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Abstract— Tactile sensing of surface normals is essential for
exploration of unknown objects. Many tactile sensors have
been developed for contact measurement. However, few of
these sensors provide surface orientation, and only up to a
limited degree. This paper presents a novel contact and surface
orientation sensor concept and its application for surface
reconstruction of unknown objects. The sensor is comprised
of an Inertial Measurement Unit (IMU) and a pressure sensor
to accurately estimate the surface orientation in a wide range,
while at the same time measuring contact force. We describe
the developed sensor prototype and evaluate its performance
regarding contact detection capability and normal estimation
accuracy. We use this to reconstruct the surface of unknown
objects using the humanoid robot ARMAR-III resulting in a
mean reconstruction accuracy of 3.6 mm.

I. INTRODUCTION

One of the main research areas in humanoid robotics is
human robot cooperation in daily activities. Therefore, one
important challenge is to dexterously manipulate objects in
human-centered environments with a wide variety of objects.
Since the robot cannot have complete information about all
existing objects in the world, it needs to handle previously
unknown or partially known objects. In this case it has to
gather missing information about its environment, in similar
fashion as humans.

The human capability to grasp and manipulate objects was
thoroughly studied in the neuroscience community. Studies
showed that humans rely heavily on tactile feedback when
grasping objects [1]. In fact, the human brain allocates a large
area of the sensory cortex to process the data gathered by
the hands [2]. In the robotic context, object detection, grasp
planning and execution is often performed based on visual
perception only, since passive and active camera systems are
relatively cheap and easy to use compared to tactile sensors.
However, visual sensing can only provide one view of the
object at a time and might be impaired by lighting conditions
or reflective surfaces. Also, visual perception cannot give any
information about the mechanical properties of an unknown
object without active physical interaction. In order to enhance
the estimated model of an unknown object, tactile exploration
can fill the perceptive gaps.

In our previous works we showed that surface reconstruc-
tion greatly benefits from surface orientation [3] and we

The research leading to these results has received funding from the
European Union’s Horizon 2020 Research and Innovation Programme under
grant agrement 643950 (SecondHands).

The authors are with the Institute for
Robotics, Karlsruhe Institute of Technology,
{simon .ottenhaus, asfour}@kit .edu

Anthropomatics  and
Karlsruhe, Germany,

(b) Reconstruction

(a) Exploration experiment

Fig. 1: Exploration of an unknown object with the proposed
combined surface normal and pressure sensor. The surface of the
object is reconstructed using the gathered contact positions and
contact normals.

proposed an IMU-based tactile sensor concept to enable di-
rect measurement of surface orientation [4]. In the proposed
concept the IMU was connected to a robotic arm using an
elastic element that enables the sensor to self-align with the
surface upon contact.

In this work we extend this sensor concept to apply it
for autonomous tactile exploration of unknown objects. To
this end the IMU is combined with a tactile pressure sen-
sor, resulting in two sensing modalities: Surface orientation
measurement, as the sensor aligns with a touched surface, as
well as contact force provided by the pressure sensor.

The contribution of this work is the experimental evalu-
ation of the proposed sensor. Therefore, different unknown
objects are explored using a human-guided exploration as
well as an autonomous exploration procedure. Using the
contact positions and contact normals from the exploration
we could accurately reconstruct the surfaces of the explored
objects.

This paper is structured as follows: In we give
an overview on the related work regarding tactile sensors for

force and normal measurement. The surface reconstruction
algorithm is outlined in Section [[V] describes
the sensor concept and the hardware implementation of the
combined sensor. We present an extensive evaluation of the
sensor characteristics including contact detection capability
and orientation accuracy in By exploring different
objects we show the benefit of the proposed sensor for au-
tonomous tactile exploration schemes. The sensor is mounted
on the fingertip of the robot ARMAR-III [5], as shown in

[fig- 1] The paper is concluded in



II. RELATED WORK

In the field of robotics many tactile sensors have been
proposed to measure contact force. However, very few of
these sensor can be used to measure surface normals. To
the best of the authors knowledge these include the BioTac
sensor [6], which was used to estimate surface tilt [7]. The
tilt angle is inferred from the voltage difference measured
between two electrodes located within the sensor. Another
approach uses three force-sensitive resistors that are placed
within a soft sponge in a triangular shape. This sensor can be
used to determine the orientation of the object surface [8].

For many applications, like grasping, surface normals are
not as relevant. However, contact force is of importance. To
this end many sensors have peen proposed. Using MEMS
barometric air pressure sensors, Tenzer et al. developed a
tactile sensor [9]. They immerse the pressure sensor in elastic
polyurethane to form a flexible system that can be used for
contact force estimation. Using a resistive pressure sensor
matrix, the location of contact forces can be computed by
built-in signal processing electronics by the commercially
available tactile sensor from Weiss Robotics [10], [11]. This
measurement principle was extended to 3D surfaces and
applied to a robotic hand fingertip [12]. An example for
a highly integrated, multi-modal finger tip sensor, aiming
to mimic human perception capabilities, is the BioTac sen-
sor [6].

Tactile sensing is not only relevant for the finger tips, but
may also be implemented as a sensorized skin for humanoid
robots. Such a skin was developed by Cannata at al. [13] for
use on the iCub robot [14]. Continuing this work, large parts
of the iCub robot were covered with a sensitive skin [15],
which can be used for kinematic self calibration [16]. Dis-
tributed tactile perception capabilities in combination with
vision have been used to learn visuo-tactile associations
for peripersonal space representation [17]. Furthermore the
fingertip of the iCub has also been sensorized based on a
capacitive sensor [18], [19]. The iCub hand has been used
to explore and reconstruct unknown objects [20]. With the
HEX-O-SKIN, a haxagonal, modular and multi-modal skin
was introduced in [21], a technology that has been used for
active object learning and discrimination [22]. Leveraging an
optical operation principle based on change of reflectiveness
Kolker et al. present sensors which can sense the direction
of contact forces [23]. Tar et al. present a low-cost 3D
tactile force sensor based on optical principles for sensing
contacts [24]. A similar approach was used in the OptoForce
sensors [25]. Normal and tangential force is computed from
the deformation of the sensor, which is measured using
infrared light. This sensor enables active tactile exploration
approaches such as active object discrimination. This was
applied on the UR-10 arm for object learning and uncertainty
reduction [26]. The OptoForce sensors were also applied
for exploring occluded areas of an unknown scene [27].
Another possibility is to perceive object geometry using
simple sensors by exploiting the deformation of compliant
finger joints [28]. Relying on a magnetic principle Tomo

et al. employ hall sensors for recognizing contacts [29].
Furthermore joystick sensors on the fingertip can be applied
for surface tracking and reconstruction [30].

Tactile perception is not limited to contacts between
the robot and the environment. Leveraging the unique ca-
pabilities of contactless perception with capacitive sensor
technology, Navarro et al. can assure safe human-robot-
interaction [31]. This sensor has since been improved and
can operate in proximity sensing mode and tactile sensing
mode [32]. In their work, Alagi et al. measured the change
in capacity for different materials.

The goal of achieving human-level performance in tactile
perception has been studied for more than 30 years [33] but
remains a major challenge in the field of robotics [34]. It is
therefore not surprising that a great variety of research work
has been dedicated to developing tactile sensors. Comprehen-
sive summaries of this field can be found in the extensive
review papers [35], [36], [37].

An interesting approach to haptic perception is the usage
of inertial and orientation sensors. Following this idea the
underactuated Pisa/IIT SoftHand was equipped with IMU
sensors to estimate the pose of the hand [38]. Although IMUs
have only been applied initially for tactile perception they
have been studied in other robotics related topics such as
state estimation [39] or human gesture recognition [40].

III. GAUSSIAN PROCESS IMPLICIT SURFACES
A. Gaussian Processes

Gaussian Processes (GPs) are a common approach for
function regression. Given a set of observed sample points
x; of a function f’(x) the goal is to estimate the function
value f(x) for a previously unknown sample location x. The
idea of Gaussian process regression is to define the estimated
function f as a sum of weighted kernels.

N
flx) = Zwik(a;wi) (D
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We choose to use IV kernels for N sample points and position
the kernels at the sample locations ;. In this work we use the
thin plate covariance function proposed for Gaussian Process
Implicit Surfaces [41].

k(z,z') = 2d® + 2Rd* + R? )

with d = ||z —«'|| and R being the largest distance between
any two sample positions.

Additionally to interpolating between the sample values,
GPs can deal with noise added to the sample values. This
noise is assumed to be Gaussian and is encoded using o.
The mean value of the GP posterior given by

fl@) =k (K+ o)y 3)
(K)ij = k(zi, @) 4)

Here K is the covariance matrix, k. is the covariance vector
between the requested location x and all observed sample
points x; and y is the vector of all observed sample values.



B. Gaussian Process Implicit Surfaces

Gaussian Process Implicit Surfaces (GPIS) aim to estimate
a surface given a set of observed points on that surface. To
this end GP regression is combined with implicit functions.
The mean value of the GP is used to define the implicit
surface potential (ISP) of the implicit function. Using the
result of the GP as the ISP f(x) each point in R?® can be
mapped to be

=0, x on the surface
f(x):R* - R{ >0, xinside . (6
< 0, a outside

The surface is found by calculating the O-level set of the ISP:

S = {a. f(z) = 0} . )

To enable a meaningful surface reconstruction the sample
points x; and y; have to be chosen carefully as is described
in [41]. In short, when using GPIS to estimate a surface
based on contact positions alone, additional samples have to
be added to the observed points to define the potential of the
ISP inside and outside of the object’s surface.
e At each observed point on the surface a sample is
generated with value zero.
o A sample inside of the object is added with value 1.
o Multiple samples are added outside of the object with
value —1.

C. Adding Normal Observations to GPIS

When exploring an unknown object it is desirable to gather
as much information per touch as possible. On contact with
the surface the contact position coincides with the exploring
sensor or position of the exploring robotic finger. However
the position is not the only modality that is available on
contact. Additionally, the local surface orientation can be
obtained and thereby the local surface normal. These normals
are included in GPIS by defining the gradient of the ISP
at the contact point [42], [43], as will be described in the
following.

An observed contact i on the surface of the object yields
the contact position p; and the local surface normal n;. The
value of the ISP f at the contact point has to be 0:

f(pi) =0. (8)

Additionally the gradient of the ISP should be aligned with
the observed surface normal n;:

Vipi) =

To incorporate these additional constraints into the GP the
covariances between data points and partial derivatives and
between partial derivatives have to be considered. The co-
variance between two data points is obtained by evaluating
the kernel directly,

(nig,miz,niz)t . )
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The covariances including partial derivatives are obtained by
differentiation of the kernel function,

(10)
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The covariance matrix K is extended to accommodate all
combinations of function values and partial derivatives:
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In the following we give the partial derivatives for the chosen
thin plate kernel k.
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Since we added the observed surface normals to define the
derivatives of the ISP, the value vector y has to be extended:
y=(0,n11,n1,2,71,3,0,n21,N22,N23, ... )r (16)

Solving the linear system
Kw=uy (I7)

yields the weight vector w where the weights for function
values (w; o) and function derivatives (w; ) are interlaced:

w = (w1,07 wl,la w1,27 w1,37 w2,07 w2,17 w2,27 w2,37 L )T
(18)
Finally the ISP f(z) can be computed as:

3k (z, az)) . (19)

The effect of adding normals to the observed samples can be
seen in [fig. 2 The addition of normals to the GPIS process
has several key advantages:

N 3
f(x)—z<w,0km x;) Z

=1

o Improved surface orientation: The orientation of the
estimated surface conforms to the ground truth surface
orientation.

o Improved interpolation: Without normals GPIS tends
to remove edges by connecting neighboring contact
points with a smooth surface. When normals are in-
cluded the reconstruction near edges and corners is
improved, see [fig. 3a] and [fig. 3b}

o Improved extrapolation: The addition of normals al-
lows GPIS to extrapolate the surface in unknown re-

gions, see
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Fig. 2: Exemplary contact points of a 2D stair structure. The ISP
is shown in the background as red (inside) / blue (outside). The
resulting 0-level set surface is shown as a black line. The ground
truth is depicted as a dashed line. From contact positions alone
GPIS fails to reconstruct the surface accurately. When the normals
are added the reconstruction improves substantially.
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Fig. 3: Comparison of GPIS surface estimation with and without
normals. The contacts on the object’s surface are displayed in blue.
The reconstruction error at the edges of the cube are shown as color
coded lines. Green indicates a small error whereas red corresponds
to a large error.

IV. SENSOR CONCEPT

The sensor system integrates an IMU (BNOOQSS, Bosch
Sensortec) and a pressure sensor (BMP280, Bosch Sen-
sortec), arranged as shown in the conceptual drawing in
[fig. 4a The IMU is a 9-axis absolute orientation sensor
integrating on-board signal processing and signal fusion
methods, as it was designed for use in mobile devices. The
pressure sensor is a piezo-resistive, low-power absolute baro-
metric pressure sensor, measuring barometric pressure with
+1 hPa absolute accuracy and £0.12 hPa relative accuracy.

In order to detect contact pressure, we covered the pressure
sensor in a layer of polyurethane (VytaFlex 20, Smooth-
On), similar to the method presented in Tenzer et al. [9],
where the authors filled the pressure sensor completely with
polyurethane to reliably transmit the surface pressure to the
sensor. A similar procedure has proven to be unsuitable
for the pressure sensor we are using. A small opening in
the sensor casing is used to measure the air pressure. For
most recent integrated pressure sensors this opening is much
smaller than the opening of the sensor used by Tenzer et
al. Therefore we had to adapt the polyurethane application
process. In several experiments with different materials and

Coil Spring

Poly Urethane
Pressure Sensor & PCB

\\\\\\\\\\\\Ob]ect Surface

(a) Conceptual drawing

(b) Sensor at fingertip

Fig. 4: The sensor system consists of an IMU and a pressure sensor
that is covered in polyurethane. The conceptual drawing (left) shows
the structure of the sensor. For experimental evaluation, the sensor is
mounted at the fingertip of the humanoid robot ARMAR-III (right).

sensor configurations, it has turned out that an air bubble
between the sensor case opening and the polyurethane is
helpful. Such an air bubble transfers the pressure from the
polyurethane to the actual pressure sensitive area within the
casing of the sensor.

The sensor has a 18 mm? square base, which is mainly
determined by the size of the pressure sensor circuit board.
The height of 7.7 mm divides out into the IMU with circuit
board (2 mm), the pressure sensor with circuit board (2 mm)
and the polyurethane cover (3.7 mm). As a proof-of-concept,
the sensor was attached to the index finger of ARMAR-III
using a flexible coil spring as displayed in [fig. 4b] The spring
allows for self-alignment of the sensor with any surface upon
contact.

V. EXPERIMENTAL EVALUATION

We performed two sets of evaluation experiments. In the
first set we attached the sensor to the 8-DOF of the humanoid
robot ARMAR-6 [44]. We used a human-guided exploration
to bring the sensor into contact with the object’s surface.

In the second exploration experiment the humanoid robot
ARMAR-III was executing an autonomous exploration pro-
cedure to gather contact points with the object.

For both cases the object’s surfaces are reconstructed
based on the gathered contact positions and contact normals.

A. Oriented Contact Measurement

To detect contacts with the environment and to estimate
the orientation of the surface at a contact point, the available
sensing modalities have to be combined. In order to reliably
detect contacts with a surface we considered three different
sensing modalities offered by the sensor: The acceleration,
the absolute orientation and the pressure.

In an experiment the sensor was brought into contact with
a surface multiple times. The resulting acceleration, angular
deviation and the pressure are displayed in|fig. 5] Every time
the sensor makes contact with the surface, a spike in the
acceleration is noticeable as can be seen at ¢ and ¢3 in[fig. 3]
(top row). Another spike occurs when the sensor leaves the
surface again, see to and t4. Although these spikes can be
distinguished from the background noise quite well, it is not
obvious which spike indicates making contact and which one
indicates breaking contact.
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Fig. 5: Comparison of the sensing modalities of the IMU and
the pressure sensor for contact detection. Some contacts can be
estimated from the IMU data whereas all contacts can be reliably
derived from the drift compensated pressure data.

Another channel offered by the IMU is the absolute
orientation. Fig. [5] (middle row) shows the angular deviation
to the initial orientation of the sensor. When the sensor is not
aligned with the surface before contact the self-alignment
leads to a noticeable change in orientation as can be seen
at t3 and t4. However, in some cases the sensor is already
aligned with the surface before contact. Then no significant
rotation occurs, as can be seen at ¢; and t».

Fig. 5] (bottom row) shows the drift compensated pressure.
Each contact event is easily visible in the graph. While the
sensor is in contact with the surface, the pressure value
is at least 100 Pa higher than the noise. Therefore we use
the pressure sensor for contact detection to ensure that the
alignment process has completed when the surface normal
is measured by the IMU.

B. Human Guided Exploration

In the first experiment we opted to perform the exploration
of several objects by manually guiding the robot’s arm. The
arm is moved in compliant mode, so that the end-effector can
be guided freely. Upon contact with the object’s surface the
IMU self-aligns. When the sensor is aligned with the surface
the forward kinematics of the robot is evaluated to infer
the position of the sensor. At the same time the orientation
of the IMU is sampled. Combining these two data points
yields a contact position and contact normal on the object’s
surface. From the gathered oriented contact points a GPIS
reconstruction is created and compared to the ground truth
CAD-model.

C. Autonomous Exploration

In a second experiment we used the combination of the
pressure sensor with the IMU to autonomously explore an
unknown object. The combined sensor is mounted on the
fingertip of ARMAR-III. When the pressure sensor detects
contact with the object the forward kinematics of the robot
is used to calculate the contact position. The orientation of
the IMU is used to determine the contact normal. During
the exploration the uncertainty in unexplored regions is
reduced following the approach presented in [45], where the
exploration algorithm is explained and evaluated in detail.
In this work the general location of the object is considered
prior knowledge.

IMU orientation accuracy

50°

40°

30° A

20° A

Measured surface tilt

10°1

Ground truth surface tilt

Fig. 6: The IMU indicates orientation directly when the sensor is
pressed against a surface. The relative tilt between the sensor and
the surface varies between 0° and 50°. The blue line indicates the
ground truth while the error bars indicate the RMSE between the
ground truth and measured normals.

(a) GPIS reconstruction without (b) GPIS reconstruction with
normals, RMSE: 20.7 mm normals, RMSE: 9.5 mm

Fig. 7: Reconstruction quality at edges of the objects. The closest
points on the reconstruction and the actual object edge are shown
as colored lines. Green indicates small errors whereas red denotes
larger errors.

D. Results

The accuracy of the GPIS reconstructions based on the
gathered contact data from the robot experiments as well
as simulated data is given in For each experiment
the surface is reconstructed using the standard GPIS imple-
mentation without normals based on contact positions alone.
Additionally the surface is reconstructed using GPIS with
normal information. The quality of the resulting surface is
measured by the positional error between the estimate and
the ground truth. Also the resulting normals of the surface
are compared against corresponding normals taken from the
CAD-model. As can be seen in the table the reconstruction
with added normal information outperforms the reconstruc-
tion without normals in every experiment regarding position
and normal error of the surface. The reconstruction results
are depicted in [fig. 8] using a color coding to display the
reconstruction error.

To evaluate the accuracy of the IMU orientation we
compared the measured surface normals to the corresponding
ground truth surface normals. The deviation of these normals
is depicted in[fig. 6} The mean error of the measured surface
normal is 7.3°.

We furthermore evaluate the reconstruction error at edges
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Fig. 8: Comparison of the reconstruction results with included and excluded normal information. The reconstruction error is displayed
using a color coding where green indicates a small error and red corresponds to a large error. For both objects the GPIS reconstruction

with included normals follows the ground truth more accurately.

TABLE I: Reconstruction results

Reconstruction RMSE
Object Robot without normals | with normals
Box Simulation 5.2mm / 25° 2.7mm / 17°
Sphere Simulation 1.9mm / 6° 0.5mm / 1°
Cylinder Simulation 6.0mm / 27° 3.2mm / 17°
Banana Simulation 5.9mm / 27° 1.8 mm / 10°
Ground Coffee ARMAR-6 4.6mm / 22° 3.5mm / 20°
Cheez It ARMAR-6 7.0 mm / 30° 3.5mm / 24°
Flat surface ARMAR-6 9.5mm / 23° 2.8mm / 1°
Bowl ARMAR-III 7.6 mm / 39° 4.7mm / 17°

of the objects as shown in [fig. 7] When surface normals are
included the reconstruction improves significantly at sharp
edges. This aspect can be of particular interest when the
reconstructed surface is to be used for further applications
like grasp planning to prefer grasping on flat surfaces of the
object.

VI. CONCLUSION

We introduced a combined sensor concept consisting of an
IMU and a pressure sensor. In two sets of experiments we
showed that the proposed sensor can be applied for tactile
exploration to detect contacts and to gather contact normals
with a mean error of 7.3°. Using the resulting contact points
we could reconstruct the surface of unknown objects with a
mean position error of 3.7 mm and a mean angular deviation
of 15.5°. The combination of the pressure sensor with the
IMU enables the robot to autonomously explore the surface
of an unknown object, as contact detection works reliably and
the measured surface normals are accurate. Since the error of
the resulting surface is small, the reconstructed mesh model
can be used as an input for model-based grasp planning.
This is also supported by the accurate reconstruction of sharp
edges.

However small objects are challenging due to decreased
surface area and increased curvature. Also fine surface de-
tails, that are smaller than the size of the sensor, are difficult
to explore.

In future work we want to apply the exploration approach
for grasp planning and grasp execution on humanoid robot.
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