors a from 1 or more observations; d is is normalized at
the end to a sum value 1 in a fashion similar to histograms. This ap-
proach can cope with partial observations and still result in a model
for the complete object if dense data is available. Even more so, de-
scriptors based on few observations and descriptors based on many
observations of the same object can still be matched against each
other.

We use the activation vectors described in sec. 2.3.1 rather than
matching observations against a single keypoint, as a strategy for



coping with big numbers k of clusters, needed for accurately de-
scribing the feature space when using SOMs. When comparing
descriptors of objects, we want to ensure similar observations are
matched even when the keypoints for each palpation don’t match
exactly. Therefore the activation vectors can be seen as a way of
capitalizing on the local similarity structures of the SOM.

2.5 Artificial Neural Network Classifier

An artificial neural network (ANN) is described by a set of neu-
rons ni and a set of edges ei which connect the neurons and build a
network. A single neuron has several inputs and one output. Each
neuron processes the input with a nonlinear weighted sum and gen-
erates the output, which is then propagated to the connected neu-
rons. Each neuron ni is assigned to exactly one layer. Usually a
network of neurons consists of an input layer, a hidden layer and an
output layer. The size of the input layer refers to the size of feature
size, whereas the size of the output layer is based on the number
of classes. A feed-forward network allows the signals to travel only
one way from the input layer to the output layer. During the training
process, the weights and the thresholds of the neurons are adapted
so that the error with respect to the target outputs is minimized. An
artificial neural network can be used as a classifier. Given a feature
as input to the network, the output neuron with the highest activa-
tion represents the assigned class.

3 SYSTEM OVERVIEW

The single components presented in the previous section converge
to a haptic object recognition system as illustrated on fig. 3. The
flow of the black arrows follows the processing steps from the raw
data of K palpations to the object representation used for classifi-
cation. Green boxes correspond to the representation haptic data
has at a given intermediate step. Blue boxes represent the machine
learning algorithms used to process the haptic data; their parame-
ters are estimated in the training phase which is indicated by the
red arrows and boxes with red contours. The learning of param-
eters is done incrementally: after one parameter set is estimated,
the training data is propagated to the next stage in the system to
be used again. In the training phase all available data is presented
to the machine learning algorithms at once and labeled features are
only used for training the ANN-Classifier. For the evaluation phase
unseen palpations are processed in the same steps and confronted
with the ANN-classifiers.

In the system a late fusion of the tactile and kinesthetic modali-
ties is favored over the early fusion, because they belong to different
feature spaces. The advantage of this approach is that it is possible
to examine the representational power of tactile and kinesthetic data
independently and at the same time estimate the boost in recogni-
tion provided by the fusion. While the kinesthetic feature extraction
is very straightforward, i.e. data from joint encoders are fed directly
to the SOMs, the imprints from the tactile sensors are treated sep-
arately at first. Because of the high dimensionality of the imprints
a compact representation is found with PCA. Alternatively extract-
ing describing the imprints by the contact’s center-point and shape
(elliptical features)[9] did not perform better in our experiments.

At the heart of our approach lies the bag of keypoints approach,
described in sec. 2.4. It admits any number K of palpations whose
features where previously extracted to be considered for a descrip-
tor (object representation). Also, it is this step that embodies the
flexibility needed for the use of different robot hands. For each of
the N tactile sensor a dedicated descriptor is built; then the N de-
scriptors are concatenated resulting in a descriptor for the tactile
modality. A global object representation is obtained by concatenat-
ing the descriptors for both modalities. This procedure is indepen-
dent of the degrees of freedom and number of tactile sensors present
in the hand.

Figure 3: Flow of haptic data from perception to recognition.

3.1 Classifier Choice
In the previous work [8] we used a Bayesian classifier and modeled
the object classes in descriptor feature space as Gaussian distribu-
tions. The decision to use a ANN-Classifier in this work is moti-
vated by an analysis of the feature space, again using the SOMs.
Johnsson and Balkenius [10] used a similar approach, where SOMs
are used in a final step to infer the shape of objects. In our anal-
ysis, first a clustering with SOMs is performed on the descriptor
features obtained in the training phase. Then, for each object class
the descriptors are mapped onto the respective winner neurons of
the SOM. By labeling the results it is possible to visually identify
the regions in the SOM corresponding to a certain object class. The
result of one analysis with the object set from our experiments (see
fig. 8(b)) is displayed in fig. 4.

The descriptors of object classes in fig. 4 gather in one or more
clusters and therefore we infer that in general a single Gaussian dis-
tribution is not enough to model the object classes correctly. Also,
some regions in the SOM show overlapping which can be attributed
to the fact, that there the SOM training algorithm does not use a
weighted distance metric. The ANN-Classifier can cope with multi-
modal distributions and find appropriate weights for the dimensions
in feature space thus being a good choice for this problem.

4 ROBOT EVALUATION PLATTFORMS
We evaluated the system on three different robot hand platforms,
including a parallel Gripper, the Schunk Dexterous Hand 2 and the
anthropomorphic robot hand of the humanoid Robot ARMAR-IIIb.
All of the robot hands use the same tactile sensor technology by
Weiss Robotics.

4.1 Tactile Sensors
The tactile sensor systems of the evaluated robot robotic hands con-
sist of tactile sensor pads by Weiss Robotics [18]. The sensors use



(a) WRT102 Parallel Gripper (b) Schunk Dexterous Hand 2 (c) Anthropomorphic ARMAR-IIIb
Hand

Figure 5: The robotic hands used for evaluation. They differ in their mechanical design, the degrees of freedom and the number of tactile sensor
patches.

Figure 4: Self-Organizing-Map of size 20× 20 helps visualizing the
descriptor feature space structure. The markers on the neurons indi-
cate one or more descriptors were mapped; the size of the markers
relates to the number hits.

a resistive working principle to pick up a pressure profile. This is
realized by an array of electrodes which is covered with conductive
foam. A decrease of electrical resistance can be measured when
a pressure is applied to the foam. Further details on the working
principle of the sensors can be found in [6, 7, 17].

4.2 Parallel Gripper
The WRT102 parallel Gripper is a simple manipulator with one de-
gree of freedom (DoF) (see fig. 5(a)). It consists of the SCHUNK
PG-70 Gripper equipped with two tactile sensing pads DSA 9205
from Weiss Robotics, each with 7× 14 taxels. The resolution is
higher compared to the ones used for the anthropomorphic hand
which enables the Gripper to take bigger imprints of the objects.
The Gripper has less tactile sensor patches and less DoFs than the
other robot hands, but the accuracy of the Gripper’s positioning sen-
sors is better and the resulting signal directly refers to the partial
size of a grasped object. The WRT102 Gripper can determine its
position with a precision superior to 1 mm. A real drawback of the
Gripper is the maximal jaw width of 70mm. This limits the object
candidates to be grasped to rather small objects.

4.3 Anthropomorphic ARMAR-IIIb Hand
The humanoid robot ARMAR-IIIb [3] is equipped with a FRH-4
anthropomorphic hand, which is described in [4] and is shown in

Fig. 5(c). The hand is driven pneumatically using fluidic actuators
and it has eleven joints: Two for each finger and one for the palm.
The actuators of the ring and pinkie finger have been coupled, so
that the hand has 8 independent controllable DoFs. Modifications
to the original design have been made. Joint encoders and pressure
sensors were attached for force-position control. Additionally tac-
tile sensors have been mounted on the fingertips and in the palm of
the hand. For this work six tactile sensor patches are used: Three in
the palm with a resolution of 4×6 and one on each finger tip of the
thumb, index finger and middle finger with a resolution of 4×7.

4.4 Schunk Dexterous Hand 2

The Schunk Dexterous Hand 2 (SDH-2) [14] is a electrically driven
three finger hand and is shown in Fig. 5(b). It has 7 DoFs: two
in every finger and two fingers can change their position allowing
many different grasps. The gripping force, speed and position can
be flexibly controlled with the integrated control electronics. The
hand is equipped with tactile sensors in the finger tips and the pha-
langes. The sensor arrays in the finger tips have 13×6 taxels, while
the resolution of the sensor pads in the phalanges is 14×6.

5 EXPERIMENTS

Following the bag of keypoints idea, in our scenario objects are
grasped repeatedly for recognition. The position and orientation
of an object in the hands is only constrained by the effect of an
adaptive grasp. Objects are not supported by a planar surface and
are therefore accessible from every side. Not taken into account for
the recognition experiments are configurations of objects in which
the grasping is not stable. In the experiments objects are passed on
to the robotic hands by the human and recognition is evaluated after
a small series of grasps.

The experiments were conducted on two sets of common house-
hold objects. The Gripper can only afford small objects and there-
fore has it’s own object set of 13 objects. The other robot hands are
evaluated on sets with 10 objects; 7 of them are the same for both
whereas 3 of them where not firmly graspable for both hands.

Unless noted otherwise parameters were shared across the dif-
ferent experiments. Evaluation was performed in a 3-fold cross
validation setting with 45 samples per object altogether. 30 sam-
ples are used for training and 15 samples for evaluation each time.
The size of tactile and kinesthetic SOMs was chosen 10×10. The
target dimension of the PCA transform for tactile imprints is 9 as a
result from estimating intrinsic dimensionality (it was the same for
all hands). Every ANN-Classifier used was trained with one hidden



Figure 6: Three tactile imprints obtained while grasping a rectangular
cuboid.

layer consisting 40 of neurons, once for the global classifier and for
each modality.

Descriptors representing an object are built by combining 4 pal-
pations. Reusing the samples in different combinations leads to
new descriptors which is profitable for the training and evaluation.
To avoid combinatorial explotion care is taken so that no subset of
3 palpation samples can participate in two descriptors at once, in
other words, a maximum of 2 samples are shared across each pair
of descriptors. As a result the samples are uniformly distributed in
the descriptors and finally the system is trained with 945 descriptors
and evaluated with 105 descriptors per object in each cross valida-
tion iteration.

In the following subsections we give more details about the ex-
perimental setup for each hand.

5.1 Gripper Setup
In the experiments the Gripper lies on a planar surface. The objects
of fig. 8(a) are held in a random orientation between the brackets
and the Gripper is closed, coming to a halt once it cannot move
further. A palpation is registered when this state is stable. Fig.
5.1 shows an example of this procedure and the resulting tactile
imprints.

To avoid unwanted variance brought into the data by the ran-
dom orientation of the objects, tactile patterns are normalized with
respect to position and orientation according to sec. 2.2. This is
important, because this step is not performed for the hands, where
information about the contact position and orientation is relevant.
Also, this constitutes a difference to the work of Schneider et al.
[13] where the orientation of contacts is relevant, because objects
are standing on a planar surface when being explored.

5.2 Schunk Dexterous Hand 2 Setup
For the SDH-2 experiments the hand was also mounted on a planar
surface with the palm pointing upwards. The 2 opposing fingers
were in a parallel configuration, the objects were held randomly in
between the fingers and a reactive grasp procedure was initiated.
First the phalanges of the fingers close until the tactile sensors on
the fingers show a contact. Then the fingertips are closed leading to
a enveloping grasp. Examples for some of the grasps can be seen in
fig. 5.2.

Figure 7: Four different grips of the eggplant (plastic) with the SDH-2
hand.

Table 1: Recognition Rates (%)
Manipulator Objects RR Total RR Kin. RR Tact.

Gripper 13 92.25 88.54 50.37
SDH-2 10 93.30 77.07 78.88

ARMAR-IIIb 10 90.06 81.96 68.63

5.3 ARMAR-IIIb Hand Setup
For the experiment on ARMAR-IIIb the objects of fig. 8(c) are
slightly pushed against palm of the Hand. The robot detects this
with the mounted 6-DOF force-torque sensor and closes the palm
joint, index finger, middle finger, and thumb. The ring finger and
pinkie are not used, as there are no active tactile sensors and the
joints are coupled, giving only inaccurate sensor data. Because of
the compliance of the fluidic actuators the grasped object is en-
veloped by the closed three fingers of the hand with a force grip.
The data of the tactile sensors and joint encoders is then collected
and used for the methods described above.

5.4 Results
Table 1 gives an overview of the recognition rates for the exper-
iments, including the recognition rates for single kinesthetic and
tactile modalities. In every experiment our system achieves good
recognition rates and the numbers also illustrates that the fusion of
kinesthetic and tactile modalities rewarding. The confusion matri-
ces in fig. 9 provides some more details for single objects.

In the Gripper experiment the kinesthetic modality dominates
the tactile modality in single mode recognition performance. The
increase in the global recognition with respect to the kinesthetic
is comparatively small. Firstly, this can be explained by the high
positioning sensing capabilities of the Gripper – it can be compared
to measuring the objects with a ruler. Secondly, the tactile data is
reduced to appearance, because rotation and position of contacts
is of no use in this case. The spoon (11) and the screw driver (9)
have the lowest recognition performance of the set. Interestingly,
they get confused with each other reciprocally most likely due to
the handles that are similar.

For both of the hands we can observe a small amount of confu-
sion between the pear (9) and the orange (2). In fact these objects
have a very similar size and again we observe that confusion tends
to be mutual. The same can be said for the salt (6) and the can (5)
from the ARMAR-IIIb hand. Perhaps the most interesting observa-
tion is that on these robotic hands recognition on tactile modality
has a bigger contribution. Probably this can be explained by two
factors: firstly, measurement with the joint encoders on the hands
is not as precise as the Gripper and secondly, on the hands more
distributed tactile sensing is available. Tactile sensors distributed
on the fingers and the palm (ARMAR-IIIb Hand) constitutes an en-
veloping sensing system. Because touch is required for sensing,
contact information not only accounts for local shape information
but for global shape information also.

6 CONCLUSIONS
In this work we showed an improved haptic object recognition
framework that is flexible and performs well on different robotic
hands. The comparison of the results obtained with each manipu-
lator gives insight into the use of tactile sensors and joint encoders
for robot hands.

In the future we will explore the possibilities of linking our ap-
proach to an autonomous grasping/exploration strategy enabling
robots to gain more autonomy in the domain of haptic learning.
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1. Block 2. Glue bottle 3. Pencil 4. Hook 

5. Ball 6. Eraser 7. Ruler 

8. Wrench 10. Sharpener 

11. Spoon 12. Tape roll 13. Adapter 

9. Screw driver 

(a) Set for Gripper

1. Eggplant 2. Orange 3. Cup 4. Cup with handle 5. Can 

6. Jar 7. Bottle 8. Star fruit 9. Pear 10. Tall cup 

(b) Set for SDH-2 Hand

1. Eggplant 2. Orange 3. Cup 4. Cup with handle 5. Can 

6. Salt 7. Bottle 8. Star fruit 9. Pear 10. Amicelli 

(c) Set for ARMAR-IIIb Hand

Figure 8: The object sets used for evaluation.

(a) Confusion matrix for Gripper set. (b) Confusion matrix for SDH-2 set. (c) Confusion matrix for ARMAR-
IIIb Hand set.

Figure 9: Confusion matrices for the experiments.

manoid robots—learning and cooperating multimodal robots”.
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