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Abstract— Grasping unknown objects is a challenging task
for humanoid robots, as planning and execution have to cope
with noisy sensor data. This work presents a framework,
which integrates sensing, planning and acting in one visuo-
haptic grasping pipeline. Visual and tactile perception are fused
using Gaussian Process Implicit Surfaces to estimate the object
surface. Two grasp planners then generate grasp candidates,
which are used to train a neural network to determine the best
grasp. The main contribution of this work is the introduction
of a discriminative deep neural network for scoring grasp
hypotheses for underactuated humanoid hands. The pipeline
delivers full 6D grasp poses for multi-fingered humanoid hands
but it is not limited to any specific gripper. The pipeline is
trained and evaluated in simulation, based on objects from the
YCB and KIT object sets, resulting in a 95 % success rate
regarding force-closure. To prove the validity of the proposed
approach, the pipeline is executed on the humanoid robot
ARMAR-6 in experiments with eight non-trivial objects using
an underactuated five finger hand.

I. INTRODUCTION

Grasping objects is a central capability for humanoid
robots, as it is a prerequisite of object manipulation. Grasping
is a challenging task, which has been approached from
many directions in the past, including different robots, hands,
sensors, and algorithms [1]. In particular, grasping with
humanoid hands is more challenging than grasping with
grippers, since it requires the generation of full 6D poses
for multi-fingered hands [2]. Robots which have to work
unstructured and partially unknown environments must be
able to deal with incomplete and imprecise object models as
well as noisy sensor data for successful grasping. Humans
learn grasping in the early development stage and fuse visual
and tactile information to transfer grasps from one object to
another [3].

Inspired by human grasping capabilities, we present a
complete pipeline for visuo-haptic grasping of unknown
objects leveraging a deep learning approach, as shown in
Fig. [} After capturing a point cloud, the robot gathers
information about the unseen sides of the object by tactile
exploration. Thereafter the visual and tactile information is
fused using Gaussian Process Implicit Surfaces, as proposed
by Bjorkman etal. [4]. A skeleton and a surface-based grasp
planner are employed to generate grasp hypotheses based
on the estimated surface of the object. The key contribution
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Fig. 1: Proposed Visuo-Haptic Grasping Pipeline: The humanoid
robot ARMAR-6 captures a point cloud of an unknown object
from the front. The robot’s hand touches the object from the back.
The information is fused using Gaussian Process Implicit Surfaces
(GPIS) where visual data is depicted with as arrows and the tactile
contact is shown as a blue dot. Multiple grasp hypotheses are
generated from the estimated surface, shown as red dots. The neural
network rates the hypotheses based on a local 3D voxel-grid view
that is aligned with the grasp pose. The best-rated grasp candidate
(green hand) is selected for grasp execution.

of this work lies in a discriminative deep neural network
(DNN) that is inspired by VoxNet [5]. However, instead
of classification, we use the DNN for scoring the grasp
hypotheses based on a local view of the estimated object
model. This enables the pipeline to reliably discard invalid
grasp hypotheses, leaving only grasp hypothesis with high
success probability for execution.

II. RELATED WORK

Since grasping is such a diverse and highly active field
in robotics, we limit the related work to approaches most
relevant to the proposed visuo-haptic grasping pipeline. We
discuss publications regarding three different challenges:
fusion of visual and tactile sensor information, encoding
of point clouds for deep learning through voxel grids in
particular, and lastly, both grasp planning and metrics for
model-based grasp generation and evaluation.

In their survey, Bohg et al. propose that through Interac-
tive Perception (IP) rich sensory data can be obtained [6].
Applied to grasping, IP recognizes dependencies between
the tactile and visual perception, as these modalities have



to be fused to facilitate successful grasping. A prominent
strategy has been the use of Gaussian Process Implicit
Surfaces (GPIS) for estimating object surfaces [7]. GPIS has
been widely applied to fuse visual and haptic perception in
one joint surface estimate [4, 8, 9], while other approaches
exist, e.g. Extended Kalman filter with assumed object
symmetry [10]. Maldonado et al. fuse an RGB-D point cloud
with observations from a proximity sensor [11].

Recently 3D voxel grids became popular for encoding
point clouds for deep neural networks (DNNs). Varley etal.
merge tactile and depth information into a shared occupancy
map that serves as input to a convolutional neural network
(CNN), which generates object geometry hypotheses [12].
By feeding a DNN with the voxel grid representation of a
point cloud the full 3D shape of an object can be predicted
allowing next-best-view estimation [13]. Yan etal. also use
Voxel grids for learning grasps in simulation [14]. Wang et
al. use a 2D color image and shape priors as input to their
deep neural network to generate a rough 3D shape that is
updated by tactile signals [15].

Grasp synthesis can be divided into analytic and data-
driven approaches. Analytic approaches rely on kinematic
or dynamic grasp simulation, resulting in planners such as
Grasplt! [16] or Simox [17]. Grasp candidates are typically
evaluated in the wrench space [18] or by calculating the
force closure probability under random perturbations of the
grasp [19]. Bohg etal. [1] have subsumed a number of data-
driven contributions for grasping unknown objects. Relying
on low-level features, Object-Action Complexes (OAC) can
be learned by visual feature extraction processes [20]. This
system was extended by texture features [21]. Morrison et
al. generate grasp candidates from on depth images, based
on learning methods [22]. Global object shape can also be
used to facilitate 2D contour extraction for grasping [23].

Other approaches employ grasp candidate simulation
based on object primitives [24, 25] or shape completion [26].
The generation of grasps based on mean curvature skeletons,
local surface structure, and alignment of the hand have also
been investigated [27].

In accordance with Interactive Perception, there also exist
approaches that additionally use tactile feedback to improve
on the visual information. Hsiao etal. [28] use top, side and
high point grasps and a reactive grasping heuristic to generate
grasp hypotheses. Schiebener etal. [29] use pushing actions
to verify visually perceived object hypotheses and apply
grasping after successful object segmentation. In addition,
further approaches exist that also use interaction to improve
scene segmentation [30-32].

The use of vision-based deep learning methods for grasp-
ing unknown objects has recently led to significant advances
[22]. Several approaches use CNNs for frame-based grasp
detection that solve either regression or region-proposal clas-
sification problems where grasps are encoded as rectangles
[22, 33—-36]. The methods usually vary in the number of
outputs (best grasp pose, multiple ranked poses) or in the
type of data used (real or simulated, image or depth image).
Calandra etal. use tactile sensory data in addition to visual

information in order to learn re-grasping policies for jaw-
grippers with a CNN [37].

Contributions not limited to parallel jaw-grippers but ex-
tended to three- [38] or full-fingered [2] end-effectors have
been proposed. Other works have investigated generative
models to improve data efficiency of deep robotic grasping
and addressed generalization from simulation to real-world
scenarios [39, 40]. Based on self-supervised trial and error,
deep reinforcement learning methods have been used to learn
grasping policies for a jaw-gripper [41] or for multi-fingered
hands in simulated scenarios [42] based on visual data.

III. OBJECT SHAPE ESTIMATION BASED ON GPIS

In the following, we briefly introduce the concept of
Gaussian Process Implicit Surfaces (GPIS) and its extension
to include surface normal observations for estimation of the
object surface. A more detailed explanation can be found in
our previous work [43] and in the original GPIS paper [7].

GPIS combines Gaussian processes (GP) with implicit
functions for surface estimation. The Implicit Surface Po-
tential function (ISP) f is defined for each point in R? and
can be used to calculate the estimated surface.
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In this work, we use the GPIS estimate in two different
ways. 1) We triangulate the O-level set of the ISP to get the
estimated surface of the object, which is used by the grasp
planners to generate grasp hypotheses. 2) Furthermore, we
sample the ISP of the GPIS in a 3D voxel grid that is used
as an input of the deep neural network.

IV. VISUO-HAPTIC GRASPING PIPELINE

We propose a visuo-haptic grasping pipeline consisting
of eight stages: visual and tactile perception, sensor fusion,
grasp hypotheses generation, filtering, scoring, selection, and
execution. Each pipeline step is explained in detail in the
following. The full pipeline is depicted in Fig. 2}

In the Visual Perception (S1) pipeline step the robot points
the depth camera at the object and captures a depth image,
which is transformed to a point cloud. We assume that the
object rests on a flat supporting plane, therefore it can easily
be segmented using RANSAC [44]. After denoising, the
visual perception computes normals from the point cloud,
resulting in a set of points with normals on the front and top
surface of the object.
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Fig. 2: Proposed visuo-haptic grasping pipeline integrating sensing, planning, and acting.

During Tactile Exploration (S) of the object, several
points from the unseen sides are chosen for exploration. We
use a simplified version of the next-best-touch algorithm that
we presented previously [45]. We infer tactile contact from
forces in the force torque sensor located in the wrist of the
robot since the used hand does not provide tactile sensors. In
simulation, the contacts are calculated based on the collision
between the object mesh and the hand geometry.

A GPIS estimate model fuses tactile and visual data in
the third pipeline stage (S3). Visual points are introduced
using contact positions and surface normals, where the
normals define the local gradient of the GPIS Implicit Surface
Potential (ISP). In order to speed up the matrix inversion
necessary for GPIS we reduce the visual point cloud to about
100 points with methods provided by the PCL library [46].
The tactile contacts are encoded as points on the surface,
defining the ISP value to O on the surface. Additionally, the
ISP is constrained by adding outside observations far away
from the object.

The Grasp Hypotheses Generation (Sy4) stage triangulates
the GPIS model using the marching cubes algorithm. Based
on this estimated surface model, the skeleton [27] and
the surface-based grasp planner, provided by Simox [17],
generate grasp hypotheses.

The Geometric Grasp Filtering (Ss) stage ensures that the
generated grasp hypotheses are collision-free and reachable.
We employ a simple filtering method regarding grasp posi-
tion and orientation, so that remaining grasps are reachable
and do not collide with the supporting surface.

The Grasp Hypotheses Scoring (Sg) stage estimates the
scores of the remaining grasps. For each grasp hypothesis,
a local voxel grid view of the ISP of the GPIS is generated
and fed to the neural network, which predicts the success
probability of the grasp hypothesis (Pg) between 0 and 1
for each grasp.

The Grasp Selection (S7) stage selects the grasp with the
highest predicted success probability, shown as a green hand,
while other feasible grasp hypotheses are shown as light blue
hands (see (S7) in Fig. 22).

During Grasp Execution (Sg) the robot calculates an
approach vector for the grasp. Then, the hand is controlled
in Cartesian velocity mode while the force torque sensor is
monitored. When a force is detected, the hand is closed and
thereafter the object is lifted. In the simulation, the grasp
execution is replaced by moving the hand to the target pose,
closing the fingers until contact and then calculating the grasp

metric.

V. SCORING GRASP HYPOTHESES WITH A DNN

The main contribution of this work is a data-driven grasp
metric, that scores grasp hypothesis for underactuated hu-
manoid hands. The grasp metric is implemented as a deep
convolutional neural network (subsequently simply referred
to as DNN). The network follows a discriminative approach
where the input is the current world state (local view of
the observed surface points) and the pose of the grasp
hypothesis. Based on these inputs, the DNN predicts the
success probability of grasp execution by the robot (Fg).
In Fig. 3] the network architecture is depicted.
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Fig. 3: Structure of the deep neural network: The grasp pose is
encoded relative to the object center as the top three rows of
the homogeneous pose matrix (3 x 4). Two fully connected layers
preprocess the grasp pose. The local view on the estimated model is
encoded in a 3D voxel grid and processed by two 3D convolutional
layers conv(d, s, f), where d is the kernel size, s is the stride and f
denotes the number of filters. At each voxel center, two features are
observed: The Implicit Surface Potential (ISP) and the distance to
the closest point observed on the surface. The information is fused
in two fully connected layers, resulting in the success probability
of grasp execution.

For training data generation, the stages S;...S4 of the
pipeline are executed in simulation. The training object set
is comprised of objects from the KIT object database [47]
and the YCB object and model set [48]. The simulation
loads a random object mesh model and generates a point
cloud via a simulated depth camera (S7). The point cloud is
segmented, reduced and normals are computed. Stage 2 adds
between one and five touches, which are fused with the visual
information in a GPIS model (S3). Stage 4 then generates
grasp hypotheses based on the estimated GPIS model. For
each hypothesis, the ground truth Py is determined by
calculating the force-closure probability of the grasp against
the ground truth mesh of the object under small random



perturbations. A 323 voxel grid with a side length of 30 cm is
generated. The grid is aligned with the grasp pose such that
the hand is always in the center of the grid while the relative
orientation between hand and grid is fixed. At each voxel
center, two features are observed: The ISP of the GPIS and
the distance to the closest observed surface point. Aligning
the voxel grid with the grasp pose has multiple advantages:
The captured information is of high relevance to the grasp
success probability since force-closure is only dependent on
the local geometry of the object. The voxel grid alignment
allows the network to omit the transformation of the object
geometry into the correct alignment so that learning can
focus on the relevant features. Hence, the network can
transfer local part-specific grasps from one object to another
object having similar local geometry. Furthermore, a local
grid, enclosing only the hand, has a finer resolution than a
similar-sized global grid, enclosing the whole object.

Overall, we generated 1.6 million training samples. For
test and validation, we generated 200.000samples from a
separate set of objects not included in the training. The test
objects used in the evaluation can be seen in Fig. ] Each
object was randomly rotated and scaled to augment the object
set and to increase the training diversity. We used a 50 %
dropout rate and a learning rate of 10~%.

VI. EVALUATION

We present a complete pipeline for grasping unknown
objects, where the main novelty lies in the rating of grasp
hypotheses based on tactile and visual data with a deep
neural network. In the evaluation, we want to focus on the
effectiveness of the deep neural network (pipeline stage Se)
as well as the tactile exploration impact (S2). This poses two
main questions: What is the benefit of the proposed deep
learning model? How does adding tactile exploration to the
visual perception improve the grasp success probability? To
address these questions, we chose an object set comprised
of 12 unseen test objects that were not used for training.
The object models were taken from the YCB and KIT
object datasets and can be seen in Fig. [l We separate the
test objects into fully unknown objects and unknown, but
familiar objects. Unknown objects (“Power Drill” and “Spray
Bottle”) differ significantly from the objects in the training
set, whereas familiar objects have similar a shape as objects
in the training set.

A. Baseline and Evaluation Pipeline

Bjorkman etal. presented in [4] the fusion of tactile
and visual data using GPIS for sensor fusion and surface
estimation. They propose that grasp planning and execution
should be based on the GPIS estimate. In our work, we use
this GPIS-based approach as a baseline for comparison. The
baseline consists of the full pipeline, where the DNN pipeline
stage (Sg) is replaced with a grasp score that is computed
on the estimated GPIS model by the employed grasp planner
from the Simox framework [17].

During the evaluation, Sy is replaced by computing the
grasp force-closure probability (Pg) in simulation on the

Unknown, but familiar
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Fig. 4: Object test set for evaluation (1-4 YCB, 5-12 KIT):
1 Power Drill, 2 Apple, 3 Racquetball, 4 Jello, 5 Bottle,
6 Shampoo,7 Spray Bottle, 8 Vitalis Cereal, 9 Tomato Soup,
10 Schaumkiisse, 11 Koala Candy, 12 Fruit Drink.
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Fig. 5: Comparison of the proposed DNN approach (blue) against
the baseline (orange). The DNN outperforms the non-deep learn-
ing baseline for complex-shaped objects. The difference is most
significant for object 1, 7, and 8.

ground truth mesh. This is applied for the baseline and
for the evaluation of our approach. The grasp force-closure
probability is computed by randomly perturbing the grasp
position. Force-closure is tested for each position and Pg
is calculated from the ratio of force-closure and non force-
closure grasps. During the evaluation, we consider a grasp
successful if at least 80 % of the perturbed grasps result in
force-closure of the hand and object.

B. Benefit of the Deep Neural Network

In order to measure the added benefit of the deep neural
network, we execute the evaluation pipeline for all 12 test
objects. We compare the results of the baseline against the
success rates of our approach in Fig. 5] In the following,
we analyze the results for ball-shaped objects (2 and 3),
cylindrical (5, 6, 9 and 11), boxes (4, 8, 10 and 12) and
complex objects (1 and 7).

The baseline approach and the proposed DNN method
can easily grasp ball-shaped objects (2 and 3). Hand-sized
cylinders (5, 9 and 11) can be grasped by the baseline in
most cases; however, the DNN can eliminate almost all grasp
failures. The baseline drops to 50 % success rate for the
shampoo (6). The shampoo bottle has an oval shape, resulting
in over-sized GPIS estimates when observed from the front.
In contrast, the DNN can raise the success rate to 90 %.

The difference in success rate is most prominent for the
unknown objects (1 and 7). This can be explained by the
properties of the GPIS estimate based on the partial obser-



TABLE I: Grasp success probability depending on the number of
touches during tactile exploration.

Number of exploration actions

Object 0 1 2 3 4 5
1 70 % 73 % 82% 68 % 94 % 90 %
2 100 % 100 % 100 % 100 % 100 % 100 %
3 100 % 100 % 100 % 100 % 100 % 100 %
4 88 % 96 % 98 % 98 % 96 % 97 %
5 89 % 99 % 98 % 99 % 99 % 98 %
6 89 % 95 % 92 % 96 % 93 % 90 %
7 7% 91 % 70 % 74 % 79 % 97 %
8 92 % 88 % 92% 92% 94 % 93 %
9 90 % 100 % 99 % 99 % 100 % 99 %
10 96 % 94 % 99 % 93 % 94 % 99 %
11 97 % 99 % 99 % 100 % 99 % 99 %
12 83% 97 % 97 % 99 % 96 % 78 %
Mean 89 % 94 % 94 % 93 % 95 % 95 %

vations of the object. In these cases the GPIS estimate differs
substantially from the real object, leading to many incorrect
grasp hypotheses. The baseline approach scores the grasps
based on the incorrect GPIS estimate, leading to a low grasp
success probability. The proposed DNN approach filters out
most of the incorrect hypotheses, therefore increasing the
grasp success probability, as can be seen in Fig. [7]

In our experiment, we have shown that the proposed DNN
approach performs better than or equal to the baseline for
all tested objects. In some cases, the DNN outperforms the
baseline significantly, reaching almost 100 % success rates.
The baseline fails in 35% of the cases and the proposed
approach fails in 5% of the tested cases, allowing for an
average of 7-times fewer grasp failures. Exemplary success-
ful grasp hypotheses generated by the DNN approach are
displayed in Fig. [§]

C. Benefit of Tactile Exploration

During execution on the robot, acquiring tactile contact
with the objects is a time-consuming endeavor that might
move the objects resulting in loss of precision. However,
adding more tactile contact points improves the GPIS esti-
mate gradually [4]. Therefore, a trade-off between execution
time and model completeness arises. To find an adequate
amount of tactile exploration actions, we performed a sepa-
rate evaluation, where the number of touches was fixed to a
predefined amount for each evaluation run. lists the
success rates for the test set depending on the number of
touches executed during tactile exploration.

The first added tactile contact point increases the success
rate considerably while adding more observations hardly
improves the success rate on average. Therefore, we opted
to perform one exploration action during the validation on
the humanoid robot ARMAR-6.

VII. VALIDATION ON ARMAR-6

In order to validate our approach, we execute the full
pipeline on the humanoid robot ARMAR-6. The robot is
located in front of a table with several unknown objects on
top, see Fig. The goal is to grasp an object from the table
and lift it, to enable further manipulation, e.g. placing. We

Fig. 6: Object set used for validation. Objects from top to bottom
and left to right: Aluminum Profile, Hammer, Multimeter, Screw
Box, Power Dirill, Cutter, Pliers, Spray Bottle.

GPIS estimate

Baseline
/4 |

Fig. 7: Comparison of the baseline and the proposed DNN method:
Successful grasps are displayed as green arrows, failed grasps are
shown as red arrows. The GPIS estimate (colored surface, color
denotes GPIS variance, blue: low, red: high) differs from the actual
object. The baseline approach plans grasps based on the incorrect
surface, leading to many failed grasps. The proposed DNN approach
filters out most of the incorrect grasp hypotheses leading to a higher
grasp success rate.

Unknown, but familiar

Fig. 8: Examples for successful grasps generated with the proposed
approach on three familiar and the two unknown objects from our
test set.

use a predefined region of interest in which the robot searches
for an object. The object to be grasped lies in this region and
should be grasped from the top. For visual perception, we
use a Primesense RGB-D camera, located in the head of
the robot. The robot grasps with its five-finger hand that is
mounted at the end of the robot’s 8-DOF arm. At the time
of the experiment, the robot’s hand did not provide tactile
sensing or joint angle encoders. However, we can estimate
tactile contacts by inferring contacts from the force torque
sensor, located in the wrist. We estimate the contact to be
at the fingertip of the middle finger, which can be computed
since the hand is fully open during tactile exploration. In
addition, the hand is underactuated, controlled by only two
motors, one for the fingers and one for the thumb. The robot’s
hand is similar to the KIT prosthetic hand [49] in design,
however larger to fit the size of the robot. Therefore, we
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Fig. 9: Exemplary grasping results using the underactuated five-finger hand of ARMAR-6.

Fig. 10: Validation setup.
TABLE 1I: Results of the validation on the real robot.

Object Mass  Lift success?  Attempts
Alum. Profile 1.2kg Yes 2
Hammer 0.8kg Yes 2
Multimeter 0.4kg Yes 1
Screw box 0.4kg Yes 2
Power drill 0.9kg Yes 2
Cutter 0.3kg Yes 2
Pliers 0.3kg Yes 1
Spray bottle 0.2kg Yes 1

chose to train and execute power grasps only. To enable
power grasping from the top we had to raise most objects
using small foam blocks. For validation, we used different
objects, including the “Power Drill” and the “Spray Bottle”.
The set of eight different validation objects is shown in[fig. 6}

Validation Results

We performed validation experiments with eight different
objects, weighing up to 1.2kg. The robot was able to lift
all of the objects, while in some cases multiple attempts
Were necessary, see Successful grasps resulted in
a firm enclosure of the object, see [fig. 9 Failed grasping
attempts resulted from the sliding of the fingers when the
object could not be enclosed. We chose to raise the objects
with small foam blocks, allowing the fingers to enclose
the objects, if possible. We argue that these failure modes
are not a fundamental limitation of the proposed approach
but emerge from uncertainties in perception and insufficient
friction between the fingers and the object, e.g. in case of the
box, see [fig. 9] on the right. Further examples for successful
and failed grasps are shown in the accompanying Vide(ﬂ

VIII. CONCLUSION

In this work, we presented a visuo-haptic grasping
pipeline, leveraging deep learning to estimate grasp success
probability. Visual and tactile information is fused with

nttp://ottenhaus.de/simon/vhgrasping/

Gaussian Process Implicit Surfaces and grasp hypotheses are
generated based on the estimated surface using a skeleton
and a surface-based grasp planner. The grasp hypotheses
are then scored with a deep neural network that has been
trained in simulation. During the evaluation in simulation
we achieved a grasp success rate of 95 % regarding force-
closure of the hand, tested on 12 unseen objects, including
non-trivial shapes like a power drill and a spray bottle. Our
approach was able to transfer part-specific grasps from one
object to another, since the neural network is presented with a
local view of the perceived visual and tactile data, capturing
only the relevant local features for grasp assessment. The
successful transfer from simulation to the humanoid robot
ARMAR-6 was validated in real-world experiments using
eight unknown objects, where each object could be lifted
successfully.

The used hand is underactuated and does not include
joint angle encoders, therefore precision grasps are difficult
to execute. Thus, the execution on the robot is limited to
power grasps, where the objects are slightly raised using
small spacer foam blocks. Currently, we are working on
the grasp execution with underactuated hands by exploiting
interactions with the environment to eliminate the need for
these spacer blocks. Using stochastic gradient descent [50]
could be applied in future work for grasp refinement.
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