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Abstract— Autonomous grasping and manipulation of un-
known objects is a central skill for humanoid robots. This
is particularly challenging, as shape information needs to be
obtained from sensory data which is often noisy and incomplete.
However, object shape information is usually a key prerequisite
for grasp and manipulation planning and thus needs to be
estimated even if the available sensor data is limited. We
propose a method for implicit surface modeling based on sparse
contact information, as it arises e.g. from haptic exploration.
Surfaces are locally defined using the contact points and their
normals, and the object shape is extrapolated by integrating
this partial information. For each contact contributing to the
estimation, the local convexity or concavity is determined
depending on its neighbors and their respective normals. Taking
into account contact positions, normals and local convexities or
concavities, the Implicit Shape Potential of the overall surface
is generated. In contrast to popular methods based on Gaussian
Processes, this representation allows for local details like edges
and corners, without losing the ability to interpolate in the case
of noise. In addition, it provides information to guide iterative
exploration algorithms. The proposed method is evaluated on
a set of various 3D shapes that possess flat and curved surface
regions as well as convex and concave edges.

I. INTRODUCTION AND RELATED WORK

Grasping and manipulation are essential skills for hu-
manoid and service robots. Most grasp and manipulation
planning algorithms require knowledge about the shape of
the object in question. However, when encountering new,
unknown objects such shape information is not available a
priori, therefore robots need to acquire it autonomously.

One source of shape information is visual perception.
However, vision based approaches can be impaired by en-
vironmental factors such as smoke, insufficient lighting, or
reflective/transparent surfaces. Another promising approach
to shape learning is haptic exploration based on tactile and
proprioceptive sensing. This does however provide relatively
sparse surface information with respect to the invested explo-
ration time. Both approaches have strengths and limitations,
and in this work we focus on modeling object surfaces based
on limited sensor data. There are different approaches to
represent surfaces based on sensed information including
parametric models such as superquadrics [1]. This approach
can be combined with voxelization [2]. One aspect of
parametric models is that the number of possible shapes
of the model is constrained by the degrees of freedom of
the chosen model. In some cases, the use of one single
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Fig. 1: Implicit Shape Potential and resulting Implicit Surface
for contact points with orthogonal normals: Gaussian Process Im-
plicit Surfaces (GPIS) yield smooth surfaces whereas the proposed
method Local Implicit Shapes (LIS) generates sharp edges.

superquadric is insufficient to represent the whole object,
therefore it may be appropriate to decompose the object for
a representation using multiple superquadrics [3, 4]. Besides
the aforementioned approaches, simple geometric shapes like
boxes and cylinders can also be used to approximate objects
[5]. More complex objects can be represented by combining
these basic geometric shapes [6].

Since vision systems only provide data for one side of
the object at a time, exploration strategies are required to
perceive object shape information from different sides, which
may not always be possible due to spatial or kinematic
constraints. To model object shapes based on only one
perceived side, symmetries can be assumed and used to
estimate the back of an unknown object [7–9].

Another option for object representation are implicit sur-
face models which employ a signed distance function that is
positive outside of the estimated object, negative inside and
zero on its surface. One popular choice for implicit surface
representation are Gaussian Process Implicit Surfaces (GPIS)
[10]. Estimating implicit surfaces using Gaussian Processes
has several advantages over parametric approaches. Gaussian
Processes are not limited to a fixed number of parameters and
can approximate arbitrary shapes given sufficient input data.
This can be applied to estimate surfaces based on tactile
exploration in order to calculate grasps [11]. Additionally,
the GPIS approach can be used to combine different sensor
modalities such as vision and tactile data [12]. Besides esti-
mating the surface, GPIS can incorporate noisy input samples
and can also provide uncertainty information that can in turn



be used during grasp planning [13, 14]. There are specialized
grasp planners that compute the probability of force closure
for grasps relying on the uncertainty provided by GPIS
[15]. GPIS can be adapted to provide shape deformation
capabilities where one estimated surface can be continuously
deformed into another one [16].

Since the GPIS algorithm is an implicit approach, not
only the surface of an object can be estimated, but also
occupancy information can be directly derived from the
implicit function. One application of this occupancy map is
motion planning with obstacle avoidance [17]. In addition
to position-based data, GPIS can be trained with oriented
points, i.e. points on the surface with associated normal
information. The normals are introduced by defining not only
the implicit surface potential but also its partial derivatives
[18, p. 191].

In order to apply Gaussian Processes, a linear system has
to be solved resulting in a cubic computational complexity
which is a limiting factor for applications with larger point
clouds. This can be mitigated by selecting only some of the
samples to build the model [19], by splitting the samples
into smaller groups [20], or by using a sparse covariance
function that makes distant data independent [17]. GPIS tend
to produce surfaces connecting the training points with a
smooth surface that complies well with the original training
data. The resulting surface is orthogonal to the training
normals and includes the input points. For instance, in Fig. 1b
and Fig. 1e we show two simple cases of explored contacts
with orthogonal normals using GPIS. In regions without any
samples GPIS connect the closest samples with a smooth
surface, while sharp corners and edges tend to get smoothed
out.

Smooth surfaces can be desired in some applications that
rely on continuously differentiable surfaces, but some key
surface details are lost in this process. The estimation of
edges and corners is beneficial in many cases, e.g. explo-
ration of unknown objects, grasp planning or object recogni-
tion. In this work, we introduce an implicit surface estimation
algorithm that preserves sharp edges and corners but also
yields similar surface accuracy in continuous regions when
compared to GPIS. The result of our proposed method is
illustrated in Fig. 1c and Fig. 1f. To this end, first the concept
of implicit surfaces and the definition of GPIS is briefly
introduced in section II. Subsequently, the proposed Local
Implicit Surface (LIS) estimation algorithm is explained in
section III. The LIS algorithm is evaluated and compared to
GPIS. Finally, conclusions and future work are layed out in
section V.

II. IMPLICIT SURFACE ESTIMATION

In the following, implicit surfaces and Gaussian Process
Implicit Surfaces are revisited and the proposed local implicit
surface model is introduced.

A. Implicit surfaces

Gaussian Process Implicit Surfaces as well as the proposed
method rely on an implicit surface model. An implicit surface

is defined by a function that can be evaluated at any point in
space. This functions yields a value indicating whether the
point is inside the object, outside the object or on the surface
of the object. For the 3-D space this function f is defined as

f : R3 → R

 = 0, x on the surface
> 0, x outside
< 0, x inside.

(1)

In the following, f is referred to as the Implicit Shape
Potential (ISP).

B. Gaussian Process Implicit Surfaces

Since Gaussian Process Implicit Surfaces (GPIS) are often
used in the context of tactile and haptic exploration we will
briefly recapitulate GPIS. Williams et. al introduce a special
covariance function (kernel) optimized for implicit surface
estimation [10]. For the 3-D space the covariance between
two points u and v is defined by the Radial Basis Function
(RBF)

k(u,v) = 2‖u− v‖3 + 2R‖u− v‖2 +R , (2)

where R is the largest distance between any two sample
points. The ISP is defined as

f(x) = k∗
T (K + σ2I)−1y , (3)

where K denotes the covariance matrix calculated using the
kernel function k and k∗ is the covariance vector between all
observed points xi and the current test point x. The term y
is a vector comprised of all observed values at the observed
points xi. An alternate notation of f(x) can be given as

f(x) =

N∑
i=1

k(x,xi)αi , (4)

where α can be computed from all observed samples xi:

α = (K + σ2I)−1y . (5)

Alternatively to the kernel defined in Equation 2 the standard
Gaussian process kernel

k(u,v) = exp

(
−1

2

‖u− v‖2

σ2

)
(6)

can be used as the covariance function [11].
If at each sample point not only contact with the object

is observed, but also the surface normal is recorded, this
additional information can be used to increase the prediction
accuracy of the GPIS. To this end, the covariance k between
two sample points as well as the covariances between the
partial derivatives of k are used during the construction of
the covariance matrix K, see [18, p. 191].

III. LOCAL IMPLICIT SURFACE ESTIMATION

Similarly to the Implicit Shape Potential (ISP) of GPIS
defined in Equation 4, the ISP of the Local Implicit Shapes
(LIS) can also be defined by a covariance k between the test
point x and all samples as well as a weight wi for each
observed sample. Additionally, a signed distance function
yi(x) is introduced to describe the local implicit shape



TABLE I: Summary of used symbols
Function / Symbol Description

f(x) : R3 → R Implicit Shape Potential
yi(x) : R3 → R ISP defined by contact ci

ci,p ∈ R3 Position of contact ci
ci,n ∈ R3 Normalized normal of contact ci

k(u,v) : R6 → R Kernel defined in eq. 6
wi ∈ R Weight of contact ci

βi(ϕ(x)) : R → R Local concavity / convexity
kφ(ϕ) : R → R Angular kernel defined in eq. 11

ϕi(x) : R3 → R Angle in local cylinder
coordinates at contact ci

ϕi,j(x) : R3 → R
Angle in local cylinder

coordinates at contact ci
relative to contact cj

surrounding a contact point ci. Furthermore, βi is defined
as a measure of local convexity or concavity:

f(x) =

N∑
i=1

wi · yi(x) · k(x, ci,p) · βi(x) . (7)

This approach results in a Local Implicit Surface (LIS),
which combines the local implicit shape, the covariance,
the local convexity/concavity as well as a weight for each
observed sample point. All functions and symbols are briefly
summarized in Table I.

Fig. 1b and Fig. 1c provide a direct comparison of a
2-D example comprised of two contacts with orthogonal
normals. GPIS lead to a smooth curve connecting both
samples. The resulting shape is finite and closed on the
opposite. However, LIS create a sharp edge and the shape is
extrapolated continuously in unknown regions. This example
has been extended to a 3-D cube as shown in Fig. 1e and
Fig. 1f. The six observed samples are located symmetrically
on each side of the cube.

In general, y can be any signed distance function (SDF)
describing the local ISP surrounding a contact. In the current
implementation we use planes as local shapes so that yi is
the SDF of the plane defined by ci,n and ci,p:

yi(x) = ci,n · (x− ci,p) . (8)

Each sample point is weighted by wi to emphasize samples
which are in regions where only little or no other samples
have been observed. Samples that are close to each other
should get lower weights. If a new sample point cj coincides
with an existing sample ci with a weight wi the new weights
wi
∗ and wj

∗ should share wi so that wi∗ + wj
∗ = wi.

To achieve this wi is defined by the space the contact ci
occupies:

wi =

∫
Vi

1 , (9)

where Vi ⊂ R3 is the voronoi cell of contact i. To keep the
influence of the samples local, a kernel k is introduced that
declines over distance. In particular the standard Gaussian
kernel k is used, see Equation 6.

A. Local convexity/concavity model

The weighted superposition of planes works well for pla-
nar or curved surfaces but may lead to overshooting at sharp
edges. Fig. 2 shows a 2-D cross section of an example with
two potential edges. Fig. 2a displays the resulting ISP and
shape if the local convexity/concavity is not incorporated. To
overcome this, βi∗ describes the local convexity/concavity
and ranges from −1 to 1 where a positive value corresponds
to concavity and a negative value indicates convexity. If a
contact cj lies above the plane of ci, cj contributes a positive
value to βi∗ whereas a negative value is contributed if cj lies
below the plane of ci. The resulting local surface features
βi
∗ are similar to the concepts proposed by Thomsen et al.

in [21] and Wahl et al. in [22]. To apply βi∗ to the overall
ISP f , βi(x) is introduced:

βi(x) = 1 + sgn(yi(x))βi
∗(ϕi(x)) . (10)

βi(x) yields a large value if the sign of the SDF yi(x)
coincides with the sign of the convexity/concavity measure
of βi∗(x), whereas βi(x) is small if the signs of βi∗(x) and
yi(x) are contradictory.

c1
c2

c3

Overshoot

(a) ISP without local surface fea-
tures: The resulting surface over-
shoots a the corners.

c1

c2

c3

β1
*(φ)

β2
*(φ)

β3
*(φ)

less
Overshoot

(b) Local surface features en-
abled: The resulting surface is
more accurate with respect to the
corners.

Fig. 2: Impact of local surface features for a 3-contact scenario:
βi

∗ describes the local convexity/concavity. The features β1
∗ -

β3
∗ are drawn as circles where the color within denotes the

local convexity/concavity. Blue colored areas denote local convexity
(β < 0) and red areas indicate local concavity (β > 0). If no
information about local shape is present due to the lack of contacts
the convexity/concavity information is extended, e.g. left of c1 and
right of c2.

As Fig. 2a and Fig. 2b illustrate, the introduction of βi∗

can effectively mitigate overshooting effects at sharp edges.
At each contact ci a local coordinate system is chosen with
z-axis aligned with ci,n and arbitrary orthonormal x-axis and
y-axis.

To merge the convexity/concavity information of multiple
contacts, an angular kernel function is used:

ki,j,φ(ϕi,j) = σi,j,h exp

(
−1

2

sin2(
ϕi,j

2 )

σi,j,w2

)
, (11)

where ϕi,j(x) is the angle between the vector from ci,p
to cj,p and the vector from ci,p to x, projected onto the
xy-plane corresponding to ci. αi,j is the angle between the
vector from ci to cj and the xy-plane of ci. αi,j ∈ [−π, π]
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Fig. 3: Local cylindrical coordinate system at contact c1 used to
measure the angular position of x relative to c2 (ϕ1,2) and the
relative concavity/convexity between c2 and c1 (α).

represents the local convexity/concavity defined by the pair
ci and cj . If cj lies above the xy-plane of ci, αi,j is positive
and the local shape at ci in the direction of cj is concave. If
cj lies below the xy-plane of ci, the opposite is true: αi,j is
negative and the local shape is convex. Fig. 3 illustrates the
local coordinate system at ci and the definition of ϕi,j and
αi,j .

Fig. 4 gives example plots of kφ for different values of
σw and σh. The height σi,j,h of the angular kernel depends
on the distance between ci and cj , and is defined by the
standard-distance kernel k:

σi,j,h = k(ci,p, cj,p) (12)

The width σi,j,w depends on the value of the local implicit
potential yi:

σi,j,w = exp

(
−1

2

(
yi(cj,p)

σ

)2
)

(13)

Finally all local convexity/concavity information is merged:

βi
∗∗(ϕi(x)) =

∑
j 6=i

ki,j,φ(ϕi,j(x)) sin(αi,j) (14)

Fig. 4: Exemplary plots of the angular dependent kernel function
kφ(ϕ) in Equation 11. σw controls the width of the kernel whereas
the height is defined by σh.

B. Normalization of the convexity/concavity model

In the general case, the sum of the angular kernel functions
ki,j,φ is different from 1. So the co-domain of βi∗∗ may lie
outside of [−1, 1]. To achieve the desired convexity/concavity
measure βi∗ ∈ [−1, 1], we need to normalize the sum from
Equation 14. Therefore, the normalized variant of βi∗∗ is
introduced:

βi
∗(ϕi(x)) =

∑
j 6=i ki,j,φ(ϕi,j(x)) sin(αi,j)∑

j 6=i ki,j,φ(ϕi,j(x))
. (15)

Note that ki,j,φ only depends on ϕi(x) and not directly on
x. The domain of βi∗ is thus [−π, π]. Therefore, βi∗ can be
precomputed for each contact.

To illustrate the results of the calculation of βi∗, Fig. 5
gives two example objects featuring convex, concave and
mixed regions. At each contact point the local shape as
computed by βi∗ is visualized by a circular feature displaying
the angular-dependent convexity/concavity measure.

mixed

concave

convex

(a) Box on plane

mixed

convex

concave

(b) Hollow cylinder

Fig. 5: Local convexity and concavity model: For each contact the
local surface shape is estimated. Convexity is displayed in blue,
concavity is displayed in red. A contact can be convex in one
direction and concave in another.

IV. EVALUATION

To evaluate the proposed surface model Implicit Local
Surfaces (LIS) a tactile exploration scenario is simulated. An
exploration algorithm is used to iteratively explore the object
and create a series of contacts. Upon contact with the object
a new target is chosen for exploration based on the previous
contacts and the estimated surface. Contact sets of initially,
partially and fully explored objects are used for evaluation
of the surface model. The surface estimation results are
compared against the ground truth and the surface estimation
given by Gaussian Process Implicit Surfaces (GPIS).

A. Evaluation object set

To evaluate the proposed surface estimation algorithm LIS,
a number of geometric shapes are used, including a box, a
cylinder, a hollow cylinder, a sphere, a torus and a prismatic
pentagon, as well as a mallet as shown in Fig. 6. Since the
goal of the proposed approach is to improve the estimation
quality near edges, all objects have sharp and distinct edges,
including curved and straight edges. The mallet and the
hollow cylinder have regions that are convex in one direction
and concave in another, e.g. the transition of the handle and
the head of the mallet. All objects have a diameter of 20cm.



Extruded Pentagon Cylinder

Half Cylinder Hollow Cylinder Mallet

Box

Fig. 6: Object set used for evaluation: The objects feature straight
and curved edges as well as corners.

B. Exemplary evaluation run

LIS aims to locally estimate the surface of partially or fully
explored objects. Random contact generation does not reflect
contacts generated during realistic exploration scenarios.
Therefore, each object is explored by an iterative exploration
algorithm until the desired amount of the object is explored.
As the objects are partially explored the evaluation of the
estimated surface is only performed in the explored region of
the object. A part of the object surface is considered explored
if a contact point lies within 50mm, since this is the average
step size of the used exploration algorithm, as can bee seen
in Fig. 7.

Fig. 7: Partially explored object: The acquired contact points define
the explored region of the object. The explored region is shown in
yellow whereas the unexplored region is red.

Fig. 8 shows multiple snapshots taken during an exemplary
evaluation run of the half cylinder. To display the estimated
surface (white) as well as the ground truth (cyan) at the same
time the presentations for GPIS (left column) and LIS (right
column) are different, in order to minimize occulsions. For
GPIS the estimated surface is shown solid white and the
ground truth is drawn as a cyan wire frame. In the right
column the drawing is inverse: The white wire frame denotes
the estimated surface by LIS whereas the ground truth is solid
cyan. In the fully explored case only the estimated surface
with accompanying error-bars is shown.

Throughout the exploration run the same contact sets are
used for LIS and GPIS. Important regions of the estimated
surfaces are marked with the numbers 1 to 7 . The initial
contact set (a) consists of 5 contacts that lie on three sides of
the half cylinder. GPIS estimate a round shape that detaches
from the corner. The difference between the edges and the

1 2

3 4

3 4

5

6 7

GPIS LIS

(a) Initial contact set

(b) Partially explored

(c) Fully explored

Fig. 8: Exemplary evaluation run for the half cylinder. Gaussian
Process Implicit Surface on the left and Implicit Local Surfaces on
the right. In both cases the same contacts (blue) are used to estimate
the surface (white). The distances to the edges of the ground truth
(cyan) are displayed as lines. Red lines denote a large estimation
error and green lines correspond to good estimation quality.

estimated surface is denoted by red and green error-lines 1 .
LIS estimate sharp edges that result in a noticeable corner
at 2 . The error-lines are barely noticeable.

In the partially explored case (b) the continuously bent
edge can be partly estimated based on the contacts. Again
GPIS estimate a round shape that detaches from the actual
edge 3 whereas LIS estimate the edges more accurately
4 up to the point where no more contact information

is available 5 where the estimated surface detaches from
the object. However, this is expected, since the surface is
continuously extrapolated based on the outermost contacts.

Finally, when the object is fully explored (c) both ap-
proaches yield a complete shape. Since no contacts were
acquired directly on the edges the GPIS estimation still has
errors near the edges. The error-lines remain notable 6 . LIS
accomplishes to estimate the surface with high accuracy at
the edges and corners 7 .

In general, GPIS tend to estimate continuously curved
surfaces that are smaller than the ground truth if the object
is convex. LIS, however, estimate more edged surfaces that
are slightly larger than the ground truth.



C. Comparison to Gaussian Process Implicit Surfaces

For evaluation the root-mean-square deviation between the
estimated surface and the actual object surface is calculated.
For each object a number of contacts is generated using
the exploration algorithm and the resulting contacts are
provided to the surface models. Thereafter, the distance of
the local estimated surface is evaluated against the ground
truth. Finally, the surface near the edges of the ground truth
is evaluated separately. This process is repeated 10 times, to
increase evaluation accuracy.

The surface estimation quality of LIS and GPIS are similar
for the test objects, see Fig. 9. In case of the box the
difference is most noticeable. LIS performs 30% better that
GPIS. This is expected since LIS is based on a composition
and interpolation of planes, which approximate a box well.
GPIS performs slightly better in the cases of the cylinder
and the mallet. This is also expected since GPIS performs
well for continuously curved surfaces.

Fig. 9: Evaluation of local surface accuracy

D. Evaluation of surface estimation near edges

The goal of LIS is to improve surface estimation near
edges. Therefore, the second evaluation run only considers
the estimated surface near object edges in the explored
region. Part of an edge is considered explored if a contact
point lies within 50mm, see Fig. 7. Again the root-mean-
square deviation between the actual object edge and the
estimated surface is applied for evaluation.

Fig. 10: Evaluation of surface accuracy near edges

10.6 mm

4.3 mm

11.6 mm

3.4 mm

11.1 mm

4.0 mm

14.4 mm

10.7 mm

G
P
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LI
S

RMSD:

RMSD:

Fig. 11: Examples of surface reconstruction for fully explored
objects: LIS outperforms GPIS when measuring the root-mean-
square deviation (RMSD) between the object edge and the estimated
surface. The minimum distance to the actual edges are displayed as
lines where smaller errors are green and larger errors are displayed
in red.

For each object a substantial performance increase is
noticeable, see Fig. 10. LIS outperforms GPIS by 59% on
average. Fig. 11 highlights the differences in estimation
quality between GPIS and LIS for fully explored objects.
For each object a contact set is generated by the exploration
algorithm until the object is fully explored. The contact
set is provided to both surface estimation algorithms. The
distinct results at the edges of the ground truth are drawn as
error lines, where green colored lines correspond to better
estimation quality and red lines denote high estimation error.

E. Evaluation of surface estimation error under noise

One important property of surface estimation algorithms
is the capability to deal with noisy input data. In order to
evaluate the effects of noise in the input data, 12 contacts
are uniformly distributed around a 90◦ edge. The contacts
are spaced 50mm apart. 3-D position noise is applied to ci,p
and rotational noise is applied to ci,n. Fig. 12 compares the
results for the estimated surfaces by GPIS and LIS. As this
evaluation shows, the estimation error under noise of the LIS
approach is notably better than the results of GPIS for small
noise. For higher levels of noise the estimation qualities are
similar.

V. CONCLUSION

This paper has presented a novel method for implicit
surface modeling based on sparse contact information (Local
Implicit Shapes, LIS). Contacts and their associated normals
are used to interpolate the estimated surface between ex-
plored contacts and to extrapolate the local object shape
according to the local convexity/concavity.

The evaluation of the proposed implicit surface model
shows that on average the estimation quality is similar to that
of Gaussian Process Implicit Surfaces (GPIS). However, a
notable improvement is achieved in regions containing edges:
While the Gaussian Process creates surfaces with smooth
curvature that are prone to deviate significantly from the
true shape near edges, the proposed approach is able to
reconstruct these edges with high accuracy. The proposed



Fig. 12: Evaluation of the surface estimation quality under the
influence of noise in the input data: Positional and rotational noise is
applied to contacts sampled around a 90◦ edge. LIS shows improved
surface estimation quality compared to GPIS when provided with
the same noisy input data.

method extrapolates the estimated surface indefinitely in
regions where no contact data is available. This can be
seen as a divergent behavior in unexplored regions, however
precise estimation of shape in unexplored regions is next to
impossible, without any prior knowledge about the object.

Fig. 13: The humanoid robot ARMAR-III [23] equipped with
WEISS ROBOTICS tactile sensors [24] on the fingertips and in
the palm.

The developed modeling method allows robust and precise
local shape estimation from a small number of contact points,
as e.g. in the case of haptic exploration. Even shapes with
both convex and concave edges can be reconstructed seam-
lessly based on very sparse data. The next step is to apply our
algorithm during tactile exploration on our humanoid robot
(Fig. 13), and investigate how well the determined surface
models are suited for further applications like grasp planning.
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