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Active tactile perception is a powerful mechanism to collect contact information by

touching an unknown object with a robot finger in order to enable further interaction

with the object or grasping of the object. The acquired object knowledge can be used
to build object shape models based on such usually sparse tactile contact information.

In this paper, we address the problem of object shape reconstruction from sparse tactile

data gained from a robot finger that yields contact information and surface orientation
at the contact points. To this end, we present an exploration algorithm which deter-

mines the next best touch target in order to maximize the estimated information gain
and to minimize the expected costs of exploration actions. We introduce the Information

Gain Estimation Function (IGEF), which combines different goals as measure for the

quantification of the cost-aware information gain during exploration. The IGEF-based
exploration strategy is validated in simulation using 48 publicly available object mod-

els and compared to state-of-the-art Gaussian processes based exploration approaches.

The results show the performance of the approach regarding exploration efficiency, cost-
awareness and suitability for application in real tactile sensing scenarios.
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1. Introduction and Related Work

As humanoid robots move from the laboratory to real world environments, they

need to be able to manipulate unknown objects. Among others, such manipulation

tasks require an understanding of the geometric shape of such objects, which can be

acquired through different sensor modalities. While camera-based vision might be

the most obvious modality to use, it can be impaired by either the object proper-

ties (e.g. reflecting, translucent, uniformly colored) or the environmental conditions

(e.g. poor lighting, fog, bright sunshine). To overcome these shortcomings, tactile
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Fig. 1: State-of-the-art Gaussian variance based exploration approaches lead to

greedy target selection without path cost consideration (left). The proposed Infor-

mation Gain Estimation Function prefers local targets while minimizing path cost

(right). Already acquired contacts with respective normals are shown in blue. The

coloring of the estimated surface indicates the expected information gain, where red

areas have no predicted information gain and green areas have the highest predicted

information gain.

sensing can be used to gather additional information, which also plays an impor-

tant role in human grasping1. Recent research has demonstrated the close link be-

tween tactile object exploration and grasp planning based on tactile information2.

Other interesting applications of haptic sensing exist, such as object discrimination

from multimodal haptic data3, detecting object affordances directly from tactile

interaction4,5 or object localization using a Bayesian approach6. However, in this

paper we focus on the aspect of geometric modeling.

To acquire object shape information through tactile exploration three problems

must be solved: (1) how to collect contact information by efficiently selecting the

next best touch on the object surface, (2) how to generate object shape models

based on the acquired sparse tactile data, and (3) how to either control the robot

hand or fingertips to make contact and follow trajectories between contacts or how

to control sliding motions on the surface of the object.

An extensive body of work has been conducted in the literature to address these

questions. The first two problems can be addressed simultaneously by employing

dynamic potential fields for exploration7. For geometric modeling, superquadrics or

decompositions of multiple superquadrics have been used to parametrically estimate

the object surface8,9,10. Other approaches use geometric primitives to compose the

explored object 11,12. For object modeling based on vision data, estimating the back

side of the object is of special interest and often performed by leveraging assumed

object symmetries13,14,15,16. One popular choice for object modeling are Gaussian

Processes Implicit Surfaces (GPIS)17, that have recently been applied extensively

to the field of haptic exploration18,19,20,21,22. Building on GPIS, an extension to

incorporate prior knowledge has been proposed to enhance the probabilistic recon-

struction of explored objects23.
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The data acquisition by tactile sampling, that underlies object shape model-

ing approaches, requires a strategy for the generation and execution of exploratory

actions. A human-inspired haptic exploration strategy has been proposed for ac-

quiring tactile data with a multi-finger hand24,25 and next-best-touch algorithm

based on an information gain metric has been proposed and demonstrated on an

ARM-S robot26. A different approach for classification of previously known objects

uses the classification boundary to guide the exploration toward more informative

areas27. A data-driven object recognition procedure was proposed relying on an op-

timal action generator for planning of exploratory actions, subsequently extracting

the object manifold using Gaussian Process Latent Variable Models (GPLVM)28.

Contact data for estimating environmental constraints of the robot workspace can

be estimated from joint-level proprioceptive sensing29.

Other exploration approaches suggested to maximize the newly acquired in-

formation about the object by moving the robot hand to the region with highest

model uncertainty19,22. This approach is based on Gaussian processes while using

the variance of the Gaussian process as a guiding function. A similar idea underlies

the another work with the notable difference that the tactile sensor is continuously

guided along the surface without breaking contact30. While this method provides

much denser contact information and leads to impressive results regarding surface

reconstruction, the experimental setup is limited to mainly convex and smooth ob-

jects. In the case of discrete tactile sampling, using the Gaussian process variance

for next best target selection during haptic exploration might not be the best ap-

proach, since the area with the highest variance is often far away from the current

position of the robot hand. It is therefore advisable to consider the exploration cost

in form of the distance traveled by the exploring robot finger in the exploration

strategy. This idea has already been brought forward by Caselli et al. for the ex-

ploration of convex objects31. In their recent work, Matsubara et al. consider the

travel cost during exploration of 3D objects, while the path planning and shape

estimation problem is reduced to 2D space21. Tosi et al. also consider the explo-

ration cost in form of execution time and its trade-off with uncertainty reduction in

order to localize objects32. They elegantly summarize the problem of the optimal

exploration strategy by asking the question ’where to sense next?’. While most of

the work in this area is formulated for one single end-effector, a recent study has

proposed an extended exploration algorithm that can leverage the data provided

by a sensor-equipped multi-fingered hand33.

The work presented in this paper adopts and integrates several of the aforemen-

tioned key ideas: Exploration is guided in a way that aims at maximizing the shape

information gain, while simultaneously minimizing the travel cost in terms of trav-

eled finger tip distance in between successive contact points. The information gain

is estimated using several information heuristics, and the trajectory planning uses

cubic Bézier curves, which are particularly well suited for manipulator trajectory

generation since they are easy to compute, provide continuous and smooth paths

and allow parametrization of the approach direction.
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The presented strategy is extensively evaluated on 48 objects from the publicly

available YCB Object and Model Set34 and compared to the state-of-the-art ap-

proach based on the Gaussian process variance (GP-V) as a guiding function. We

show that the proposed strategy outperforms the GP-V approach when considering

four different metrics regarding exploration efficiency and suitability for application

in real tactile sensing scenarios.

The paper is organized as follows. In section 2, the new exploration algorithm

and the selection of the next-best-touch target are introduced. Building on the

Information Gain Estimation Function different exploration goals are combined to

enable the cost-aware information gain during exploration. Section 3 presents an

extensive evaluation of the developed approaches using 48 objects from the YCB

object and model set. Section 4 concludes the paper and discusses future extensions

and research directions.

2. Exploration Strategy

In order to explore an unknown object, the fingertip of the robot’s hand has to touch

the object. To initialize the exploration procedure, we assume that the first touch

target is known, either manually given by the operator or extracted from visual

information. Once the robot has reached the first contact point on the object, an

initial surface can be estimated based on the acquired contact and the exploration

process can be started.

The exploration procedure can be briefly summarized as follows: A point on

the estimated surface is selected. An exploratory action is generated to move the

fingertip to the touch target. The fingertip follows the generated trajectory until a

contact is detected. The contact is added to the surface model and the next touch

target is selected for exploration. The entire algorithm is described in Algorithm 1.

One way to accomplish such an exploratory step is to retract the hand completely

and approach the object again to move to the touch target position. This can be

an effective way to minimize the risk of unwanted collisions with the object. One

drawback is that the complete retraction and approach of the hand takes time

during exploration. An alternative way is to plan a continuous, smooth trajectory

from the current position of the fingertip to the next best touch target. The goal is to

minimize the traveled distance of the fingertip between contacts and thereby speed

up the exploration. When evaluating an exploration strategy, the overall traveled

distance of the exploring end-effector can be used as exploration cost and serve as

evaluation metric for the exploration strategy in question.

We propose a novel next best touch target selection strategy based on the con-

cept of information gain maximization that takes into account the minimization of

exploration cost.
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Table 1: Summary of used symbols

Function / Symbol Description

r,v,ω ∈ R3 End-effector position, linear velocity and angular velocity

R ∈ SO(3) End-effector orientation

Tp(τ) : R→ R3 Trajectory position function

TR(τ) : R→ SO(3) Trajectory orientation function

τ ∈ [0, 1]
Argument of the trajectory function

T (τ = 0): trajectory start, T (τ = 1): trajectory end

C Set of all contacts

cp, cn ∈ R3 Position and normal of a contact in C
S Surface estimation

sp, sn ∈ R3 Position and normal of a point on S
tp, tn ∈ R3 Position and normal of the selected target on S
∆m ∈ R Distance that defines when a target is considered missed

σ1, σ3, µ3, σα ∈ R Tuning parameters

v0 ∈ R Desired velocity of the end-effector

2.1. Exploration Algorithm

During exploration of unknown objects, two connected problems have to be solved:

The generation of exploratory actions to acquire contact data and the estimation of

the object surface based on the sparse tactile data. Based on this surface estimation,

the next exploratory action can be planned and executed. In this work we focus

on the exploration of an unknown object using one finger equipped with a sensor

that yields contact information as well as surface orientation at the contact point.

To start the exploration process, the algorithm is initialized with an initial target

position within the object and the start position of the fingertip.

To establish initial contact with the object, the fingertip follows a direct ap-

proach to the initial touch target. When the fingertip is in contact with the object

the contact position cp and contact normal cn are measured. Using this information,

the initial model of the object is estimated.

The estimated surface is triangulated using Marching Cubes35 near the latest

contact point. For each triangle the central point is calculated along with its cor-

responding normal. For each point the estimated information gain is evaluated by

either employing the state-of-the-art Gaussian process variance or the Information

Gain Estimation Function proposed in this work.
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Algorithm 1 Algorithm of the proposed haptic exploration strategy

1: r ← start position

2: tp ← initial target

3: vn ← (tp − r)‖tp − r‖−1 . initial approach velocity

4: setVelocity(vnv0)

5: repeat

6: waitUntilContact()

7: cp ← contact position

8: cn ← contact normal

9: vn ← current normalized velocity

10: setVelocity(0) . stop until new trajectory is calculated

11: C ← C ∪ {(cp, cn)} . add new contact to contact set

12: S ← GPIS(C)
13: if target strategy is GP variance then

14: ∀s ∈ S : I(s)← GP variance(s)

15: if target strategy is Information Gain Estimation Function then

16: I(S)← Information Gain Estimation Function(S) . see Algorithm 2

17: t← argmaxs I(s)

18: R0 ← current orientation

19: R1 ← getRotation(R0, tn)

20: β ← 1/3‖cp − tp‖ . control point scaling

21: Tp ← bezier(cp, cp − βvn, tp + βtn, tp) . trajectory from c to t

22: TR ← lerp(R0,R1)

23: τ ← 0

24: repeat . Cartesian velocity controller

25: r ← current position

26: R← current orientation

27: τ ← argminτ?∈[τ,1]‖r − T (τ?)‖ . find closest point on trajectory

28: if τ > 1 and ‖r − T (1)‖ > ∆m then . missed prediction

29: vn ← current normalized velocity

30: β ← 1/3‖r − tp‖ . control point scaling

31: Tp ← bezier(r, r + βvn, tp − βtn, tp) . trajectory from r to t

32: R0 ← R

33: R1 ← getRotation(R0,−tn) . inverted target approach

34: TR ← lerp(R0,R1)

35: τ ← 0

36: v∗ ← Tp(τ + ∆τ)− r

37: vn ← v∗‖v∗‖−1 . normalize velocity

38: setVelocity(vnv0)

39: ω ← rollPitchYaw(R−1TR(τ)) . get angular velocity

40: setAngularVelocity(ω)

41: until contact

42: until object explored
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2.2. Selection of the next best touch target

In order to perform an efficient exploration of an unknown object, each new con-

tact should result in new information. Additionally, the cost to acquire the next

contact, i.e. the distance between the previous and the next contact, should be

minimized. We define the information gained (∆information) by the amount of sur-

face on the object that is newly explored by the touch. The cost (∆cost) of one

exploratory action is defined by the length of the path between the new contact

and the last contact. A point on the actual object surface is considered explored if

a previously explored contact point lies within a given radius r. The information

gain ∆information is equivalent to the newly explored part of the object that is

added by a contact. The goal of an efficient exploration algorithm is to maximize

the information gain per cost.

Maximize
∆information

∆cost
(1)

Maximizing the fraction in Eq. 1 can be achieved by maximizing the amount

of information gained by each exploratory action and by minimizing the cost per

exploratory action.

2.3. Gaussian variance based exploration

Gaussian processes Implicit Surfaces (GPIS) are widely used to estimate the surface

of an unknown object based on haptic contact data18,19,20,21,22. Thereby, the GPIS

potential function f(x) : R3 → R is given by

f(x) = k∗(x)
T

(K + σ2I)−1y , (2)

where K is the covariance matrix, which is computed by evaluating the kernel

function between all combinations of observed sample locations xi, xj

Ki,j = k(xi, xj) (3)

The covariance vector between a query point x and the observed samples xi is given

by

k∗,i(x) = k(x, xi) (4)

A common choice for the kernel function k is the Gaussian kernel

k(xi, xj) = exp

(
−‖xi − xj‖

2

σ2

)
(5)

Besides the Implicit shape potential (ISP), Gaussian processes also yield a variance

Q. State-of-the-art approaches suggest to use this variance of Gaussian processes to

select the next best target for exploration19,22. The variance is defined by

Q(x) = k(x, x)− k∗T (K + σ2I)−1k∗ (6)
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When using the Gaussian kernel function the variance Q is bounded to [0, 1]. The

variance Q is close to 0 when evaluated next to an observed sample point xi whereas

Q gets close to 1 when evaluated far away from any observed sample xi. Thus, using

the Gaussian variance for exploration leads to a maximization of the newly gained

information ∆information per exploratory action. The exploration always tries to

gain as much new information as possible, without considering the cost of the next

action. This is a valid approach and has been used in the state-of-the-art, resulting

in a successful exploration of an unknown object19,22. However, the targets selected

by this approach tend to be very far apart, leading to a large cost in terms of

traveled distance during the exploratory actions21.

2.4. Information Gain Estimation Function

In order to gain new information about the unknown object as fast as possible

we combine the goal of maximizing the newly gained information with the mini-

mization of the expected cost for each action. Similarly to Gaussian variance based

approaches we employ Gaussian kernels to estimate the gained information. We dis-

tinguish between four different goals that should be considered during exploration:

(1) Uncertainty: Each exploratory action should yield the maximum amount of

new information.

(2) Cost: The cost of each exploratory action should be minimized.

(3) Locality: Prefer targets that are close to already explored regions.

(4) Rotation: Minimize the rotation of the fingertip during an exploratory action.

The first goal is implemented as a greedy metric that tries to gain the max-

imum new information per contact possible. The other three goals are designed

to counterbalance this greediness and produce exploration actions suited for local

exploration.

Each goal is characterized by a metric (Ψ1 . . .Ψ4). The first metric Ψ1 tries

to maximize the gained information by penalizing targets that are close to already

explored contacts. In fact, Ψ1 is zero when evaluated directly at a previously ob-

served contact point ci. This metric drives the exploration to previously unexplored

regions of the object. Adding contacts in new regions reduces the uncertainty of the

estimated surface.

Ψ1(sp, cp) := 1− exp

(
−‖sp − cp‖2

σ12

)
. (7)

The second metric Ψ2 follows our definition of the cost function by directly mea-

suring the length of the planned path from the current position r to the target

touch point s. This metric serves multiple purposes. Most importantly it leads to

local exploration where the estimated surface is not likely to diverge greatly from

the actual object. Secondly it reduces to time spent moving the end-effector from
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Fig. 2: Exemplary exploration of a flat plane. The combination of the exploration

goals Ψ1,Ψ2 and Ψ3 leads to an exploratory path that roughly follows an outward

spiral. In green areas the predicted information gain is high, in red areas it is low.

contact to contact.

Ψ2(s) :=
1

Len (path(r, s))
, (8)

where the length of the path is calculated as the arc length of the curve

Len(T (τ)) =

∫ 1

0

∥∥∥∥∂T∂τ
∥∥∥∥ dτ . (9)

The third metric Ψ3 prefers targets that are close to already explored regions.

The next point should be at a distance approximately µ3 to any of the previous

contacts points. This metric encourages an exploration scheme that follows roughly

a spiral, as can be seen in Figure 2. If Ψ3 is omitted the exploration sometimes just

follows a straight line, not exploring the local surroundings. To achieve this we use

a Gaussian distribution with offset mean µ3.

Ψ3(s, c) := exp

(
− (‖s− c‖ − µ3)2

σ32

)
. (10)

The fourth metric Ψ4 is an angular kernel, measuring the distance between the

current orientation of the fingertip and the estimated surface normal at the touch

target sn as proposed in Gaussian Processes for Machine Learning chapter 4.2.3
36.

Ψ4(s) := exp

(
−

2 sin2
(
1
2 arccos(Rz, sn)

)
σα2

)
(11)

These four metrics have been designed to be combined by multiplication to

describe the overall exploration metric Ψ.

Ψ =

4∏
n=1

Ψn . (12)
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For the evaluation on the YCB Object set, the parameters σ1, µ3 and σ3 have

all been set to 2 cm while σα has been set to 1.

Algorithm 2 Calculation of the Information Gain Estimation Function metrics

1: Input S, C, r, vn
2: for s ∈ S do

3: Ψ1(s)← minc Ψ1(s, c) . see Eq. 7

4: Ψ2(s)← Len (bezier(r, r − vn‖r − sp‖, sp + sn‖r − sp‖, sp))−1 . see Eq. 8

5: Ψ3(s)←
∑

c Ψ3(s, c) . see Eq. 10

6: Ψ4(s)← 1− exp
(
−2 sin2( 1

2α(Rz, sn))σ−2α
)

. see Eq. 11

7: return Ψ1Ψ2Ψ3Ψ4 . see Eq. 12

The estimated surface S is sampled, starting from the last contact position.

The sample step length was set to 0.5 cm with a maximum radius of 5 cm. The

next best touch target is selected by choosing the sample point that maximizes the

Information Gain Estimation Function. An example of the sampling is depicted in

Figure 1.

2.5. Trajectory generation

The trajectory T (τ) for the fingertip has to be generated to reach the selected touch

target. This trajectory has to start at the current position r and to end at the target

tp while following a continuous path. For this purpose, we use cubic Bezier curves

which are defined by four points: the start point p0, the target touch point p3, and

two control points p1 and p2 describing the shape of the curve. In addition, the

target should be approached parallel to the estimated surface normal direction tn
at the target.

The Cartesian velocity vector just before contact is stored in vn. The retraction

movement of the fingertip is performed alongside −vn.

T (τ) = bezier(p0,p1,p2,p3) (13)
T (0)

T (1)
∂T (0)
∂τ

∂T (1)
∂τ

 =


p0

p3

3(p1 − p0)

3(p2 − p3)

 =


r

tp
−vn‖r − tp‖
tn‖r − tp‖

 (14)

T (τ) = bezier(r, r − 1

3
vn‖r − tp‖, tp +

1

3
tn‖r − tp‖, tp) (15)

The first control point is chosen to guide the retraction of the fingertip from

the object surface. To this end the first control point p1 is defined by the negative
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Fig. 3: Example trajectory of a missed edge. The predicted surface contact does

not lie on the actual object surface and thus the calculated trajectory misses the

object (left). The trajectory is continued to re-establish contact with the object by

approaching the previous contact (right).

approach velocity, which is scaled by the distance between the start and the target

point. The second control point p2 is chosen to lie on the normal of the estimated

surface at the target point. Following this trajectory ensures that the velocity during

exploration is continuous, thus the fingertip does not perform any high jerk motions.

The orientation of the fingertip is calculated by a linear interpolation between

the start and the target orientation. The target orientation is calculated so that the

fingertip is aligned with the surface normal at the target. Once a contact between

the fingertip and the object surface is detected while following the trajectory the

new contact is added to the set of contact points and the surface estimation is

updated using GPIS. If the trajectory is completed without any contact event, the

estimation of the surface was incorrect. In this case a new trajectory has to be

generated that guides the fingertip back to the object surface.


T (0)

T (1)
∂T (0)
∂τ

∂T (1)
∂τ

 =


r

tp
vn‖r − tp‖
−tn‖r − tp‖

 (16)

T (τ) = bezier(r, r +
1

3
vn‖r − tp‖, tp −

1

3
tn‖r − tp‖, tp) (17)

The requirements from Eq. 16 lead to the parametrization of the cubic Bezier in

Eq. 17. Note that the signs of the parameters defining the control points are flipped

compared to the signs in Eq. 15. This ensures that the velocity is continuous when

the actual surface of the object is missed. This also ensures that contact with the

object is always re-established, since the target position is the last contact point.

Figure 3 shows an example of such a situation.
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2.6. Comparison

In this section the approach based on the Gaussian process variance (GP-V) and

the proposed Information Gain Estimation Function (IGEF) are illustrated using

example situations that arise during exploration. Figure 4 shows the resulting target

ratings after the second contact for GP-V and IGEF respectively. The blue curve

indicates the trajectory to the planned third target. The maximum allowed target

distance has to be limited in practice, otherwise the Gaussian process variance

approach tends to suggest targets that are very far away, leading to an infeasible

exploratory action. The target suggested by GP-V lies at the border of the allowed

target distance (in our experiments we chose 6 cm).

(a) Gaussian process variance (b) Information Gain Estimation Function

Fig. 4: Predicted information gain after the second contact on a flat surface. The

Gaussian process variance approach suggests a target that lies on the edge of the

allowed area (left). The IGEF based strategy prefers a target that is closer to the

existing contacts to minimize path cost (right). The trajectory to the next best

touch target is depicted as a blue curve.

Figure 1 depicts the predicted information gain after several contacts with the

object have been established. It can be seen that the greedy nature of the GP-V

approach suggests a target on the back side of the estimated surface. In contrast, the

IGEF approach suggests a closer target leading to a shorter exploration trajectory.

The scatter plots in Figure 5 correspond to the states depicted Figure 1. The main

difference is that the IGEF approach has a clear maximum at a distance of 2.1 cm

whereas GP-V is not as decisive and rates many targets close to the maximum of 1.

3. Evaluation

The evaluation of the presented Information Gain Estimation Function (IGEF)

exploration strategy is performed in simulation. We use a subset of 48 objects from

the YCB Object and Model Set34. The remaining object meshes were less suited

for exploration due to imprecisions in the meshes. The objects used in this work are

listed together with the achieved results in Table 4.
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Fig. 5: Predicted information gain after several contacts. The GP-V approach rates

multiple targets close to the maximum rating of 1 (left) while IGEF suggests a

maximum rating of 1 only in a small region (right).

3.1. Exemplary evaluation run

To illustrate the exploration procedure, Figure 6 depicts the trajectory of the fin-

gertip during the exploration of the banana from the YCB Object and Model Set.

The greedy behavior of the GP-V approach leads to a wide distribution of contact

(a) Gaussian process variance (b) Information Gain Estimation Function

Fig. 6: Exemplary exploration progress of the YCB banana. The blue line depicts

the complete trajectory during the exploration. Following the GP-V leads to long

jumps across the surface resulting in a high travel cost (left). The targets generated

by the IGEF approach lie closer together forming a dense pattern with short hops

between contact points (right).

points, resulting in a longer trajectory of the fingertip. This can also be seen in Fig-

ure 7, where the overall estimated surface RMSE drops quickly while the explored

fraction of the ground truth mesh increases slowly at the end. The IGEF strategy

however tends to explore more locally, leading to a shorter trajectory per acquired

contact. The trajectory consists of many small local hops. This leads to a steady

increase of explored portion over traveled fingertip distance. However, the overall

RMSE drops more slowly when compared to GP-V, while eventually reaching the
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(a) Exploration progress (b) Estimated surface RMSE

Fig. 7: Exemplary exploration progress of the YCB banana

same final quality. Another exemplary run is depicted in Figure 8, leading to a

complete reconstruction of the object.

3.2. Evaluation procedure

The exploration algorithm is run ten times for each of the 48 objects. Each evalu-

ation run is started with different initial conditions: The start position of the end

effector is changed so that the initial approach direction to the objects is varied.

This induces some initial variance into the exploration so that the initial contact

occurs at varying locations on the object’s surface.

All values we provide are averages over the ten evaluation runs. For each contact,

an area of 6 mm around it is marked as explored on the ground truth mesh. One

evaluation run is considered completed when at least 80 % of the ground truth mesh

is marked explored. Sometimes a small part of the object could not be covered by

the exploration, because it was not reachable. Therefore we decided to use 80 %

exploration coverage instead of 100 %. We also compared the results when the

exploration reached 50 % coverage.

In our evaluation, we consider the following four metrics:

(1) Traveled distance: The overall path length of all exploratory actions until the

object is explored.

(2) Overall rotation: The accumulated rotation of the fingertip orientation during

all exploratory actions.

(3) Surface RMSE: The Root-Mean-Square-Error (RMSE) between the ground

truth mesh and the triangulated estimated surface after the exploration has

finished.

(4) Prediction miss: The average distance between the predicted contact based

on the estimated surface and the actual contact with the ground truth mesh.

We use Gaussian Process Implicit Surfaces with a thin plate kernel for surface
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(a) Ground truth mesh (b) Intermediate result based on 27
oriented contacts

(c) Intermediate result based on 73
oriented contacts

(d) Final reconstruction based on
117 oriented contacts

Fig. 8: The IGEF-based approach leads to a complete and cost-aware exploration

of an unknown object (YCB object nr. 25 )

modeling17. The average results of all evaluation runs can be found in Table 2.

On average, the Information Gain Estimation Function (IGEF) based exploration

outperforms the Gaussian process variance (GP-V) based exploration. For most

objects the proposed IGEF strategy performs better than GP-V approach, although

there are some objects for which GP-V performs slightly better (object 14 and 41 ).

To show that the IGEF approach works independently of the chosen surface

estimation model we repeated the complete evaluation with our previously proposed

Local Implicit Surface (LIS) approach37. This approach is designed to reproduce

edges and corners more accurately than GPIS. In some cases the estimated surface of

LIS differs notably from the GPIS estimation. However, applying the IGEF strategy
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Table 2: Results for YCB Object Dataset

Coverage Metric GP-V IGEF Avg. Improvement

50 %

Avg. traveled distance 103 cm 78 cm 22 %
Avg. overall rotation 560° 474° 15 %
Avg. surface RMSE 1.32 mm 1.04 mm 20 %
Avg. prediction miss 25 mm 7 mm 72 %

Avg. number of contacts 12.0 15.0 -

80 %

Avg. traveled distance 159 cm 117 cm 26 %
Avg. overall rotation 995° 803° 19 %
Avg. surface RMSE 1.01 mm 0.89 mm 11 %
Avg. prediction miss 17 mm 5 mm 67 %

Avg. number of contacts 19.4 24.3 -

still produces improved results when compared to the GP-V baseline. The average

results can be found in Table 3.

Table 3: Results for YCB Object Dataset using LIS for exploration

Coverage Metric GP-V IGEF Avg. Improvement

50 %

Avg. traveled distance 160 cm 90 cm 44 %
Avg. overall rotation 754° 617° 10 %
Avg. surface RMSE 1.56 mm 1.3 mm 19 %
Avg. prediction miss 39 mm 10 mm 75 %

Avg. number of contacts 9.9 15.6 -

80 %

Avg. traveled distance 289 cm 132 cm 54 %
Avg. overall rotation 1393° 913° 34 %
Avg. surface RMSE 1.09 mm 0.88 mm 19 %
Avg. prediction miss 37 mm 9 mm 75 %

Avg. number of contacts 19.2 24.5 -

Another important aspect for exploration is the angle between the fingertip and

the actual surface normal during contact, since many real haptic sensors have a lim-

ited measurable angle between sensor orientation and surface normal. For example

the IMU-based surface orientation sensor proposed by Kaul et al. 38 works best for

approach directions within a 30° cone around the surface normal. Similarly, Zhe et

al. reported feasibility of the BioTac Sensor for surface orientation measurement in

the range of ±7° for pitch and roll39. For each object in the test set the average

angle between surface normal and fingertip orientation during contact is depicted

in Figure 9. For most objects the IGEF approach performs better (i.e. produces a

smaller angle) on average when compared to GP-V based exploration.

4. Conclusion and future work

In this work we presented a novel haptic exploration strategy for unknown objects

based on local information maximization and exploration cost minimization. We

conducted an extensive evaluation in simulation using 48 objects from the YCB
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Table 4: Results for YCB Object Dataset

Nr Object Name GP-V IGEF Improvement

1 block of wood 6in 262.6 cm 216.7 cm 17.5%
2 blue wood block 1inx1in 45.7 cm 33.5 cm 26.7%
3 brine mini soccer ball 435.5 cm 221.0 cm 49.3%
4 campbells condensed tomato soup 203.5 cm 170.9 cm 16.0%
5 champion sports official softball 236.8 cm 197.3 cm 16.7%
6 dark red foam block with three holes 152.1 cm 116.4 cm 23.4%
7 expo black dry erase marker 82.0 cm 70.5 cm 14.0%
8 frenchs classic yellow mustard 14oz 258.8 cm 221.1 cm 14.6%
9 jell-o chocolate flavor pudding 219.5 cm 173.3 cm 21.0%
10 jell-o strawberry gelatin dessert 146.7 cm 110.3 cm 24.8%
11 master chef ground coffee 297g 427.2 cm 217.3 cm 49.1%
12 medium black spring clamp 112.8 cm 93.7 cm 16.9%
13 melissa doug farm fresh fruit apple 162.0 cm 132.3 cm 18.3%
14 melissa doug farm fresh fruit banana 167.6 cm 181.3 cm -8.2%
15 melissa doug farm fresh fruit lemon 87.4 cm 71.7 cm 18.0%
16 melissa doug farm fresh fruit orange 136.3 cm 114.2 cm 16.2%
17 melissa doug farm fresh fruit peach 114.8 cm 95.3 cm 17.0%
18 melissa doug farm fresh fruit pear 134.6 cm 110.0 cm 18.3%
19 melissa doug farm fresh fruit plum 77.8 cm 64.7 cm 16.8%
20 melissa doug farm fresh fruit strawberry 59.6 cm 49.0 cm 17.7%
21 morton salt shaker 99.3 cm 92.8 cm 6.6%
22 moutain security steel shackle 54.3 cm 48.2 cm 11.1%
23 orange wood block 1inx1in 46.8 cm 35.4 cm 24.4%
24 penn raquet ball 79.3 cm 67.1 cm 15.5%
25 play go rainbow stakin cups 10 blue 388.9 cm 229.8 cm 40.9%
26 play go rainbow stakin cups 1 yellow 88.9 cm 71.9 cm 19.1%
27 play go rainbow stakin cups 2 orange 91.0 cm 76.6 cm 15.9%
28 play go rainbow stakin cups 3 red 107.3 cm 85.6 cm 20.2%
29 play go rainbow stakin cups 5 green 143.6 cm 112.9 cm 21.3%
30 play go rainbow stakin cups 6 purple 222.4 cm 161.9 cm 27.2%
31 play go rainbow stakin cups 7 yellow 182.0 cm 143.5 cm 21.2%
32 play go rainbow stakin cups 8 orange 301.2 cm 211.6 cm 29.7%
33 play go rainbow stakin cups 9 red 340.8 cm 221.6 cm 35.0%
34 play go rainbow stakin cups blue 4 118.9 cm 99.0 cm 16.7%
35 purple wood block 1inx1in 45.7 cm 36.1 cm 21.0%
36 red metal cup white speckles 373.8 cm 209.2 cm 44.0%
37 red wood block 1inx1in 45.5 cm 35.0 cm 23.0%
38 sharpie marker 61.6 cm 55.8 cm 9.5%
39 small black spring clamp 84.6 cm 75.2 cm 11.2%
40 spam 12oz 217.1 cm 184.7 cm 14.9%
41 sponge with textured cover 121.1 cm 125.3 cm -3.5%
42 stainless steel fork red handle 62.6 cm 51.5 cm 17.8%
43 stanley flathead screwdriver 68.4 cm 59.6 cm 12.8%
44 stanley philips screwdriver 69.5 cm 58.0 cm 16.6%
45 starkist chunk light tuna 150.6 cm 120.2 cm 20.2%
46 thick wood block 6in 476.6 cm 214.2 cm 55.0%
47 wilson golf ball 54.3 cm 44.9 cm 17.2%
48 yellow wood block 1inx1in 45.3 cm 36.0 cm 20.5%

average 159.7 cm 117.2 cm 20.6%
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Fig. 9: Angle between the fingertip orientation and the actual surface normal during

contact

Object and Model Set and we showed that the proposed Information Gain Esti-

mation Function outperforms Gaussian process variance based methods for touch

target selection. The evaluation results are based on four metrics considering the

overall path length of all exploratory motions, the overall rotation of the finger-

tip during exploration, the average distance between predicted contact and actual

contact with the ground truth object as well as the surface reconstruction quality

measured by RMSE between the estimated surface and the ground truth mesh.

The proposed approach depends on several tuning parameters that have been man-

ually chosen for best performance. Tuning these parameters could be automated in

the future, e.g. by machine learning approaches. Furthermore we intend to validate

the proposed approach on the humanoid robot ARMAR-III40 with a tactile sensor

providing contact data and surface orientation as described in our previous work38.
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