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Abstract—Grasping is the process of picking up an object by
applying forces and torques at a set of contacts. Recent advances in
deep-learning methods have allowed rapid progress in robotic object
grasping. In this systematic review, we surveyed the publications over
the last decade, with a particular interest in grasping an object using
all 6 degrees of freedom of the end-effector pose. Our review found
four common methodologies for robotic grasping: sampling-based
approaches, direct regression, reinforcement learning, and exemplar
approaches. Additionally, we found two ‘supporting methods‘
around grasping that use deep-learning to support the grasping
process, shape approximation, and affordances. We have distilled
the publications found in this systematic review (85 papers) into ten
key takeaways we consider crucial for future robotic grasping and
manipulation research. An online version of the survey is available at
https://rhys-newbury.github.io/projects/6dof/

I. INTRODUCTION

The manipulation of objects is an essential skill for robot in
the real-world, with grasping being an integral part of such tasks.
Grasping is the process of controlling an object’s motion in a
desired way by applying forces and torques at a set of contacts. It is
an essential ability required for the majority of object manipulation
tasks. Synthesizing a good grasp proposal for a specific gripper and
an object or a scene made of objects is a high-dimensional search
or optimization problem as there are many relative gripper-object
poses, joint configurations, and contact conditions. An example of
multiple grasp proposals for a single object can be seen in Fig. 1.
The quality of each of these grasp hypotheses can be evaluated
under a variety of criteria such as grasp stability, which depends
on factors such as object or scene geometry, gripper geometry, and
kinematics, as well as suitability for a specific manipulation task.
Reflecting on more than four decades of research in robotic grasping,
we see a change in how grasping is formulated and studied.

Early work on robotic grasping developed a theoretical framework
that forms the basis of analytical approaches to grasping [1]. At
the core of this framework are contact models, which are typically
based on point contacts that define what components of contact
forces and torques (i.e. wrenches) can be transmitted at a specific
contact and act on the object. In this framework, a grasp is defined
as the set of wrenches that can be achieved on an object. The goal
of grasp synthesis is then often framed [2] as finding a grasp that
keeps the object in equilibrium in the presence of disturbances (i.e.
fixturing) or moves it in a specific way (i.e. dexterous manipulation).
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Fig. 1: Grasp Synthesis is the problem of creating a grasp pose, or a set of grasp
poses. Robotic manipulators can grasp objects from multiple angles. This systematic
survey reviews deep learning approaches to grasp synthesis that generate grasps
utilizing all 6DoF.

Bicchi and Kumar [2] also mention enveloping grasps that wrap the
fingers and the palm around the object, achieving more restraining
grasps (i.e. power grasps). However, the limitation of these
analytical approaches is that they assume full knowledge of object
shape and geometry, material properties, and dynamics parameters.
But in reality, this information is rarely directly observable but can
only be inferred from partial, noisy sensory data.

The increased application of data-driven approaches to computer
vision has successfully transferred to robotic grasping [3], primarily
addressing the complexity and uncertainty in visual perception. To
better fit these computer vision techniques, the focus of robotic
grasping shifted from concepts around multi-fingered, contact-based
representation to pose-based ones. Commonly abstracting the
robot’s end-effector as an ideal two-fingered gripper approaching
the object “top-down”. That way, a grasp is parameterized by the
position and orientation of the coordinate frame attached to the
gripper or the robot wrist. Before that, the degrees of freedom of a
grasp were attributed to the robot hand, its kinematic structure, and
the ability to control finger movements. This simplification of grasp
parameterization is further supported by the increased availability of
robust and simple end-effectors - e.g. parallel jaw grippers, suction
cups [4] - and under-actuated or soft hands [5, 6] that simplify the
control, compared to a dexterous hand.

For the purpose of this review, we reuse terms such as four and
six degrees of freedom (DoF) grasps, where the former encodes
position in 3D and single rotation of a coordinate system attached
to the gripper, relevant for defining “top-down” grasps. Six degrees
of freedom grasps relate to approaches that consider the full pose of
that coordinate system. Fig. 2 shows examples of both 6-DoF and
4-DoF grasps, for both parallel jaw grippers and dexterous hands.
While 6 DoF grasp synthesis is particularly useful in applications
that require precise and dexterous manipulation of objects, such as
for pick-and-place tasks. However, it can also be more challenging
than 4-DoF grasp synthesis due to due to the increased complexity
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Fig. 2: This review focuses on the synthesis of 6 degrees-of-freedom (DoF) grasp
pose hypotheses, where the DoF refers to the generated hand/wrist poses defined by
the 3D position and orientation of a gripper specific coordinate system. This includes
grasp synthesis with parallel grippers and dexterous hands alike.

of the grasping problem.
The dominant framework in the field of computer vision is

applying deep learning to images. The robotics community often
benefits from advancements in computer vision as the robots are
often equipped with RGB and/or depth cameras. Deep learning,
particularly when combined with large-scale data, has enabled new
robotic capabilities that traditional machine learning or analytical
methods cannot match. These include end-to-end manipulation
learning [7], ambidextrous grasping [8], in-hand dexterous
manipulation [9]), pick-and-place in clutter [10], as well as more
recent works such as task-agnostic generalization to new tasks [11]
and translating natural language commands to robot actions [12].

Deep learning methods are also crucial for 6-DoF grasp synthesis
because they can offer increased accuracy, flexibility, reduced
manual engineering, and robustness to variability compared to
traditional machine learning or analytical methods. They can
learn complex and flexible models that adapt to a wide range of
grasping scenarios, without requiring manual feature engineering.
Additionally, deep learning methods can account for variations
in object shape, pose, and other factors, resulting in more robust
grasping performance. Typical stages for grasping an object are
illustrated in Fig. 3, with grasp synthesis being the first stage before
any action is taken. In this review, we focus on deep-learning
approaches applied to 6-DoF grasping, in particular on the grasp
synthesis stage of the grasping process.

There are recently published review papers [13–15] similar to
ours. Kleeberger et al. [13] covers a broad range of methods for
grasping, including model-based, analytical, optimization-based,
and learning-based methods. While both papers cover similar topics,
our paper aims to provide a more detailed and comprehensive review

on the state-of-the-art for 6-DoF grasping. Kroemer et al. [14]
provides a general review of machine learning techniques for robot
manipulation, including grasping, reaching, and other manipulation
tasks. The paper provides a high-level view of the field and is
less focused on specific grasping methods. Differently from these
two papers, ours has a specialized focus on the specific topic of
deep learning for grasp synthesis while offering a comprehensive
discussion around future research directions on the topic. To our
knowledge, Duan et al. [15] is the closest to our work in terms
of taxonomy, focusing on point cloud-based inputs and depth of
discussion. The discussion in Duan et al. [15] is mainly around
sampling-based methods, which was the dominant method before
2020, their cut-off year for the reviewed papers. In our paper, in addi-
tion to Sampling methods (Section III-A), we capture the increasing
popularity of end-to-end methods (called Direct Regression in our
review - see Section III-B). We also identify supporting methods,
such as Affordances (Section IV-B) and Shape Approximation
(Section IV-A), that are commonly used together with main grasp
synthesis methods. Differently from these review papers, ours
provide an analysis on the benchmarking (Section VI) and datasets
(Section V) for grasp synthesis. To our knowledge, our review is
the only one that focus on 6-DoF grasp synthesis. We believe it is a
crucial area of research for future progress in robotic manipulation.

Our systematic review is based on 85 research publications that
employ deep-learning methods for grasp synthesis, clustering the
work along common methodologies, data sets, and object-sets
used. From the methods’ viewpoint, we devise a taxonomy along:
Grasp Sampling methods, Direct Regression methods, methods
incorporating Reinforcement Learning (RL), and Exemplar
methods. Furthermore, we identify methods commonly employed
in grasping, such as Shape Completion and Affordances. Fig. 5
depicts a visual representation of the structure of the survey paper.

The contributions of this survey are:
• A systematic review of 85 papers, focusing on deep-learning

based 6-DoF grasping.
• The synthesis of the papers into 10 key takeaways (discussed

in Section VII) which we consider crucial for future research
in robotics and manipulation.

II. NOTATIONS AND ANALYTICAL GRASPING

To provide a nuanced discussion regarding the contributions
of deep-learning based approaches to grasp synthesis, we briefly
overview the necessary fundamentals of grasping and review
notations and definitions used to define it.

• A Grasp Pose defines the position and orientation of a grasp.
Our survey found many different formulations of grasping
but most aim to learn the final pose of the robot to generate
a successful grasp.

• A 4-DoF grasp defines a grasp where hand poses are
generated and defined by a 3D position and hand orientation
about an approach vector that is commonly aligned with
the direction of gravity and is therefore often referred to as
“top-down grasping”. It is often denoted by x,y,z,yaw.

• A 6-DoF grasp defines a grasp where hand poses are
generated and defined by a 3D position and orientation, thus
6-DOF in total. The major difference to 4DoF grasps is a
non-fixed approach vector, providing extra flexibility but
increased complexity.
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Fig. 3: Typical stages for grasping an object. Our review focuses on grasp synthesis, the first stage in the grasping process.

• Affordances refers to the different tasks which can be
achieved with an object [16]. This definition has been adopted
in previous grasping works (e.g [17]).

An alternative way to frame a grasp, introduced by [18], is using
the following three terms:

• An approach vector defines the line along which the gripper
or robotic hand approach the target object.

• The grasp center point is the point in space somewhere along
the approach vector where the coordinate frame fixed to the
gripper must be positioned before starting to close the fingers.

• The hand orientation defines how the robot hand is oriented
around the approach vector when placed on the grasp center
point.

Some important terms used throughout the paper while
describing approaches to grasping.

• Each point force applied at a contact point on the object
surface also generates a torque on the object. A wrench
summarizes this pair of force and torque applied to the object
through a contact in a six-dimensional vector.

• A grasp is said to be in Force Closure if the forces that can
be applied at the set of frictional contacts are sufficient to
compensate for any external wrench applied to the object [19].

• Hand posture describes the configuration of the gripper or
hand fingers when the grasp is started or all the contacts are
made

• A Power Grasp is a grasp where there are multiple points of
contact between the object and the fingers and palm. It maxi-
mizes the load carrying ability of a grasp and is highly stable as
the enveloping nature of the grasp provides form closure [20].

• Antipodal points are pairs of points on the object surface
whose normal vectors are collinear and pointing in the
opposite direction [21]. With appropriate finger contact
conditions, antipodal point grasps guarantee force closure.

• An Antipodal grasp is defined for two-fingered grippers that
makes contact with the object at antipodal points [21].

For consistency and a thorough discussion, we provide a short
insight on the relevance of analytical approaches.

The majority of methods up to the year 2000 modeled grasping an-
alytically [2, 3]. The focus was on modeling and estimating physical
conditions of grasps, such as, for example, grasp stability. A force-
closure grasp was often equated with a stable grasp, although force-

closure is a necessary but insufficient condition for a stable grasp [2,
22]. Physical conditions were usually simplified through approxima-
tions such as point contact models, Coulomb friction, and rigid body
dynamics [3, 22, 23]. Analytic approaches have been attributed to
being complex and not applicable in real-time applications. However,
analytic approaches address properties of grasps, while most of the
recent methods for grasp synthesis focus on positioning the hand.
The advantages of analytical methods are mathematical guarantees
on grasp properties, such as force-closure. This makes it easier to
assess the conditions of grasps when objects are manipulated after a
grasp has been applied. For example, what forces or torques can be
exerted on the object before slippage occurs or how an object can
be moved using in-hand manipulation. Within the first decade of the
21st century, there has been a rise of data-driven approaches to grasp
synthesis [3], thanks to the development of grasping simulators such
as GraspIt! [24]. Early approaches often used hand-designed features
that corresponded to parts of objects that could be grasped [25–27].
Kamon et al. [28] presented one of the earliest works in 4-DoF
grasping that use machine learning (ML) for grasping objects. The
authors hand designed a low-dimensional feature space to estimate
the quality of grasps. Since then, many works have employed
traditional learning methods with a larger feature space [29–33].
One key takeaway from this early research was that while grasping
can be done using RGB data only [31], depth information (RGB-D)
improved grasping success [29, 32]. We refer to [3] for a more
in-depth review of earlier methods for data-driven grasp synthesis.
In this review, we focus on deep learning techniques in particular.

III. DEEP LEARNING METHODS IN 6-DOF GRASPING

The number of publications investigating deep learning
approaches for 6-DoF grasping have grown significantly in the last
few years, as highlighted in Fig. 4. From the systematic review, we
identify four main algorithmic methodologies for grasp synthesis
using deep-learning based on the reviewed literature: grasp pose
sampling, regressing grasp pose directly, reinforcement learning
and exemplar methods. These procedures relate to how the grasps
are generated at test time.

Sampling approaches consider one or many grasp samples
and have learned a function to estimate the quality of a sampled
grasp. An essential characteristic of sampling approaches is
that each sample is evaluated individually. Alternatively, direct
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Fig. 4: The number of publications on IEEExplore that includes the keyword “Grasp-
ing” in metadata and “6DoF” in the full text is increasing year-by-year. We consider
works published after Jan 1, 2012 – when AlexNet [34] was published – in our review.

regression considers the data globally and learns a function to
predict high-quality grasps. RL includes methods that involve the
maximization of a cumulative reward function based on a robot’s
actions or demonstrations. Exemplar methods aim to use a similarity
metric between grasps to retrieve high-quality grasps from an
existing database which are most similar. These categories are often
mutually exclusive, though Aktaş et al. [35] employed both direct
regression and sampling while Mahler et al. [36] employed both
sampling and exemplar methods.

A. Sampling

TABLE I: Publications with deep-learning focused sampling methods. We cluster
the papers based on the space the sample through and how the samples are evaluated.
Some approaches further consider an optional refinement stage.

Year Paper Sample Space Evaluation Refinement
2015 Varley et al. [37] Priors Metric
2015 Kappler et al. [38] Not Specified Binary
2016 Gualtieri et al. [39] Euclidian Binary
2017 ten Pas et al. [40] Euclidian Binary
2017 Zhou and Hauser [41] Euclidian Binary 4
2018 Yan et al. [42] Not Specified Binary 4
2019 Mousavian et al. [43] Latent Binary 4
2019 Liang et al. [44] Priors Metric
2019 Lu et al. [45] Euclidian Binary 4
2019 Ottenhaus et al. [46] Priors Metric
2019 Gonçalves and Lima [47] Euclidian Binary
2019 Aktaş et al. [35] Priors Binary 4
2020 Riedlinger et al. [48] Euclidian Binary
2020 Murali et al. [49] Latent Metric 4
2020 Van der Merwe et al. [50] Hand Posture Binary 4
2020 Lundell et al. [51] Multiple Views Binary
2020 Lou et al. [52] Euclidian Metric
2020 Choi et al. [53] Multiple Views Binary
2020 Lu et al. [54] Hand Posture Binary 4
2020 Schaub and Schöttl [55] Multiple Views Binary
2020 Murali et al. [56] Priors Metric
2020 Kokic et al. [57] Euclidian Metric
2021 Lundell et al. [58] Euclidian Metric
2021 Lou et al. [59] Euclidian Metric
2021 Lundell et al. [60] Euclidian Metric
2021 Peng et al. [61] Not Specified Metric
2021 Jiang et al. [62] Euclidian Binary
2021 Kasaei and Kasaei [63] Multiple Views Binary
2021 Wang et al. [64] Priors Binary
2021 Munoz [65] Multiple Views Binary
2021 Corsaro et al. [66] Priors Binary
2021 Ren et al. [67] Not Specified Metric
2021 Wen et al. [68] Not Specified Metric

We define sampling methods as any approach that considers
each sample individually and use information encoded about the

sample to make decisions about the grasp. The samples may be
sourced from any discrete or continuous n-dimensional space. All
reviewed sampling works are shown in Table I.

Deep-learning approaches employing sampling implement the fol-
lowing steps: sample information; evaluate the sample according to a
quality estimation function, parameterized by a deep neural network;
and optionally refine the sample using an optimization-based ap-
proach to achieve a higher quality grasp. We adopt the term ‘quality’,
however, there is no current consensus on the definition. Throughout
this paper, we use this term to refer to the confidence of grasp
success. Table I presents an overview of all the Sampling papers. A
popular deep-learning based approach for 4-DOF grasping generates
a series of antipodal grasps through sampling while using a neural
network to predict grasp quality [69]. This aims to predict the prob-
ability of a successful grasp to generate a series of antipodal grasps.
1) Generating Samples

Authors can sample a subset of grasp parameters in an
n-dimensional space. This is commonly done using one of two
approaches. Random sampling occurs when samples are taken from
an arbitrary random distribution. The most common distribution
is a uniform distribution, however, some authors sample from other
distributions such as Gaussian [50, 70]. The second method is
where samples are taken at equispaced intervals within the space.

The subset of grasp parameters can be sampled from: Euclidean
space, priors, configuration space, latent space, or multiple views.
When sampling in Euclidean space, heuristic-based rules are often
used to remove irrelevant grasp candidates.

a) Euclidean Space Sampling
One of the most common approaches is to sample a 3D vector

representing the translation part of the grasp pose. This is often
achieved by sampling points from a point cloud [39, 52, 59].
The approach vector can be estimated by either using normal
information estimated from the sensor data or sampling angles. ten
Pas et al. [40] and Riedlinger et al. [48] use the opposite direction
of the surface normal to find the grasp approach vector. Riedlinger
et al. [48] uses a series of local augmentations on the initial grasp
approach vector to generate a sample set of candidate approach
vectors. Gualtieri et al. [39] generate candidate grasp approach
vectors using the surface normal and curvature axis to generate
equispaced orientations orthogonal to the curvature axis.

Some approaches sample angles independently of the surface
normals. Lou et al. [52, 59] chose N points from a point cloud
and sample the wrist angles randomly for the grasp. However,
they restrict the approaching vector of the grasp to be above the
table. Kokic et al. [57] randomly sample grasp and roll angles, and
offset distances for each point in the point cloud. Both Lu et al.
[45], Lundell et al. [58, 60] sample grasp candidates around the
center of an object with a random orientation.

Sampling can also be performed with regularly spaced points
through euclidean space. Jiang et al. [62] sample regularly spaced
points for the position of the grasp pose. Similarly, Gonçalves
and Lima [47] sample equispaced points throughout the region of
interest.

Alternatively, instead of sampling a xyz vector, angles can be
used. Zhou and Hauser [41] chose a random hand orientation
and approach vector after which they translate the hand along the
approach vector of each sample until a grasp is found that does not
collide with the gripper when it is open but collides when closed.
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Fig. 5: A visual representation of the core topics covered in this systematic survey.

In Euclidean space, sampled grasp are commonly pruned to
remove infeasible grasps based on rules such as:

• The robot hand is in collision with the point cloud when
fingers are open [40, 41].

• The closing region of the fingers does not contain at least one
point from the point cloud [39–41].

b) Sampling Priors
More complex algorithms can also be used to find a set of feasible

grasp candidates. These are often used when creating grasp samples
which will then be evaluated for affordances [56] or different
types of grasps (e.g power, pinch grasps) [66]. The most com-
monly [44, 56, 64, 66] used grasping algorithm is an SVM-based
approach proposed by Pas and Platt [71]. Mahler et al. [36] use a
modification of the grasping algorithm proposed by Smith et al. [72]
to generate a series of antipodal grasps. They frame the problem as
a multi-armed bandit, to be solved using Thompson sampling [73].

While grasping simulators are often used for generating training
data, they have also been used at test time to sample grasps. A
common prerequisite for grasping simulators is a full approximation
of the shape model. The common simulators for this purpose
were GraspIt! [24] or Simox [74]. Ottenhaus et al. [46] generated
grasp samples on a reconstructed object using the grasp planner by
Simox [74]. Alternatively, Varley et al. [37] sampled grasps using
the Simulated Annealing planner [75] for partially visible objects.

A deep-learning approach can also be used to synthesize grasp
samples. Aktaş et al. [35] used the direct regression based approach

from Kopicki et al. [76] to generate multiple grasps, to be used as
grasp samples.

c) Latent Space Sampling
Mousavian et al. [43] train a Variational Auto Encoder [77] and

uniformly sample through latent space to generate grasp poses. An
example of the grasps generated by this approach is shown in Fig. 6.
This sampling approach is also adopted by Murali et al. [49].

d) Hand Posture Space Sampling
Some authors sample grasp configurations from a prior

distribution fit to the training set to create an initial hand
configuration for their approach [50, 54, 70]. Van der Merwe et al.
[50] and [70] fitted a Gaussian Mixture Model to represent a grasp
prior function trained on grasp configurations seen during training.
Similarly, Lu et al. [54] trained a Mixture Density Network [78]
over all grasp attempts from the training set.

e) Multiple Views
A number of papers employ multiple viewpoints of the scene,

where these can either be from virtual or real cameras. A camera
viewpoint is then sampled, and a grasping approach is employed on
the sampled viewpoint. Schaub and Schöttl [55] combine multiple
viewpoints around the scene to create a 3D representation of an
object. Using the 3D representation, they generate depth images
for a series of virtual cameras. They then use a 4-DoF grasping
algorithm [79] for each real and virtual camera. This is extended by
Schaub et al. [80] who fused depth images around the scene to pro-
vide more detailed depth maps. Choi et al. [53] extended a previous
4-DoF approach [81] to 6-DoF by using an iterative improvement
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Fig. 6: Mousavian et al. [43] sample through the latent space of a trained model
to generate a series of grasp candidates (©2019 IEEE)

algorithm approach to choose an approach direction. Munoz [65]
and Kasaei and Kasaei [63] both generate multiple views of the
object from virtual cameras using a captured point cloud from a
single viewpoint. They proposed a method to select a view according
to an entropy-based measure. Lundell et al. [51] use the algorithm
proposed by Satish et al. [81] on the depth map from multiple view-
points. The robot then executes the best grasp from all viewpoints.
2) Sample Evaluation

Once samples are generated, these approaches use a function,
commonly parameterized by a neural network, to estimate a
numerical value representing a grasp metric. This is commonly
used an estimation of the ‘quality’ of the grasp. The grasp quality
can be approximated through an analytical metric or the likelihood
of a grasp being successful. While some approaches execute the
highest quality sample directly, others refine the samples using
optimization-based techniques based on the learned quality function.

a) Binary classification
Predicting grasp success can be treated as a binary classification

problem, where the output represents the confidence of a grasp being
successful or not. A CNN can be trained for the binary classification
of grasp success, with the network either outputting 0 or 1 for a
successful grasp [35, 38–43, 45, 47, 48, 50, 54, 64, 66]. During the
collection of ground-truth training data to determine if a grasp is
successful, the grasp is most commonly executed using a robotics
simulation environment [35, 38, 41–43, 45, 48, 50, 54, 62, 66],
where a grasp will be labeled successful if the object remains within
the gripper after being lifted. Grasp success can also be based
on an analytical metric, such as whether the grasp would form a
force-closure grasp [40, 47] or if the grasp is antipodal [39].

The binary classification of a sampled grasps can also be consider
as one of the outputs of a sampling approach. For example. Jiang
et al. [62] designed an approach which learns implicit functions
that predicts grasp parameters (quality, rotation and width) from
the feature space representation of a randomly sampled query point.
Van der Merwe et al. [50] trained a network to predict the success
of a grasp, as well as a signed distance function that represents a
distance between a query point and the surface of the object.

b) Learning a metric
Learning metrics associated with grasps, rather than a pure

binary label, have been proposed to better represent the quality
of a grasp. These metrics are often continuous numbers (rather
then the previously described binary label) that provide additional
information to rank grasp quality or help “guide” deep learning
algorithms using them as a fitness score.

Varley et al. [37] learn a series of heatmaps, where each pixel
represents the location’s efficacy as a fingertip or palm location

for common grasp types found in their training set. Liang et al.
[44] designed an approach which learns a grasp quality metric
based on the force-closure metric and wrench space analysis [82].
Similarly, Ottenhaus et al. [46] train a CNN to estimate the force-
closure probability of a grasp under a small random perturbation.
Lundell et al. [58] and Lundell et al. [60] trained a grasp classifier
using a Generative Adversarial Networks (GANs), and use the
discriminator loss to help produce realistic-looking grasps. Wen
et al. [68] compute a continuous score for each grasp by looking
at the stability of randomly sampled grasps in the proximity of the
selected grasp. They argue that “grasp stability should be continuous
over its 6D neighborhood”, therefore, this should allow for more
stable grasps. Furthermore, this can allow for imperfections in the
robotic grasp position whilst still being likely to execute a stable
grasp. Peng et al. [61] and Ren et al. [67] designed an approach to
learn the smallest co-efficient of friction which will satisfy a force-
closure grasp. Learned metrics can also represent the quality of the
grasp with respect to other aspects of the task, for example, metrics
based on the relevance of the grasp to a given affordance [56, 57].

Other approaches consider workspace constraints. Lou et al.
[52] designed an approach to learn the probability of grasp success
and use an additional network to learn the probability of a grasp
being reachable. These probabilities can be multiplied to find the
likelihood of success for the entire grasping action. This work is
extended by Lou et al. [59] to allow the robot to grasp in constrained
environments, such as in boxes, where walls may limit the success
of grasping an object.

3) Optimization-based Grasp Refinement
Gradient-based optimization through the trained network can be

used to find high-quality grasps candidates. A sampled grasp is taken
as the initial seed, which is then refined based on the derivatives of
the quality estimation network. This attempts to maximize estimated
grasp quality. Zhou and Hauser [41] train a CNN to predict grasp
quality given a depth image and a sampled end-effector pose.
The end-effector pose is locally optimized using the quasi-newton
method on the gradient of the learned quality function. Similarly,
some authors take the derivative of the grasp quality with respect
to the grasp pose and then use gradient ascent to refine the grasp
candidates [42, 43, 45, 49]. An example of the refinement process is
shown in Fig. 7, where the initial grasp is a potentially bad sample
(blue) and is refined to a higher quality grasp (yellow). Both Van der
Merwe et al. [50] and Lu et al. [54] treat finding a grasp configura-
tion as an optimization problem aiming to maximize the probability
of grasp success, seeding the process with samples from a prior distri-
bution. Lu et al. [70] extended this using active learning during train-
ing, improving their results. In contrast to other works, Aktaş et al.
[35] found that optimization of the sample did not improve the grasp
success rate in simulation. The authors explore the use of gradient-
based optimization and simulated annealing for their optimization.

B. Direct Regression
Direct regression approaches can simultaneously process the

entire sample space using a single network to predict either a single
or multiple grasps, along with specific grasp properties such as
parameters and quality, from visual information.

Direct regression approaches, which can be considered as end-to-
end methods, utilize a single network to process the entire input to
regress an output. These methods attempt to reduce computational
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Fig. 7: An example of a grasp refinement process from [43], where the initial grasp
is shown in dark blue and the final grasp pose is shown in yellow. (©2019 IEEE)

TABLE II: Approaches to direct regression of 6-DoF grasping using Deep Learning,
either generating a single or multiple grasp poses as an output. We found three main
approaches: regress to a pose directly (Pose), employing a multi-stage approach,
or perform dimensionality reduction (DimRed).

Year Paper Grasps Direct Pose Multi-stage DimRed
2017 Veres et al. [83] Single 4
2018 Schmidt et al. [84] Single 4
2018 Choi et al. [85] Single 4
2019 Liu et al. [86] Single 4
2020 Qin et al. [87] Multiple 4
2020 Yang et al. [88] Single 4
2020 Jeng et al. [89] Multiple 4
2020 Wang and Lin [90] Single 4
2020 Fang et al. [91] Multiple 4
2020 Wu et al. [92] Multiple 4
2020 Ni et al. [93] Multiple 4
2020 Breyer et al. [94] Multiple 4
2020 Liu et al. [95] Single 4
2020 Shao et al. [96] Single 4
2020 Ni et al. [97] Multiple 4
2021 Wang et al. [98] Multiple 4
2021 Sundermeyer et al. [99] Multiple 4
2021 Zhao et al. [100] Multiple 4
2021 Gou et al. [101] Multiple 4
2021 Zhu et al. [102] Multiple 4
2021 Wei et al. [103] Multiple 4
2021 Li et al. [104] Multiple 4
2021 Li et al. [105] Single 4

cost compared to sampling methods by processing data globally
through the network in a single pass. Early works in direct regression
based on deep learning are inspired by object detection work from
the Computer Vision community [106, 107]. Authors would treat
finding top-down grasps similar to detecting objects in an image
and would use the depth image to recover the 3D position of the
grasp [108–111]. Morrison et al. [79] designed a heat-map based
approach for 4-DoF grasping that was designed for fast inference,
enabling closed-loop grasping and grasping of moving objects.
However, as the dimensionality of the output increased, the problem
difficulty also increased [43, 112]. This presents scaling issues when
directly regressing to high-dimensional outputs such as a 6-DoF
grasp pose or a high-DoF dexterous robotic hand configuration. To
overcome this, researchers often reduce the DoF of the output from
a single network. This can be accomplished through multi-stage
approaches, where each stage has a specific task, or by reducing the
DoF by conditioning the output on an input. The direct regression
approaches found in our systematic review are shown in Table II.

a) Directly Regressing a Pose
Schmidt et al. [84] presented one of the earliest CNN-based

works to directly estimate a single 6-DoF grasp pose of an end-
effector from input depth images. Similarly, Yang et al. [88] trained
a network to estimate the transformation matrix needed to be applied

Fig. 8: Fang et al. [91] uses a direct regression approach to generate a series of
grasps from real-world data. (©2020 IEEE)

to the end-effector to produce a successful grasp. However, both
approaches assume that there is only a single, most optimal ground
truth grasp for each input. This would introduce ambiguities as
there may potentially be numerous successful grasps that can be
executed for any input. To account for this, Liu et al. [86] designed
a loss function that accounts for multiple ground truth grasps in
the training data by calculating the loss between the current output
and the closest ground truth grasp. This is extended in another
work [95] that includes differentiable terms for a grasp metric and
self-collisions in the loss function. This allows their approach to
work both in an unsupervised manner or using a smaller supervised
dataset. Veres et al. [83] create a generative model based on a
Conditional Variational Autoencoder (CVAE) [113]. They use the
CVAE to generate contact positions and contact normals for a multi-
fingered robotic hand.

b) Reducing DoF
Due to the difficulty of regressing all 6 DoF of a grasp, some DoF

can be reduced by analytically determining some DoF conditioned
on the regressed DoF. This is seen in some 4-DoF approaches, for
example, the depth of the grasp is not directly regressed but instead
uses the depth image to recover the grasp depth conditioned on the
grasp position and 2-finger gripper wrist rotation [79].

Sundermeyer et al. [99] reduced the 6-DoF grasping to a 4-DoF
representation by ensuring one of the contact points for a two-
finger parallel gripper was taken from the point cloud. The 3-DoF
rotation and gripper width was then estimated. Breyer et al. [94]
directly output the predicted grasp quality, orientation, and opening
width for each voxel in a queried 3D volume. The 3D position
is recovered from the center of a voxel. Jeng et al. [89] propose
a coarse-to-fine representation, where the orientation is initially
coarsely discretized as a grid with a given confidence value. A
refinement step is also used for each grasp pose to allow further
flexibility from the discretized coarse representation. Gou et al.
[101] estimate an SO(3) orientation and confidence of every pixel
directly from an RGB image. An analytical method based on the
depth image is then used to find the gripper width and position
for each pixel. Ni et al. [93] directly regressed grasps from sparse
point clouds. They predict the grasp quality, approaching direction,
and opening direction of the gripper for every point in the original
point cloud. Likewise, the approach by Li et al. [104] estimates the
rotation, width, depth, and quality of a grasp for each point in the
point cloud. They combine this with another branch which predicts
whether the grasp would be in collision. Alternatively, Choi et al.
[85] predicts the most likely grasping direction and wrist orientation
from a set of discretized directions and orientations. The translational
part of the pose is found by determining the centered contacting
voxel within the grasping direction. Wang and Lin [90] assume
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they are grasping the centroid of the object and attempt to directly
regress the quaternion for the grasp. Wu et al. [92] create a network
with three branches, trained to predict the likelihood of the grasp
consisting of antipodal points, grasp offset for each of the sampled
SE(3) points, and grasp confidence (trained on whether grasp was
executed in simulation). Qin et al. [87] trains a neural network based
on Qi et al. [114] to predict both grasp point and quality for every
point in a point cloud.

c) Multi-Stage Approach
These approaches use multiple stages, where a stage refers to

a component of the end-to-end model with a loss function and at
least one specific task. This aims to simplify learning by breaking
the problem down into smaller parts. Most multi-stage approaches
consider three-stage approaches [91, 98, 100, 102, 105], while, Wei
et al. [103] propose a two-stage approach. Stages are commonly
done in series (one after another), however, the last two stages in
the work by Fang et al. [91] are in parallel (simultaneously).

The first stages of the network are commonly used for at least
one of the following: predicting grasp quality for subsampled
points [91, 98, 100], estimating a grasp for each point [97, 103],
estimating a subset of the DoF [91] or employing contrastive loss
functions [102]. The middle stages can be used to create grasp
proposals (if they were not generated in a previous stage) [98, 100]
or further estimate a subset of the DoF [102].

The last stage can act as a refinement stage to improve the
regressed grasps [97, 100, 103]. Fang et al. [91] used two final
parallel stages to generate grasp proposals and predict the ability
of the grasp pose to tolerate larger errors, aiming to improve the
robustness to imperfect sensing or control. The final stage can also be
used to predict the remaining DoF [102]. Example grasps regressed
in the work by [91] from real-world data are shown in Fig. 8.

An alternative multi-stage approach is demonstrated by Shao
et al. [96] and Li et al. [105] who propose an approach that uses
each stage of the network to predict a single contact point. The
subsequently regressed contact point will be conditioned on the
previous point. The final grasp is then recovered from the regressed
contact points. Furthermore, Shao et al. [96] shows that this
approach is generalizable between different robotic hands.

C. Reinforcement Learning
Reinforcement Learning (RL) approaches aim to learn a policy

to maximize the cumulative reward commonly over a multi-step
task. We only review deep RL, where the policy is parameterized
by a deep neural network. We sub-divided the reviewed works into
two main approaches: On- and Off-Policy Learning. For a more
comprehensive review on deep RL, see [115] and for a deeper
exploration of RL in grasping and its open challenges, see [116].

Some seminal works in reinforcement learning for grasping
include the work by [117–119]. Levine et al. [117] collected 800k
grasp attempts over multiple months. They present a self-supervised
approach, and the authors claimed their approach is analogous
to an RL formulation. Kalashnikov et al. [118] and Quillen et al.
[119] presented works that formulate grasping as a reinforcement
learning problem. Kalashnikov et al. [118] focus on real-world
data collection, collecting 580k real-world grasping attempt, while
Quillen et al. [119] train on purely simulated data. Table III shows
and summarizes all reinforcement learning based works found
during our review.

TABLE III: Our systematic survey found 10 publications employing Off Policy or
On Policy reinforcement learning (RL). The LfD column indicates approaches which
learn from expert demonstration.

Year Paper Learning Algorithm LfD
2018 Gualtieri and Platt [120] On Policy DQN[121]
2019 Wu et al. [122] On Policy PPO[123]
2019 Merzic et al. [124] On Policy TRPO [125]
2020 Mandikal and Grauman [126] On Policy PPO[123]
2020 Song et al. [127] Off Policy Q Learning[128] 4
2020 Wu et al. [112] On Policy PPO[123]
2021 Berscheid et al. [129] On Policy Single Step MDP
2021 Kawakami et al. [130] On Policy PPO[123] 4
2021 Tang et al. [131] Off Policy Q Learning[128]
2021 Wang et al. [132] Off-Policy DDPG[133] 4

1) On-Policy
We found that out of the reviewed work employing RL, On-Policy

methods were more common [112, 120, 122, 126, 129, 130, 132,
134]. In On-Policy RL, training a policy is done using experiences
that are collected from the most recent policy. In the work from
Kawakami et al. [130], the grasping task is divided into consecutive
stages: orienting the end-effector, approaching the target, and
closing the gripper. A different RL model is trained for each
stage, and curriculum learning is employed that adjusts the reward
function based on the success rate of each task. Gualtieri and Platt
[120] used a Deep Q-Network [121] with Monte Carlo updates to
learn how to grasp an object and place it into a desired configuration.
Working with a 24-DoF hand, Mandikal and Grauman [126]
trained an actor-critic model. They proposed a two-step architecture:
Initially, a CNN, which is trained on ContactDB [135], estimates
the pixel regions that belong to a “use” affordance. An RL policy
then takes this affordance mask, RGB-D image, and gripper
configuration as input and outputs the wrist pose and the 24-DoF
robot hand configuration. A sparse reward is awarded when the
object is lifted from the ground, and a dense reward is awarded
according to a distance metric from the affordance region. Chen
et al. [134] used an advantage actor-critic policy gradient to train
a policy that will optimize the viewpoint for grasping. They then
apply the grasping algorithm developed by Pas and Platt [71] to
calculate grasps for the optimized viewpoint. Wu et al. [122] used
a single depth image and introduces a novel attention mechanism
that learns to focus on sub-regions of the depth image in order to
grasp better in cluttered environments. They formulate the problem
using a policy gradient method based on PPO [123]. Wu et al. [112]
extended this framework to robotic hands with arbitrary degrees
of freedom. Merzic et al. [124] propose the use of TRPO to learn
control policies that take contact feedback as input. They show that
this policy significant improved the robustness of the grasp under
both object pose uncertainty and shape complexity.
2) Off-Policy

Off-Policy RL methods use the data collected throughout training
to train a new policy. Employing human demonstrations, Song
et al. [127] used Q-learning to estimate the optimal Q-function.
They simulate future states by giving an action for the robot to
complete, allowing the algorithm to forward simulate possible
future states conditioned on the current state-action pair. Tang
et al. [131] demonstrated collaborative pushing actions to facilitate
grasping. Their approach uses Q-learning to learn a deterministic
policy for pushing and grasping. No reward is assigned to pushing
actions - the agent is only rewarded when the robot successfully
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grasps the object. Berscheid et al. [129] formulated the problem as
a Markov Decision Process with a single action step. They train a
fully convolutional neural network to learn a 4-DoF planar grasping
system. A model-based controller decides the other two degrees
of freedom by avoiding collisions and maximizing grasp quality.
Wang et al. [132] trained a grasping policy from demonstrations
based on the Deep Deterministic Policy Gradient algorithm [133].
The demonstrations are obtained using a motion and grasp planner,
which is assumed to be an ‘expert’ in their formulation.

D. Exemplar Methods
Exemplar methods attempt to transfer grasps from previous

examples. Patten et al. [136] designed an approach to grasp novel
objects by learning from experience. This is achieved using metric
learning to encode objects with similar geometries nearby in feature
space. Finding a successful grasp is framed as a nearest neighbor
search through feature space, searching for a previously successful
grasp. The approach by Mahler et al. [36] compared a given grasp
candidate against a database of successful grasps. They compare
grasp candidates using three feature maps: grasp parameters, depth
match gradient at local patches around the object, and similarity
of the object model assessed by a deep-learning based network.
The feature maps form a prior belief distribution on the similarity
to all grasps in the database. The grasp with the maximum lower
confidence bound of the belief distribution is executed.

IV. SUPPORTING METHODS BASED ON DEEP LEARNING

Deep-learning can be applied to methods throughout the grasping
pipeline that aim to improve the success of a grasping task. This
task does not have to focus solely on picking up an object. More
complex manipulation tasks may require grasping that affords a
particular subsequent action. For example, when handing over a
full mug, the robot may need to grasp the mug handle. We found
two clusters of supporting methods in the reviewed literature: shape
approximation techniques and affordances based methodologies.

A. Shape Approximation
The most common form to approximate the shape of an object

from partial information found in the literature is Shape Completion,
which aims to estimate the full object model from a partial input
shape (e.g. point cloud of an object from one camera view).
We define Shape approximation more generally to include any
method which approximates shape from an input. This includes the
approximation of the actual shape of an object by simple(r) shapes
and the fusion of multimodal data to approximate a shape.

1) Shape Completion
Varley et al. [137] trained a 3D CNN to employ shape completion

on a single view voxel grid, outputting a voxel grid with shape
completed object. Gao and Tedrake [138] instead use the method
from Zhang et al. [139] for shape completion, predicting a 3D
voxel grid directly from RGB-D images. Kiatos et al. [140] use a
variational autoencoder [141] to predict the occluded surface points
and associated normals of a partial 3D point cloud. Chavan-Dafle
et al. [142] predicted the depth image that estimates the ‘back’ side
of an object from a masked depth image. The front and back sides
can then be stitched together quickly to form an object mesh.

The uncertainty around the output of the shape completion
can be useful. Gualtieri and Platt [143] incorporate uncertainty in

Fig. 9: Lundell et al. [144] uses drop out layers to generate 20 shape completed
samples, where the average of these samples is shown in (d) compared to [137](c).
(©2019 IEEE)

their shape completion network, where it represents the estimated
probability that each predicted point is accurate. Another approach
including uncertainty is Lundell et al. [144] which incorporates a
Monte-Carlo drop-out procedure [145] to generate a series of shape
completed objects. GraspIt! [24] is then used to plan grasps over
the mean object shape. The most suitable grasp over the series of
shapes is chosen as the grasp point. An example of this procedure
is shown in Fig. 9. Interestingly, uncertainty is ignored in follow-on
work from the same authors [51, 58, 60].

2) Auxiliary Tasks
In deep learning, auxiliary tasks can be added into a deep-learning

model, which has been shown to boost the performance of the model
in some domains [146]. Jiang et al. [62] asserted that 3D reconstruc-
tion and grasping are closely related, where both rely on knowledge
of an object’s local geometries. Authors have proposed learn object
reconstruction as an auxiliary task to grasping [42, 62, 88]. Jiang et al.
[62] used a self-supervised approach to reconstruct an object and cal-
culate a grasp. Yang et al. [88] simultaneously regressed a grasp pose
and reconstructed the point cloud of an object. The grasp pose is then
refined by projecting it onto the surface of the point cloud reconstruc-
tion. Yan et al. [42] employed two networks, one for shape comple-
tion and another for grasp outcome prediction. They demonstrated a
performance improvement when the grasping network uses the fea-
ture space representation produced by the shape generation network.

3) Other
Avigal et al. [147] do not complete explicit shape prediction,

however, they used a network that takes RGB images from
multiple viewpoints and generates the corresponding depth maps for
the shape. The depth maps are then fed into a 4-DoF grasping
algorithm [148]. Ottenhaus et al. [46] used Gaussian Process
Implicit Surfaces [149] to fuse visual and tactile sensor inputs. After
capturing a point cloud of the object, the robot gathers information
about unseen sides of objects using tactile information. Researchers
have shown that many everyday objects can be modeled as simple
shapes [150, 151]. Using this observation, Torii and Hashimoto
[152] approximated objects as a series of 3D primitive shapes
(hexahedron, cylinder, sphere). They use a neural network to predict
the likelihood of each primitive shape before using a pre-computed
database of rules to perform the grasping.

B. Affordances
This section reviews how affordances have been used in the

domain of 6-DoF grasping. See [153] for a review of affordances
in the more general robotics domain. In addition to considering the
success of grasping, these approaches have additional considerations
for what kind of task it is used for. For example, when a handover
task is to be completed for a scissors object, the robot should grasp
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Fig. 10: Murali et al. [56] studies task-oriented grasps on unknown objects. The
top right visualization shows the grasp with the highest quality considering a given
affordance. The bottom right shows all the stable grasp candidates, colored by the
relevance to the affordance (green is high)

the scissors by the blade and then pass it over to the human who can
grasp it by the handle. The robot’s understanding of how an object
is used in a particular task or how humans use those objects can lead
to higher-level reasoning about the grasping task. This lends itself
towards 6-DoF grasping, as different parts of the object need to be
grasped in different ways, depending on location of the affordance.

Some researchers use deep neural networks to segment objects
for different affordances [126, 154–157]. They then use analytical
methods to find grasps within the segmented object portion with
an appropriate affordance. Alternatively, the approach by Murali
et al. [56] estimated the quality of a sampled grasp given an
affordance label. This is shown in Fig. 10, where the grasps shown
in green are relevant to the given affordance. Ardón et al. [17]
created a knowledge base graph representation using Markov Logic
Networks to obtain a probability distribution of grasp affordances.
Additionally, both Manuelli et al. [158] and Gao and Tedrake
[138] presented an approach based on detecting a fixed number of
keypoints for a category of objects.

V. DATASET DESIGN

A. Objects Sets
The objects used for training and testing grasping algorithms are

crucial for the reported grasp success and allowing the community to
reproduce the results. Researchers commonly use subsets of existing
object sets when investigating grasping. However, there is no
standard procedure for selecting this subset. This can lead to inconsis-
tencies in objects between different works which are using the same
object set. This increases the difficulty of comparing grasping perfor-
mance between works. The most commonly used object set in the
reviewed works is Yale-CMU-Berkeley(YCB) [159], being used al-
most twice as often than the next most adopted object set (Table IV).

YCB [159] (shown in Fig. 11), BigBIRD [160], KIT [161] and
Cornell [109] consist of mostly household items such as food, toys
and tools. These object sets are appropriate for service robotics,
but may not test the robustness of grasping algorithms on complex
objects. ShapeNet [162], 3DNet [163], Grasp [38], PSB [164],
ModelNet [165], ObjectNet3D [166] and ContactDB [135] include
object model repositories, containing a large number of virtual
object models, mainly used for training and testing in simulation.

EGAD! [167] and Procedural [168] consist of procedurally gen-
erated object models. EGAD! [167] proposes a set of 3D printable
objects that vary in terms of grasping difficulty [148] and object
complexity [169]. Procedural [168] generate a simulated object set
by attaching rectangular prisms in random orientations and locations.

Fig. 11: A commonly used object set in robotic grasping is the YCB object set [159].
It consists of a set of daily household objects, with a subset of the objects from the
‘Food’ category shown here. (©2015 IEEE)

TABLE IV: Number of times objects sets are used in reviewed papers.

Object Set/Database # of times used Sim//Real
YCB [159] 29 Real

3DNET [163] 15 Sim
BigBIRD [160] 12 Real

KIT [161] 12 Real
ShapeNet [162] 11 Sim

Grasp [38] 10 Sim
EGAD! [167] 2 Sim/Real
Cornell [109] 2 Real
Dex-Net [148] 2 Real

PSB [164] 1 Sim
ModelNet [165] 1 Sim

ObjectNet3D [166] 1 Sim
ContactDB [135] 1 Sim
Procedural [168] 1 Sim

Custom 11 Real/Sim

Most real-world object sets do not provide a standardized method
to acquire the physical objects consistently (an exception to this is
YCB1). One solution to this is 3D printed datasets such as EGAD!2,
however, these objects lack semantic meaning.

B. Procedurally Generated Datasets
Even though a majority of the reviewed works use benchmark

object sets, they commonly opt to create their own custom datasets
with those objects. A number of works used datasets collected using
real robots [63, 64, 85, 101, 129] and some combined simulation
and real-world data [64, 91, 101]. However, the large majority
opted to use purely simulated datasets when training their networks.

Some authors have released their datasets, with reviewed works
employing public datasets such as GraspNet-1Billion [91], a hybrid
6-DoF grasping dataset that captures real RGB-D camera data and
combines this with simulated grasp poses, Shape Completion Grasp-
ing [137], a database of voxel grid pairs for shape completion and
ACRONYM [170], a simulation-based dataset for 6-DoF grasping.

C. Expert Datasets
Researchers have proposed various datasets which consist of

expert demonstrations, either from a human or an algorithm. Yan
et al. [42] generates a dataset of around 1.6k human grasping
demonstrations within Virtual Reality (VR) from 5 people. Also
in VR, Kawakami et al. [130] creates a system to collect grasping
demonstrations. The operator demonstrates the position of the

1https://www.ycbbenchmarks.com/
2https://dougsm.github.io/egad/
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Fig. 12: Song et al. [127] design a low-cost handheld gripper to generate human
annotations for grasping. (©2020 IEEE)

TABLE V: Number of times each input format has been used

Input Format Number of times used
Point Cloud 34
Depth Image 18

RGB-D Image 15
Voxel Grid 12

Segmentation Mask 9
Other 10

arm using a controller with tracked position and pose. Using a
handheld gripper (see Fig. 12), Song et al. [127] generated a dataset
from human demonstration. The dataset contains 12 hours of
gripper-centric RGB-D videos, with each picking attempt separated
into short clips to correspond to grasps. Similarly, Diaz Cortes et al.
[171] generated 300 demonstrations by kinesthetically teaching the
robot trajectories. Osorio et al. [172] created a dataset of human
grasps where the human is controlling a robotic gripper with a
joystick. Alternatively, the approach by Wang et al. [132] used
demonstration from Optimization-based Motion and Grasp Planner
(OMG planner) [173]. Taheri et al. [174] presented a dataset of
whole-body grasps generated by ten subjects interacting with 51
everyday objects of varying shape and size. The object meshes are
annotated with the contacts created by the human hand.

D. Data Representation

There are four major sensor inputs used for the deep learning
methods: Point Cloud; Voxel Grid; RGB-D Image; and Depth
Image. These four representations are all interchangeable for spatial
data, assuming that intrinsic parameters for the camera are known.
Table V shows the popularity of each of the input formats and
Table VI shows the popularity of different network architectures.

Point Cloud: Point clouds are the most popular data format,
especially with the advancements in networks that can learn directly
from point clouds, such as PointNet [175]. In addition, the point
cloud representation allows researchers to easily fuse data from
multiple viewpoints if the relative camera poses are known.

For point cloud based data, researchers commonly
used PointNet [175] and PointNet++ [114]. This network
backbone type has been used in different methods including
direct regression [87, 89, 91–93, 99, 100], RL [132],
sampling [43, 44, 49, 56, 61], and shape completion [143].

Point cloud for direct regression tends to subsample points and
learn grasps for them [57, 64, 87, 89–91, 93, 97, 100, 103–105].
When a point cloud is used for sampling, one of the following
procedures is usually followed. The points inside the gripper are fed
to the network [44, 66, 67], the points will be transformed such that
the origin aligns with the grasp frame [66, 68], or a representation
of the gripper will be rendered, and all of the points will be fed into

TABLE VI: Number of times each network backbone has been used. Some papers
use multiple backbones, depending on their network architecture.

Network Backbone Number of times used
PointNet/PointNet++ [114] 21
ResNet [176] 9
LeNet [179] 3
Other 20
Custom 31

the network [43]. Minimal surveyed work has investigated the use
of point clouds in RL apart from [132].

Images: The next most popular formats are depth and RGB-D
images. Learning from images has been highly studied in both
computer vision and robotics, allowing researchers to train
pre-existing architectures for robotic grasp synthesis.

For images, the most common approach is to employ
ResNet [176] as the backbone [58, 60, 88, 95, 101, 102, 127, 136,
177]. In addition to ResNet, various other architectures have been
used, including VGG [178] LeNet [179], DenseNet [180] and
U-Net [181].

Direct regression approaches commonly use the whole
image as input [84, 101, 102]. For sampling, some approaches
generated a depth image slice representing points within the
gripper [39, 40] while others concatenated grasp features
after processing images through a CNN [35, 45, 58, 60]. RL
approaches input the current camera view to generate an
action [112, 120, 122, 127, 129, 131, 171].

Voxel Grids: A voxel represents a value in a regular 3D grid.
Voxel Grids are analogous to images in 3D space, where a voxel
is similar to a pixel over a 3D grid instead of a 2D image.

For voxel based inputs, VoxNet [182] is most commonly used.
VoxNet integrates a volumetric occupancy grid representation
of the data with a 3D-CNN. Voxel grids have been used for
shape completion [137, 140], sampling [52, 54, 70] and direct
regression [85, 86, 94]. For sampling, Voxel grids have been used
similarly to point clouds, transforming the origin to align with grasp
frame coordinates [52] or adding grasp configuration features after
the convolutional layers [46, 54, 70]. Voxel grids have also been
used to directly regress a single pose using a subset of the voxel grid
corresponding to the object [85, 86] as well as directly regressing
a grasp for each voxel [94].

VI. BENCHMARKING

A. Experimental Evaluation
Most approaches implemented their grasping method in the real-

world, either as an evaluation of the performance with respect to the
metrics described in Section Section VI-C or presenting a demonstra-
tion that acts as a proof-of-concept of their method. Demonstrations
focus on showing that their system works in the real-world without
systematically evaluating their method. However, some approaches
only consider evaluating their system using a simulator.

Evaluating in the real-world naturally carries more weight since
the goal for robotic grasping is to be ultimately applied to real world.
It should be noted that even though most works train their models us-
ing purely simulated data, they evaluate their approach in real world
experiments. Commonly, the grasping system was directly trans-
ferred from simulation to real-world (e.g [39, 40, 43, 91, 92, 137]).
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TABLE VII: The popularity of various types of hardware systems used throughout
the surveyed papers. The most popular category of robotic arms is further analyzed
in Table VIII.

Category Popularity
Robot Arm 66
Humanoid 6
Mobile Arm 3
Not Used 7

TABLE VIII: Popularity of various robotic arm manufacturers throughout the
surveyed papers.

Manfacturer Robot Popularity DoF
Franka Emika Panda 15 7
Universal Robotics UR5 9 6
Universal Robotics UR10 4 6
Universal Robotics UR5e 1 6
Kuka LBR4 6 7
Kuka IIWA LBR 3 7
Kinova Gen3 2 7
Kinova Mico2 2 6
Kinova Jaco2 2 6
Rethink Robotics Baxter 6 7
Staubli TX60 4 6
ABB Yumi 2 7

Custom 2
Other 22
Not Used 7

TABLE IX: The popularity of various grippers in the surveyed works, grouped by
manufacturer.

Manufacturer Model Popularity DoF
Robotiq 2F 10 1
Robotiq 3F 5 1
Franka Emika Panda Gripper 12 1
Barret BarretHand 7 5
Kinova 2F 3 1
Kinova 3F 1 2
Wonik Robotics Allegro Hand 4 16
Rethink Robotics Baxter Gripper 4 1
Shadow Robot Company Shadow Hand 2 20

Custom 2
Other 32

Techniques such as domain adaptation [183] or domain randomiza-
tion [184, 185] have also been used to transfer grasping approaches
between simulation and real-world. Zhu et al. [102] used contrastive
learning [186] to extract invariant features when images are aug-
mented, aiming to improve the model under image sensor noise.

B. Hardware
We found that most works that study 6-DoF grasping use

a robotic arm as shown in Table VII. However, a minority of
works use other platforms, such as mobile platforms or humanoid
robots. The robotic arms were most commonly table-mounted,
and the robot would perform table-top grasping. Humanoid
robots were commonly used when studying papers relating to
affordances [84, 156, 157]. Surveyed works also completed research
using mobile robots for grasping, however, none of the works made
use of the extra DoF unique to the mobile aspect of the robot.

Table VIII details the frequency each robotic arm is used. Most
researchers used either industrial robots or robots designed for
human-robot interaction. The most common robotic platform is the
Franka Emika Panda. This robot has a redundant DoF which allows
more freedom in joint angles when achieving a specific gripper pose.

The most commonly used gripper was a two-finger parallel
jaw (51 times) with researchers using the gripper that came with

TABLE X: The frequency of common metrics employed in the reviewed works as a
percentage. Success rate is the most commonly used metric throughout all reviewed
papers.

Metric Frequency Used (%)
Success Rate 86
Completion 25
Computation Time 21
Precision 12
Coverage 6
Grasp Prediction Accuracy 8

the robotic arm. Some researchers use grippers with more than
two fingers, including the Barret Hand, Allegro Hand, Shadow
Hand and, Kinova 3-Finger gripper. Some papers only make use of
two-fingers from the Barret hand[112] or switch between two- and
three-fingers[90]. Multi-fingered high-DoF hands present a different
set of challenges compared to a two-finger gripper. Research on
multi-fingered grippers focus on how to generate a grasp pose
that considers the large amount of DoF (e.g [54, 66, 86, 95]), or
grasping with affordances (e.g [126, 156, 157]). Soft grippers
are another potentially interesting line of work with only a few
reviewed works making use of them [47, 85, 171].

C. Performance Metrics
A diverse set of performance metrics is used among all these

works. The common definitions of performance metrics related to
grasping from the reviewed work are listed below and Table X shows
the frequency each metric is used. However, the exact definition of
each performance metric can vary slightly between different works.

1) Grasp Success Rate: The percentage of successful grasps
(No. of Successful Grasps / Total No. of Attempted Grasps).
The post-grasp steps prior to considering a grasp ‘successful’
was not consistent across reviewed works.

2) Completion / Clearance Rate: The percentage of objects
that are removed from the clutter (No. of Objects Grasped /
Total No. of Objects in Clutter).

3) Computation Time: Time required to compute grasp
hypothesis generation.

4) Precision: The percentage of true positive grasp predictions
(No. of True Positive Grasp Predictions / (No. of Selected
Positive Grasps)).

5) Coverage: The percentage of sampled ground truth grasps that
are within a threshold distance of any of the generated grasps.

6) Grasp Prediction Accuracy: The percentage of grasps
outcomes correctly predicted (No. of Successful Grasp
Predictions / No. of Predictions).

D. Object Configurations
Object configurations are how the objects are arranged in the

scene during training or testing. We cluster object configurations
into three types.

1) Singulated: A single object in the scene.
2) Piled Clutter: Objects are packed together tightly. Objects

are commonly arranged as a pile, for example Fig. 13 (Left).
3) Structured Clutter: Multiple objects spread out in a scene

such that they are not touching, for example Fig. 13 (Right).
Piled clutter is frequently encountered in bin picking applications

where a variety of items are compactly arranged in a bin. However,
this survey only encompassed a limited number of papers which
address bin picking scenarios [39, 40, 59, 103, 127, 129]. In
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Fig. 13: Examples of cluttered scenes. We differentiate Piled Clutter (left) from
Structured clutter (right). Left image is from [40] (©2017 SAGE) and right image
is from [49]. (©2020 IEEE)

bin-picking scenarios, additional constraints are needed for how
to approach objects to avoid the bin’s walls, making it a more
challenging task than table-top scenarios.

Most works surveyed in this study which focus on singulated
objects tend to be grasping with a high DOF hand [35, 37, 46, 50, 54,
57, 58, 70, 84, 86, 95, 105, 137, 144]. These papers tend to focus on
solving a specific grasping task, rather then aiming for generalized
grasping. Other works on singulated objects focus on data represen-
tation and the learning process [41, 92, 132, 136]. Singulated object
grasping is also used in other contexts such as affordances [17, 56,
126] or manipulation [138]. Researchers generally do not distinguish
between structured or piled clutter scenes, however, we consider
these distinct scenarios, which may have different solutions.

VII. DISCUSSION AND FUTURE DIRECTIONS

This section discusses the state of the field of deep learning-based
grasp synthesis and highlights recommendations for future research
directions. We note the key takeaways of each subsection indicated
as Key Takeaways.
A. Deep Learning Methods

There is currently no consensus on when to use direct regression-
based methods versus sampling-based methods, as both approaches
focus on similar tasks with similar success rates.

Direct regression-based approaches have demonstrated the ability
to run in real-time [94, 99], but processing speeds can vary widely
depending on the chosen architecture. In contrast, sampling-based
methods offer the advantage of adjustable processing speed, as
the number of samples or the level of optimization can be easily
modified. However, based on our review of the literature, no
sampling approach has been found to have real-time capabilities.

Depending on the use case of a sampling system, different
sampling methods have different advantages. Euclidean sampling
tends to quickly generate a wide array of grasps of varying quality.
However, a large number of grasps are needed to try to find a
high-quality grasp. In contrast, sampling through priors or latent
space [43] tends to sample higher quality grasps, however, can
come at a cost of time to create the samples.

RL approaches for grasping typically focus not only on grasp
generation but also on the trajectory used by the system. However,
RL approaches typically generate only one grasp per scene, making
it difficult to incorporate additional constraints during execution.

Exemplar methods, which rely on a knowledge database of
objects with similar shapes, were the least commonly used approach
in our literature review. This is likely because they are limited in
their ability to effectively grasp objects that differ significantly from
those in the database.

B. Benchmarking
Grasping in complex environments has had recent attention in

adjacent fields such as agriculture[187], whereas in pure grasping
literature, authors typically focus on grasping objects from tabletop
scenes where most of the synthesized grasp poses are kinematically
feasible. Studying 6-DoF grasping in enclosed spaces such as
shelves [188], around obstacles [52, 59], around humans [64], near
reachability limits [52] or in-the-wild (e.g orchards [189]) would
pose more constraints on the synthesis of the grasp configurations
and require the grasp poses to not only be of high quality but also
diverse, to increase the probability of finding a feasible trajectory
to reach those grasp poses. As 6-DoF grasping approaches are
not often tested in such challenging environments or compared
directly to 4-DoF ones, the question of whether to use a 6 DoF or
a 4-DoF grasping approach for a given application is not adequately
answered by the current state-of-the-art.

Our review also found that few research papers provide a
ready-to-use implementation of their work, making it easier for
other researchers to benchmark their algorithms against. On the
other hand, the ones that offer an implementation are commonly
used by others as part of their evaluation. For instance, work by
ten Pas et al. [40] is used by many others as a benchmark, likely
because it is one of the earliest works that provide an open-source
implementation wrapped in a ROS package.

Key Takeaways:
• 6-DoF grasping should be studied in more varied environments

rather than just tabletop scenarios.
• Researchers should make their algorithms publicly available,

ideally in a ready-to-use format (e.g. as a ROS package) to al-
low for informative benchmarking even on tabletop scenarios.

C. Performance Metrics
Bohg et al. [3] highlighted in 2014 that the grasping community

has not yet embraced a consistent set of performance metrics. This
observation is still valid today. This can be partly attributed to the
large variety of objects, robots, end-effectors, and scenarios used in
grasping research. Moreover, there is a divide between subsystem
metrics and task-level metrics [190].

There are, however, some common performance metrics that the
community has been using. The most popular metric is the grasp
success rate, even though the exact definition varies in the literature.
Some deem a grasp successful if the object is still held by the gripper
after the robot returns to a configuration that is a certain height above
the table [37, 92]. Other works impose additional constraints to the
success definition, such as if the object is held for a certain amount of
time [85] or checking if the object is still in the gripper after taking a
sequence of actions intended to test the robustness of the grasp [51].

Although success rate is a useful metric, an underutilized type
of performance metric is one that measures the time efficacy of a
grasping approach. For instance, if the task is to remove objects
from a container efficiently, is a slower robot with a 95% success
rate preferred to a faster robot with only 75% success rate? The
answer depends on the task, since faster grasping approach might
be preferred for a task where dropping an object is not detrimental.
One metric that could be used for this purpose is Mean Picks
Per Hour (MPPH), which is defined as the average number of
successful grasps completed in an hour. Researchers should be
reminded, however, that a time-based metric such as MPPH does
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not only measure the computational efficiency of grasp synthesis
but the system as a whole, and will be affected by the robot
hardware, trajectory efficiency as well as the compute resources.

The combination of employing both a time-based metric and
success rate could provide a more comprehensive evaluation of a
pure grasping system. This is due to the likely inverse nature of the
two metrics, where a system with a high grasp success rate may
be very computationally expensive and slow-moving. However,
a very fast system may be able to perform grasps and subsequent
motions quickly, however likely decreasing the grasp success,
which may be undesirable when grasping more fragile objects.
As such, considering both of these metrics should provide a more
detailed evaluation of the grasping system.

Key Takeaways:
• In addition to reporting the grasp success rate, researchers

should consider reporting a more strict definition of the
grasp success that tests the robustness of the grasp, similar to
Lundell et al. [51].

• We suggest wider adoption of a time-based performance
metric, such as the Mean Picks Per Hour (MPPH).

D. Object Sets and Grasping Datasets
Many papers use custom object sets, consisting of daily objects

that the authors could find around the lab, making it difficult to com-
pare different grasping approaches. Standardized object sets are very
useful in enabling head-to-head comparisons of grasp synthesis al-
gorithms. The most useful object sets for grasping research are those
which cover a variety of objects and are easily accessible by the re-
search community. Furthermore, object sets should have accurate 3D
models that enable simulation studies. The most commonly used ob-
ject set currently by today’s grasping community is the YCB object
set [159]. However, since this may change in the future, researchers
should keep an eye on which object sets the community is using.

Models for grasp synthesis are trained on datasets where each
data point contains the sensor data, the grasp pose executed by
the robot, along with a ground truth label depending whether the
grasp was successful or not. The majority of the reviewed works
were trained on simulated datasets which offer large-scale data
collection. However, there is a lack of realism due to the physics
not being modeled accurately [191].There is a lack of real-world
grasping datasets, which tend to offer higher-quality data, are
resource intensive to create compared to simulated datasets. While
we believe that a comprehensive real-world dataset could be useful
for the community analogous to the commonly used Cornell
Grasping dataset [109] for 4-DoF top-down grasping, however,
most research groups typically lack the time and resources needed
to create large-scale real-world grasping datasets, with notable
exceptions [117]. A compromise between real and simulated
datasets are the hybrid datasets, for instance, Fang et al. [91] whom
provided real-world point cloud data, however the grasp hypotheses
are evaluated analytically rather than with actual trial-and-error.

Key Takeaways:
• Grasping researchers should adopt one of the widely used

object sets. YCB object set [159] is the most commonly used
one today, however, in the future, new object sets might find
a wider adoption.

• The grasping community would benefit from the introduction
of new object datasets that offer variety or specialization in

different aspects such as object geometry, grasping difficulty
[167] or deformation.

• We propose authors release the code used to generate the
dataset in addition to the dataset itself. This will allow other
authors to make changes to the data generation procedure.

E. Trajectory Planning
Motion planning is widely utilized to find collision-free

trajectories to execute a chosen grasp hypothesis. However,
planning for a collision-free trajectory can be too conservative
for densely cluttered scene, for example in cabinets and shelves
where it may not possible to grasp the object of interest without
nudging the neighboring objects. It has been shown that humans
make deliberate contact with the environment during manipulation
rather than carefully avoiding it[192]. This strategy exploits how the
environment provides physical constraints on how the object and
hand move and therefore provides a funnel for uncertainty due to
noise in perception and control. This principle has also been shown
to work well for robots [192–199]. For example, fixturing is a widely
used practice in industry for various application such as machining,
assembly and inspection. This suggests that the objective of having
collision-free trajectories to acquire a grasp must be relaxed.

Key Takeaway: We encourage the study of motion planning
algorithms for tight spaces where it is not possible to reach the
targets without nudging other objects or where contact with the
environment can be leveraged for more robust grasping.

F. Sensor Modalities
While most of the reviewed papers rely solely on vision for

perceiving the world, other sensing modalities have been shown
to be very helpful for both manipulation [200] and grasping [201].
Future research should explore how these techniques can be applied
to improve the success of 6-DoF grasping. For example, tactile
sensors can be used to predict if the object will remain grasped
before it is actually lifted [202–204], detect object slip [205],
account for uncertainty in object pose [124] and reconstruction of
object geometry [46, 206]. Force/Torque sensing is another common
sensor modality utilized in robotics there are also other less common
modalities include robotic skins [207] and sound [208, 209].

Key Takeaway: Many of the reviewed works are vision-only
sensing and considering only a single point-of-view. More research
is needed to complement vision with other senses such as touch
or hearing.

G. Grippers, hands and beyond
Most of the works in this survey focus on the use of simple

two-fingered or three-fingered grippers, with few consider
anthropomorphic hands. Simpler grippers greatly reduce the
complexity of computing many-Dofs grasp hypotheses, and, most
importantly, affordable commercial grippers allow researchers to
setup systems for experimentally validating their results. However,
this biases the research towards problems suitable for these simpler
grippers and makes research on some other problems like grasping
with anthropomorphic hand, dexterous, in-hand manipulation
or soft-hand grasping fall behind. These directions may become
important for enabling robots to go beyond pick and place tasks.

Key Takeaway: Robots have been employed and productized in
manufacturing for decades [210–212], with further improvements
in manipulation capabilities these robots will be able to perform
more complex tasks in more unstructured environments, like the
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assembly of unseen parts or on-site construction. Building robust and
dexterous hands will result in automating many jobs currently done
by humans. The opportunities are immense: new ways of designing
hands, new materials, new sensors and ways of actuation, easy
exchangeable fingers, redundancy. But it is not only about the hands
- making sure the arm can carry the hand, that the hand is a natural
extension of the arm, hand and arms in interaction- going beyond
one and compensating some degrees of freedom in the hand by
skillful dual-arm interaction are just some of the avenues to follow.

H. Grasping as part of a process
All day long, our hands and fingers, touch, push, pull, and

enclose objects. We do this with rigid, articulated or deformable
objects. We do this in the air, while objects are standing on rigid or
soft surfaces or while they are moving. We do this while they are in
water or covered in oil, with or without seeing - like finding a key
in a pocket. Despite many decades of research and development
in the area, human grasping skills are still quite superior to any of
the artificial systems so far demonstrated.

In this discussion section, we have identified several areas where
further contributions are needed. However, a broader view is neces-
sary to address some if not all the manipulation scenarios mentioned
above and, more importantly, consider grasping as part of an entire
manipulation process. Specifically, identifying one specific 6DoF
grasp pose for an object may not be sufficient to achieve success in
these scenarios. One avenue may be to re-think grasp parameteri-
zations to extend them to trajectories defined in joint and/or contact
space. This could include exploiting environmental constraints [192]
as well and adapting wrist trajectories based on the morphology of
the hand itself [213]. New ideas and techniques for online learning
and recovering from failure are required. Only new ideas and
techniques in these and more areas will push advances that will make
robotics systems successfully perform tasks we have been promising
for some time such as folding clothing, preparing food, dressing
humans. Pushing for and studying grasping beyond pure grasping,
is one of the most important challenge we have as a community.

In summary, we have conducted a systematic review of
state-of-the-art works which use deep learning-based towards
achieving 6-DoF grasping. From this review, we synthesize 10 key
takeaways which we believe could enable further progress in this
rapidly progressing field.
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[17] P. Ardón, É. Pairet, R. Petrick, S. Ramamoorthy, and K. Lohan, “Learning
grasp affordance reasoning through semantic relations,” IEEE Robotics and
Automation Letters, vol. PP, pp. 1–1, 08 2019.

[18] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. R. Dillmann, “Integrated
grasp planning and visual object localization for a humanoid robot with
five-fingered hands,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. Beijing, China: Ieee, 2006, pp. 5663–5668.

[19] V.-D. Nguyen, “Constructing force-closure grasps in 3d,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, 1987, pp. 240–245.

[20] K. Mirza and D. Grin, “General formulation for force distribution in power
grasp,” in IEEE International Conference on Robotics and Automation, 1994,
pp. 880–887 vol.1.

[21] I.-M. Chen and J. Burdick, “Finding antipodal point grasps on irregularly
shaped objects,” IEEE Transactions on Robotics and Automation, vol. 9,
no. 4, pp. 507–512, 1993.

[22] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook of
robotics. Springer, 2016, pp. 955–988.

[23] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic
Manipulation. Taylor & Francis, 1994.

[24] A. Miller and P. Allen, “Graspit! a versatile simulator for robotic grasping,”
IEEE Robotics Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[25] S. El-Khoury, A. Sahbani, and V. Perdereau, “Learning the natural grasping
component of an unknown object,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007, pp. 2957–2962.

[26] F. Kyota, T. Watabe, S. Saito, and M. Nakajima, “Detection and evaluation
of grasping positions for autonomous agents,” in International Conference
on Cyberworlds, 2005.

[27] C. Michel, V. Perdereau, and M. Drouin, “An approach to extract natural
grasping axes with a real 3d vision system,” in IEEE International Symposium
on Industrial Electronics, vol. 4, 2006, pp. 3130–3135.

[28] I. Kamon, T. Flash, and S. Edelman, “Learning to grasp using visual

https://doi.org/10.1007/978-3-319-26706-7_8
https://hal.archives-ouvertes.fr/hal-00692033


16

information,” in Proceedings of IEEE International Conference on Robotics
and Automation, vol. 3, 1996.

[29] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd images:
Learning using a new rectangle representation,” in IEEE International
Conference on Robotics and Automation, 2011.

[30] A. Saxena, J. Driemeyer, J. Kearns, C. Osondu, and A. Y. Ng, “Learning to
grasp novel objects using vision,” in Experimental Robotics. Springer, 2008,
pp. 33–42.

[31] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects
using vision,” The International Journal of Robotics Research, vol. 27, no. 2,
pp. 157–173, 2008.

[32] A. Saxena, L. Wong, and A. Ng, “Learning grasp strategies with partial
shape information.” in Proceedings of the National Conference on Artificial
Intelligence, vol. 3, 2008, pp. 1491–1494.

[33] A. Morales, E. Chinellato, P. Sanz, A. P. del Pobil, and A. Fagg, “Learning to
predict grasp reliability for a multifinger robot hand by using visual features,”
2004.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.
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IX. APPENDIX

A. Appendix A: Methodology
We conducted a Systematic Literature Review to assess the state-of-the-art of

6-DoF robotic grasping utilizing deep learning approaches. Our review, methodology
adapted from [214], searched through six different scholarly libraries – IEEE,
Springer, ScienceDirect, SpringerLink, arXiv and Taylor & Francis – with the
following search terms and criteria.

B. Search Terms
The following search terms were used to search through the whole paper (where

the database allowed this option). The ‘AND’ function represents a way to enforce
the search results to contain all of the search terms. When possible, the search
terms were combined using an ‘OR‘ function, otherwise, each term was searched
separately. Furthermore, in combination with the search term ‘Grasping’ was
searched in the metadata of the paper, if metadata search was available.

• 6-DoF Grasping
• Grasping AND Point Cloud AND Deep Learning
• Shape Completion AND 6-DoF Grasping AND Learning
• Affordances AND Grasping AND 6 DoF

C. Inclusion/Exclusion Criteria
From the papers found in the databases, only publications that met the following

criteria are included in this review:
(a) Paper considered grasping from a table-top scenario,
(b) All 6-DoF were used for the grasp pose,
(c) Deep Learning methods were applied in some aspect of the work,
(d) Published after Jan 1, 2012, (the year Alexnet [34] was published) and
(e) Written in English.
All criteria was searched manually by the authors. Our search returned a total

of 85 papers that matched these criteria and were therefore included in this review.
A table of all the reviewed papers and their deep-learning approaches are included
in the online version of the survey.

D. Data Extraction/Analysis
Data was extracted from the included papers and verified by at least two of the

authors.
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