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Abstract— There are many situations in which an object that 

needs to be grasped is not graspable, but could be grasped if it 

was situated at a different location. By applying nonprehensile 

manipulation actions such as poking, the object can be moved to a 

new location without first being grasped. We consider these issues 

in the context of an artificial cognitive system. The goal of the 

paper is twofold; firstly, we study how the robot can acquire 

nonprehensile manipulation knowledge by observing the 

outcomes of exploratory movements on objects. We propose a 

learning process that enables the robot to acquire a general 

pushing rule describing the relationship between the direction of 

poke and the observed object motion for a class of objects. In this 

way the robot acquires new action knowledge without having any 

specialized prior model about the action. Secondly, we investigate 

how the acquired action knowledge can be used to realize 

grasping in complex situations where the robot could not grasp 

the object without moving it to a new location. Here the learned 

poking behavior serves as a support action for robot grasping. 

The proposed approach has been implemented and tested on a 

humanoid robot Armar III.  

 

I. INTRODUCTION 

Autonomous robots should explore their environment 

actively, persistently, and systematically as most animals and 

humans do [16]. To study and develop intelligent humanoid 

robots, we therefore pursue a developmental approach. 

Cognitive abilities should develop by refining the knowledge 

acquired in previous stages of the development [8]. In the 

context of this paper, the first stage involves learning to 

distinguish the robot body from the rest of the world. 

Afterwards, the robot can move on to the second stage, that is 

interaction with external objects. The next stage involves 

interpreting object-object interactions. In this paper we focus 

on the second stage – interaction with external objects.  

In a cognitive system objects and actions cannot be 

separated because objects can induce actions (cup # drink), 

while actions can redefine objects. Objects and actions are 

inseparably intertwined and higher-level categories are 

therefore determined (and also limited) by the action an agent 

can perform and by the attributes of the world it can perceive; 

the resulting, so-called Object-Action Complexes (OACs) are 

the entities on which cognition develops (action-centered 

cognition) [17]. While this paper is concerned with OACs at 

the level of early perception-action events, our research strives 

to provide a continuous path from such events to complex 

cognitive processes, where OACs are used as basic building 

blocks. 

One approach towards the acquisition of new object-action 

knowledge is that such information can be obtained by 

performing exploratory primitive actions on a number of 

different objects. By observing the changes in the environment 

caused by the applied actions, the robot can associate the 

applied actions with the resulting object behavior and thus gain 

understanding of causes and effects. As a representative 

example we study the acquisition of nonprehensile 

manipulation knowledge, i.e. object manipulation without a 

grasp. This kind of manipulation is used when it is difficult or 

impossible to grasp an object, e.g. when an object is too wide, 

too large or too heavy. As an example of nonprehensile 

manipulation, we focus on poking, which is defined as a short 

term pushing action. Poking can also be used in order to 

identify and segment the objects from the background [4]. 

Our aim is to obtain a general pushing rule rather than an 

object specific one. Humans are good at generalization, 

especially when their experiences are very diverse. The same 

generalization capabilities need to be achieved in autonomous 

robots. To achieve a reasonably high level of generalization, 

some authors use recurrent neural networks with parametric 

bias [10][14], where static images of objects are linked to 

dynamic features of objects. In this paper we achieve 

generalization of the pushing rule by using object images as 

input to the system, which provides an appropriate data to 

extrapolate the pushing rule. 

When poking an object, the object motion depends on the 

object’s shape, weight distribution and on the support friction 

forces. A lot of work has already been done in the field of 

mechanics on the controllability and planning for poking [7] 

[6]. Obviously, poking could easily be implemented by 

assuming a proper representation for the physics of the task, 

but such an approach relies on a priori knowledge about the 

action and therefore does not solve the complete learning 

problem. Additionally, it is sometimes difficult to obtain the 

model parameters using available sensors (e.g. it is very 

difficult to obtain friction between the object and the pusher 

using vision). If the physical model of the object and the action 

is not available like in our work, the robot has to experiment 

with different poking actions on the object. In this way the 

robot acquires new knowledge from exploration and human 

demonstration in the same way as infants learn their actions – 

performing actions on objects means playing with toys. 

While poking has been used to study cognitive processes 

before [5], our work focuses on different issue, which is 

learning generalized pushing rules with the application to 



grasping. After learning, the robot can use the newly acquired 

knowledge to push an object towards a specified location. On 

the other hand, Fitzpatrick et al. [5] were primarily concerned 

with using poking actions to extract the associated object 

properties. Pushing has often been used as an example when 

learning affordances [13], but this type of research normally 

focuses on higher-level knowledge such as “this ball affords 

pushing”. Instead, our work focuses on acquiring fine-grained 

controller that can be used to move a range of different objects 

in any specified direction. 

Only objects in proximal space are graspable and only 

objects of a certain size and shape can be grasped. There are 

many studies on graspability of objects [18] and how to 

generate grasp hypothesis. Even if the object is graspable in 

free space, it might not be possible to grasp it when other 

objects, e.g a surface on which it lies, are taken into 

consideration. In this paper we study how such problems can 

be resolved by pushing.  

II. SCENARIO DESCRIPTION 

The experiment has been designed as follows (see Fig. 1). 

The robot stands at a table and needs to grasp an object that 

lies on the table. After detecting that the object is not graspable 

at a given configuration because it is too wide, the robot has to 

bring the object to the table boundary, where the object 

becomes graspable due to its flatness. The robot uses its hand 

to push the object. The part of the hand that has been used for 

pushing will be termed as a pusher. Once the object is pushed 

to the table boundary, it becomes graspable and the robot 

grasps it (see also the attached video). 

To learn a general pushing rule, the robot starts by 

experimenting with different primitive poking actions
1
 applied 

to different objects and at different locations on the objects’ 

boundaries. With this process the robot builds a knowledge 

base, which describes the relationship between the point and 

angle of push on one side and the actual object movement on 

the other side. Based on this data, a neural network is learned, 

which maps the performed pushing action and shape of the 

pushed object to the resulting object movement. 

Afterwards the robot can use the acquired knowledge to find 

the right poking action in order to move the object as desired 

(i.e. the robot should push an object to a graspable position). 

The objects used in the experiments are planar polygonal 

objects such as shown in Fig. 7. 

For object pose estimation, a stereo-based approach 

presented in [3] has been applied. Textured object are 

recognized and localized using 2-D feature point 

correspondences between the current object snapshots and the 

off-line learned views, which are stored as part of the object 

representation in an object database. The pose is computed on 

the basis of triangulated subpixel-accurate stereo 

correspondences within the estimated 2-D area of the object, 

yielding 3-D to 3-D point correspondences with a training view. 

                                                 
1
 We implemented the primitive poking actions are straight line movements of 

a pusher in a given direction. Regarding pushing, this is the only prior 

knowledge available to the system. 

On the other hand, recognition and localization of single-

colored objects combines model-based view generation with 

stereo-based position estimation. Orientation information is 

retrieved from the matched views and an accurate pose is 

calculated by a pose correction procedure, as presented in [3]. 

The proposed techniques were implemented on a humanoid 

robot Armar III [1] (see Fig. 1) and industrial arm Mitsubishi 

Pa-10. Grasping has been implemented only on the humanoid 

robot using visual servoing techniques as presented in [15]. 

Given the object position, a collision-free motion is generated 

to reach a pre-grasp position of the arm using inverse 

kinematics. To estimate the hand position, an artificial marker 

is attached to the wrist of the robot and tracked visually while 

moving the hand to the grasp pose. The required orientation of 

the hand is computed using the forward kinematics. 

 

Fig. 1: Humanoid robot Armar III during pushing action  

III. LEARNING OF THE PUSHING RULE 

The pushing rule is learned using an exploratory process 

introduced in the previous section. The task of the robot is to 

learn the relationship between the point and angle of push on 

the object’s boundary and the actual object movement after the 

pushing action is performed (see Fig. 2). We call the problem 

of learning the movement of the object being pushed the direct 

pushing problem. 

In our previous work [11], the robot learned the response of 

only one object after the push has been performed. Thus for 

each new object, the robot had to learn everything from scratch. 

There was no prediction and no generalization to other objects. 

Here we propose an approach that can generalize the pushing 

rule to objects that differ in shape and size, including objects 

whose response to pushes was not observed during learning. 

The set of objects used in the experiment is shown in Fig. 7. 

In the learning phase, the robot experiments with a number 

of different poking actions. The robot has to poke an object 

from different sides and at various angles (see Fig. 2). 

Additionally, it has to experiment with different objects to 

achieve generalization. In the beginning of the process the 

robot has no knowledge about how objects respond to the 

primitive poking actions, thus initially the robot experiments 

with different poking actions randomly. 



 

Fig. 2: Schematics of a poking action 

After a poking action has been applied to an object, the 

object accelerates and changes its position and orientation. 

Since the objects are relatively light and the friction between 

the object and the table is relatively high, we can neglect the 

dynamic properties of motion. Typical response of the object is 

shown in Fig. 3. The object velocity settles in less that 200 ms. 

The object velocity estimated by vision is noisy, but since 

learning takes place after the push is completed, the data can 

be filtered and processed well before the use.  

Since the object settles its motion in a very short time, the 

response of the object to the poking action is determined with 

sufficient accuracy by simply observing the displacements of 

the pusher and the object. The displacement of the pusher is 

expressed by two parameters: the point and the angle of 

contact on the object boundary, which define the direction of 

push. The primitive poking actions keep the velocity of the 

pusher constant while performing the action. The point of 

contact is expressed as the angle between the line segment 

connecting the point of contact and the centre of the object and 

the x-axis of the object’s coordinate system. Similarly, the 

angle of a contact is expressed as the angle between the 

pushing direction and the tangent at the point of contact (see 

Fig. 2). 

 

Fig. 3: Typical response (velocity) of an object after applying a poking action 

 

Fig. 4: Agent view of a scene during learning  

The response of an object is represented by three parameters, 

i.e. the planar velocity of the object centre and the rotational 

velocity about the centre point on the object. The abstract 

robot’s view of the experiment is shown in Fig. 4. 

Humans can predict the motion of the object to be pushed 

based on the acquired object images, which are used as input to 

the neural networks in the brain. The application of retina 

images as an input to control the robot behavior has already 

been studied in robotics. For example, Oztop et al. have used 

retina images and Hopfield networks to realize hand posture 

imitation [12]. Inspired by these findings, we utilized the 

binarized object images as an input to the system. To limit the 

search space that needs to be explored, we normalized the 

binarized images with respect to the pushing direction in the 

retina image. Before each primitive poking action is applied, 

the observed scene is mapped in such a way that the pushing 

direction is always at the same position on the retina (see Fig. 

5). This normalization process ensures that the acquired 

knowledge is invariant against object position and orientation 

as long as the pusher is able to apply the primitive poking 

actions at the given configuration. 

The original resolution of the camera images was 640 x 480 

pixels. Due to the computational complexity and to achieve 

faster convergence and better generalization, we reduced the 

resolution of the input image to 20 x 15 pixels. Translated and 

rotated retina images of reduced resolution served as input to 

the neural network, which is used to represent the pushing rule. 

The network has three outputs to represent the predicted 

velocity of an object in all three directions. 

We applied a two-layer backpropagation network with 300 

input neurons, 10 neurons in the hidden layer, and 3 output 

neurons. Each input neuron corresponds to a pixel of the 

object’s reduced resolution image. The value of the pixel is in 

the range from 0 to 1, where 0 means that no object is present 

at the pixel, while 1 means that the pixel is covered by the 

object. The three output neurons correspond to the object’s 

linear and rotational velocity on the support surface. The 

output velocities have been normalized to the range from -1 to 

1. The hidden layer as well as the output layer use the tan-

sigmoid transfer function. To train the network we employed 

the Levenberg-Marquardt training function.  



 

Fig. 5: The binarized object image is rotated and translated to ensure the same 

pushing position and direction on the retina 

IV. APPLYING THE PUSHING RULE 

After the learning phase is completed, the robot can generate 

a poking action to move an object in the desired direction. We 

call this process the inverse pushing problem. The inverse 

problem deals with where and how the object has to be pushed 

to achieve motion close to the desired one. 

The aim of the robot in this phase is to perform a set of 

poking actions in order to bring the object to the desired 

location. Here, a higher-level motion planner should provide 

the desired movement of the object, whereas the lower-level 

controller needs to solve the inverse problem. The agent view 

of the poking scene is shown in Fig. 6. 

Note that the robot cannot always achieve the desired 

velocity due to the physical limitations of the action (this is 

still a nonprehensile action). In many cases it happens that an 

object cannot be moved in the desired direction because the 

pusher slides from the object boundary or it even moves away 

from the boundary. Such events cannot happen when the object 

is firmly grasped. 

To solve the inverse pushing problem, i.e. to achieve an 

optimal pusher motion for the desired pushing direction, the 

agent needs to optimize a criterion function with respect to the 

point and angle of push, e. g. the weighted square error 

between the desired motion and the predicted one. Thus we 

need to find a global minimum of the following function: 

  (1) 

where Xdes represents the desired motion in all three DOFs and 

Xpred represents the motion of the object which is predicted by 

the neural network, respectively. W is the weight specifying 

the importance of each direction. 

To solve the inverse problem by finding the minimum of Eq. 

(1), we use classical optimization techniques. For an initially 

selected point and angle of push on the object boundary, the 

acquired binarized image is transformed as described in the 

previous section. Based on the generated object image, we 

predict the movement of the object using the learned neural 

network. The predicted velocity is compared to the desired one 

and a new point and angle of push are determined by the 

optimization method. The process is repeated until an 

appropriate point and angle on the object’s boundary are found. 

We believe that this process is similar to how humans visualize 

their action before doing it.  

Pushing is a nonprehensile action and it is therefore difficult 

to ensure that an object will move exactly in the desired 

direction, both because of the inaccuracies in the learned 

model and because the optimization process might not find an 

optimal solution, e.g. because it is stuck in a local minimum. 

We therefore realized the “pushing to a desired location” 

behavior as a feedback process, where the robot repeatedly 

pushes the object until the final position is reached. 

The computational complexity of the optimization process is 

relatively high. However, the pushing point and angle has to be 

computed only with a frequency of 1 Hz or even less, thus the 

computational complexity does not play an important role. 

Note that only the direction of the object’s movement is 

considered in the optimization. The amplitude of the velocity 

can be modulated by requiring a stronger (or faster) pushing 

action. 

 

Fig. 6: Agent view of a scene while controlling object movement  

 



V. PUSHING FOR GRASPING 

In our previous work [2], we presented a framework for 

object grasping and manipulation, which incorporates the 

described vision system for object localization, a path planner 

for the generation of collision-free trajectories and an offline 

grasp analyzer that provides the most feasible grasp 

configurations for each object. The results provided by the 

system’s components are stored and used by the control system 

of the robot for the execution of a grasp of a particular object. 

The central assumption of this framework is the existence of a 

database with 3-D models of all objects encountered in the 

robot’s workspace and a 3-D model of the robot hand. Grasp 

hypotheses for each object are generated in simulation using 

the grasping simulation environment GraspIt! (see [9]) and 

stored as part of the object representation in the database.  

The graspability of the object depends on the support 

surface, object properties and the available hand. In order to 

determine whether an object can be grasped with the available 

robotic hand, we use the simulator to validate the grasp 

hypotheses associated with the object. A hypothesis is rejected 

if its execution (in simulation) causes collision with the surface 

on which the object is placed. If the system generates some 

hypotheses but none of them leads to a successful grasp, the 

object must be first relocated before being grasped. One 

possible way is to push the object to the rim of the table to 

make it graspable. For this purpose we select one of the 

hypotheses and compute the pose of the object at the edge of 

the table so that the object surface associated with the grasp 

hypothesis lies beyond the rim of the table. 

While the grasping part of the system is implemented in a 

classic way, we are currently working towards a system that 

can learn to generate a set of grasp hypotheses based on the 

general properties of the object and test grasp executions. 

VI. RESULTS 

Our humanoid robot uses whole body manipulation to 

manipulate the object. Here, the mobile platform has three 

DOFs, the hip has 1 DOF and there are additional 7 DOFs in 

the arms. Depending on the reachability of the desired point, 

the robot can use the right or the left arm. Technically, to 

achieve a pushing action with a cylinder shaped pusher, five 

DOFs are necessary. Three DOFs are needed to control the 

position of the pusher and two DOF are needed to control the 

rotations. One DOF of rotation about the cylinder axis is not 

important and therefore does not need to be considered in the 

controller. To control the robot we used a velocity based task 

controller with null space joint limit avoidance. 

We performed the learning process on a set of different 

planar objects shown in Fig. 7. The real robot generated a 

hand-guided movement around the object (see Fig. 8, green 

line), which resulted in several randomly distributed pushes of 

the object. The experiment took about 2 minutes for each 

object. After the experimentation the data was filtered, 

velocities and positions of the object were calculated, and 

learning instances were generated. Among all the measurement 

samples we used only those that resulted in significant object 

movements. For all five objects we collected 867 instances,  

 

Fig. 7: A set of objects that were used for learning 

 
Fig. 8: Green line shows the movement of the pusher during the 2 minute 

experiment. Red patch represents an object at the initial position. 

which were used for training of the neural network. The 

sample learning instances are shown in Fig. 9. 

To validate the proposed approach, we compared the 

predicted and the actual velocity of the object. We evaluated 

the differences in the direction of object’s movement. 

Experiments showed that the object movement prediction gets 

better as the number of instances gets larger. Fig. 10 shows the 

mean error of all measurements. The x-axis represents the 

number of instances used for training of the neural network. 

When the number of instances used for training is very small, 

e.g. up to 50 instances, the mean error is about 0.5 rad. 

However, already when using a set of 200 instances, the mean 

error in prediction gets better and is about 0.2 rad. The errror 

drops further as more data is collected. Considering unknown 

friction, low resolution of the image, and the generalization 

property of the pushing rule, we consider this as a very good 

result. 

The learning process would converge faster and the error 

would be smaller if we provided more initial knowledge to the 

system. However, our goal was to develop a system which 

acquires new knowledge by its own actions, so that a robot 

could evolve into a more intelligent machine. Therefore, as 



little as possible was hardcoded to learn the pushing rule. Note 

that the primitive poking movements could also be learned. 

The acquired pushing rule has been applied to push an 

object to a graspable position. Fig. 11 (see also the attached 

video) shows the robot during pushing and grasping. The 

object was not graspable at its initial location. The robot thus 

generated a plan to move the object to a position where the 

robot could grasp it. After a few pushes, the object was brought 

to a graspable position, where the robot could successfully 

grasp it. 
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Fig. 9: Sample learning instances. The cyan line indicates the actual object 

movement, while the red line indicates the pushing direction. The object is 

shown in black. 

VII. DISCUSSION AND FUTURE WORK 

In summary, we realized the process of associating object-

action cause-effects through an explorative, self-emergent 

process. Such processes are of great importance for the early 

cognition. No specialized knowledge about the pushing action 

was provided to the robot. We only provided rules about how 

to explore the environment and the robot associated the applied 

actions to object responses independently. We believe that 

such an explorative learning process, possibly combined with 

imitation, is one of the keys to natural sensorimotor learning. 

While precise learning of pushing actions can take a long 

time, the agent can learn a rough but reasonable approximation 

of the behavior already after a few explorative pushes. This 

initial knowledge can already be used for a rather rough 

control of the object movement. 
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Fig. 10: The error in velocity direction prediction decreases as the number of 

learning samples increases 

While controlling the motion, the robot can update its 

knowledge base by observing the actual movement of the 

object. Thus the relationship between the desired and the actual 

object motion gradually becomes more accurate and the 

control of the object movement direction improves. 

Additionally, to make the learning of poking actions more 

optimal, human instructor can demonstrate the most 

representative pokes (e.g. perpendicular pokes from a few 

different sides). Incremental learning combined with imitation 

is the next important topics of our research. 
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